
Powerful ideas in computational linquistics

Implications for problem ,solvinq, and education

A b s t r a c t

Gerhard Fischer, Ins t i tu t fuer Informatik
Universitaet Stuttgart, West-Germany

It is our firm belief that solving problems in
the domain of computational linguistics (CL)
can provide a set of metaphors or powerful
ideas which are of great importance to many
fields. We have taught several experimental
classes to students from high schools and
universities and s major part of our work was
centered around problems dealing with language.
We have set up an experimental Language
Laboratory in which the students can explore
existing computer programs, modify them, design
new ones and implement them. The goal was that
the student should gain a deeper understanding
of language itself and that he/she should learn
general and transferable problem solving
skills.

exercise in pattern matching and symbol

manipulation, where certain keywords trigger a

few prestored answers. I t may also serve as an

example for how little machinery is necessary

to create the illusion of understanding.

[n our interdisciplinary research project

(KLING eL el, 1977) we have tried to overcome

these problems by providing opportunities for

the student to explore powerful ideas in the

context of non-trivial problems and by showing

that the computer prescence can do much more

for education than improve the delivery system

for curricula established independently of it.

I . Introduct ion

Problem solving with the computer for the

non-computer expert is slowly recognized as an

important activity in our educational system.

It is done best in a project-oriented course in

which the student learns to solve problems in

different domains. In the past, activities of

this sort have been centered around numerical

problems, physics problems and the standard

computer science problems (eg like writing a

sorting procedure).

2 . The s t a t e o f t h e a r t

The relevance of problems from linguistics has

been ignored. The reasons for this fact are

easy to explain:

I) t h e e d u c a t i o n a l c o m m u n i t y i n the
language-oriented fields has very little
knowledge about using a computer to write
interesting programs to gain a deeper
understanding of the problems in their domain

2) the computer e x p e r t s w e r e not familiar
with linguistics

3) the most commonly used programming
l s n g u e g e e end eyetemo ere inadequate t o d e a l
with the data structures and dialog
requirements which are relevant for language
processing

4) new fields like artificial intelligence,
c o g n i t i v e s c i e n c e end c o m p u t a t i o n a l
llnguletlee were not widely known

The level of ignorance can best be seen by

using ELIZA as an example: many people thought

that it was a program which would "understand"

the contents of a dialog. It was not evident to

them that ELIZA represents nothing more than an

~. C o q n i t i v e S c i e n c e and P roq rammin~

In recent years the view has emerged that the

language of computation is the proper dialect

t o describe basic issues in psychology,

linguistics and education. Research in

Cognitive Science has demonstrated that the

phenomena surrounding computers are deep and

obscure, requiring much experimentation.

Cognitive Science theories about problem

solving, representation of knowledge and other

cognitive abilitiesprovide the foundation for

our understanding of programming.

We believe that the whole enterprise of

programming can be much better explained with

concepts from CL than with those from

mathematics. Problems in CL are often

ill-defined, algorithms are seldom given and

programming is more a design task than it is s

coding of a known algorithm. The problem

formulation phase is more relevant than the

execution of a Program and systems are needed

to support this phase of the problem solving

process. Successive formulation of programs

serve aa stepping stones towards the goal of

defining the specification of a problem.

Humane have a good intuitive understanding of

the problems in CL and they can do the things

(like communicate in natural language, deal

with vast amounts of knowledge, infer new

knowledge from exiting one) - even if they do

not know how they do it. Programming can be

understood as an effort to make our own

knowledge explicit and can provide us with

adequate metaphors to describe our own mental

functions.

111

4. Oes iqn of a Lanquaqe L a b o r a t o r y

The design of learning environments is an

important goal for the educational theorist and

the teacher. The computer as a new technology

has created almost unlimited possibilities to

create new and challenging environments. The

Turtle world (PAPERT 1979) and the simulation

world of Smslltslk (KAY 1977) provide good

models of what can be done.

In our project we have set up an experimental

Language Laboratory in which the students can

exp lo re ex i s t i ng programs, modify them, dealgn
new ones and implement them. We took great care

in our design (by f o l l o w i n g the t r a d i t i o n o f
t h e LOGO p r o j e t s as opposed to CAI a p p r o a c h e s)
t ha t the students could work in an a c t i v e mode
end d e v e l o p i d e a s i n 8 p e r s o n a l way (n o t
l i m i t e d by t h e t e a c h e r s a p p r o a c h) . Our t e a c h i n g
style w a s not to provide answers but the

l e a r n e r s w e r e e n c o u r a g e d t o use t h e i r own
language knowledge to f i nd e so lu t i on . T h e i r
work had to rely on self motivation which seems

a more reasonable goal in CL where the products

(e g p o e m s , h o r o s c o p e s , q u e s t i o n / a n s w e r i n g
s y s t e m s e t c) can be more i n t e r e s t i n g and
a e s t h e t i c a l l y p l e a s i n g t h e n a s e t o f numbers
appearing as s resu l t in numerical mathematics.
With our Language Laboratory w e wanted to

c r e a t e an e n v i r o n m e n t i n w h i c h t h e s t u d e n t ' s
t a s k i s n o t t o l e a r n a s e t o f f o r m a l r u l e s (eg

about the syntax of a programming l a n g u a g e) ,
but to g i v e them s world in which t h e y could

develop sufficient inside into t h e way they

used language to a l l o w the t r a n s p o s i t i o n o f
th is self-knowledge in to programs.

The students were exposed to different

formalisms (primarily to LOGO, but also to

L I S P , ATNs, s e m a n t i c n e t w o r k s , MICRO-PLANNER)
and c o u l d e x p l o r e t h e r a n g e o f p o s s i b l e mode l s
w h i c h c o u l d be i m p l e m e n t e d i n a c o g n i t i v e l y
e f f i c i e n t way w i t h t h e s e f o r m a l i s m s . We t r i e d
to engage them in problems of moderate
complexity (t h e s t u d e n t s ware no researchern

working f u l l - t i m e in a project) and we crested

micro-verslons of programs by ommltlng feoturea

which were not essential for a conceptual

understanding.

5.~ P pw~rful ~ d e e s

There i s l i t t l e d o u b t t h a t we w i l l be u n a b l e to
s o l v e t h e p r o b l e m s o f c o v e r a g e i n o u r s c h o o l
and u n i v e r s i t y s u b j e c t s and o f p r e d i c t i n g whe t
s p e c i f i c k n o w l e d g e o u r s t u d e n t s w i l l need i n
t h i r t y or f o r t y years. Despite the f a c t that we
wou ld l i k e to have more e m p i r i c a l e v i d e n c e t h a t
p r o b l e m s o l v i n g s k i l l s can be t a u g h t , we have
little c h o i c e , b e c a u s e we don't have any r e a l

a l t e r n a t i v e (f o r a d e t a i l e d d i s c u s s i o n o f t h i s
i s s u e , Bee SIMON 1 9 7 8) .

Cognitive Science and Artificial Intelligence

have contributed to our understanding of

p r o b l e m s o l v i n g p r o c e s s e s and we b e l i e v e t h a t
g e n e r a l p r o b l e m s o l v i n g s k i l l s , c r y s t a l l i z e d as
p o w e r f u l i d e a s , can be t a u g h t e x p l i c i t l y i n t h e
c o n t e x t o f a r i c h e n v i r o n m e n t o f problems. The
m a i n g o a l o f t h i s p a p e r i s t o show t h a t CL
p rov ides th is r ich context (which i f i t is not
s u p e r i o r t h a n m a t h e m a t i c s , s t l e a s t c o m p l e m e n t s
m a t h e m a t i c s) .

P o w e r f u l i d e a s a r e n u g g e t s o f k n o w l e d g e , w h i c h
e r e u n i v e r s a l l y u s e f u l , w h i c h a p p e a r o v e r and
o v e r i n d i f f e r e n t d i s c i p l i n e s and w h i c h can be
c o n n e c t e d I n • n a t u r a l and i l l u m i n a t i n g way
wi th a large c o m p l e x o f o t h e r ideas.

One e x a m p l e o f e p o w e r f u l i d e s i s t h e
h e u r i s t i c : " d i v i d e and c o n q u e r " . I t a p p e a r s to
be an a l m o s t u n i v e r s a l t r u t h , b u t how i t i a
d o n e i n t h e c o n t e x t o f a c o n c r e t e p r o b l e m
s i t u a t i o n is f a r f r o m being t r i v i a l . Many of
the t yp i ca l problems (l i k e w r i t i n g a program to
c o m p u t e F a c t o r i a l , t o s o r t • s e t o f o b j e c t s o r
t o s o l v e e t r i v i a l p u z z l e) a r e t o o s i m p l e , so
there ia l l t t l e need to use t h i s h e u r i s t i c .
Fur thermore many t r a d i t i o n a l programming
s y s t e m s a r e n o t b u i l d f o r (o r do n o t even
s u p p o r t) t h i s p r o b l e m s o l v i n g a p p r o a c h , w h e r e a s
i n o u r w o r k t h e h e u r i s t i c t o o k on a c o n c r e t e
m e a n i n g and was t h e o n l y s u c c e s s f u l way t o
s o l v e a p r o b l e m .

I n t h e f o l l o w i n g p a r t s o r t h i s s e c t i o n we
b r i e f l y d e s c r i b e a s a t o r p o w e r f u l i d e a s w h i c h
can be e x p l o r e d i n t h e c o n t e x t o f r e a l i s t i c
p r o b l e m s and r e s e a r c h a r e a s i n CL (t h e p r o j e c t s
a r e f u l l y d e s c r i b e d i n BOECKER/FISCHER, 1 9 7 8) :

11 d i f f e r e n c e b e t w e e n s y n t a x end s e m a n t i c (eg
i n t h e c o n t e x t o f w r i t i n g a p r o g r a m to g e n e r a t e
p o e t r y , i n s o l v i n g word p r o b l e m s i n a l g e b r a)

2) r u l e s y s t e m s (s s o r t o f p r o d u c t i o n s y s t e m s ;
t h e y e r e u s e f u l f o r t h e o r g a n i s s t i o n o f
p r o g r a m s t o d e r i v e t h e p l u r a l f o r m o f an
E n g l i s h noun g i v e n t h e s i n g u l a r , t o c o n j u g a t e
F r e n c h v e r b s , t o c h a r a c t e r i z e t h e r u l e s and
h e u r i s t i c s i n a game o r t o i m p l e m e n t t h e
e v a l u a t i o n p r o c e d u r e o f L ISP)

31 d e s i g n and I m p l e m e n t a t i o n o f s m i n i - l a n g u a g e
(t h i s s i l o . a s us to d e s c r i b e s p r o b l e m i n t e rms
w h i c h e r e c h a r a c t e r i s t i c f o r t h e p r o b l e m
i n s t e a d o f b e i n g f o r c e d to use e g i v e n g e n e r a l
p u r p o s e p r o g r a m m i n g l a n g u a g e ; e x a m p l e s e r e :
p r o d u c t i o n s y s t e m s , p a t t e r n m a t c h e r , e t c) ; i n
programming, i t is a n a t u r a l task to design
y o u r own r e p r e s e n t a t i o n a l s y s t e m w h e r e a s i n
m a t h e m a t i c s p e o p l e m o s t l y use t h e
r e p r e s e n t a t i o n a l s ys tem g i v e n t o them

4) e x p e r i m e n t a t i o n w i t h a w i d e v a r i e t y o f
d i f f e r e n t grsmmewa (eg to g e n e r a t e and a n a l y s e
a l g e b r a i c e x p r e s s i o n s ; t o t r a n s f o r m a r a b i c

112

numerals into roman ones and vice versa; to
explore transition networks and augmented
transition networks in dealing with natural
language)

5) knowledge representation: eg to derive
implicit knowledge and to study the impact of
processing at read-time (antecendent theorems)
versus question-time (consequent theorems) in a
system which dealt with family relations (a
system of this sort can be contrasted with
ELIZA or a program to cast horoscopes); the
following diagram illustrates how ? implicit
relationships (---) can be derived from 3
explicit ones within a family of four persons:

', ~ / ~,~ "\ |1 ",
\ , \~ , "~-~ "-- l I"o '

6) exploration of statistical properties of
languages in the context of s wide variety of
different language games (eg like designing the
distribution of a Scrabble game, information
content of vowels in different languages etc)

7) g e n e r a l c o m p u t a t i o n a l ideas (eg like
backtracking, which is encounterd in parsing
non-deterministc grammars and which could be
applied to pattern matching and tree like data
s t r u c t u r e s)

6. Pattern M a t c h i n q - an e x a m p l e f o r the.deslqn
9nd implementation of s minirlsnquaqe

A matching capability can be a key element for

many problem solving tasks involving the

computer to make otherwise large, complicated

efforts reachable. The following powerful ideas

can be investigated in the context of this
p r o j e c t :

I) incremental design: we can start with s
pattern marcher which is basicly en EQUAL
predicate. The next steps could be: a
membership predicate, s pattern with slots of
fixed size, s pattern with slots of arbitrary
size (which creates the need for back-up),
the possibilty for simultanous assignment of
matched elements to pattern variables, the
restriction of matching by using predicates
etc

Z) the problem is ill-defineds the
specification of the pattern marcher should
be derived from the needs of using it to
simplify problem solving tasks. A partial
implementation can be an important help for a
further specification or for a revision of

already existing parts, ie the problem
formulation is an important part of the
problem solving process

3) definition of a new language layer: the
pattern matcher can be used as a new language
layer between the problem and the programming
language and it can help to reduce the
distance between the two.

4) g l a s s - b o x a p p r o a c h : in many situations, we
are primarily interested in using the pattern
marcher. But by making use of an already
existing program the student is not confined
to a black box (like it would be in CAI
environment); at any time he/she can look
inside the program, open it up, change it to
his/her own needs etc. A prerequisite for a
program to be a glass-box is that it is
implemented in a formalism the student is
familiar with.

5) r e c u r s i v e c o n t r o l s t r u c t u r e , a p a t t e r n
m a r c h e r i s a g o o d e x a m p l e f o r t h e power o f
recursive definitions and control structures
which can be used in many other situations

A pattern marcher can be used in all projects

where symbolic structures have to be dissected

and identified, eg for the translation from

infix to prefix, for parsing and translating

processes, for morphological analysis, for

simple I/0 routines (eg the identification of

keywords), for ELIZA like programs and for

symbolic manipulation of algebraic expressions.

We do not have the space to document the

problem solving processes (including all the

incomplete versions) which "occured in the

context of implementing the pattern marcher

(see BOECKER/FISCHER 1978) but we want to give

examples of its use. The simplification with

the help of a pattern marcher can be

demonstrated by a program for infix to prefix

translation (written in LOGO! the program also

nicely shows the power of recursive
definitions):

~0 PRM"ZX : IIIVIX

10 LOCAL "A "B
20 IF (EQUAL COUNT :INFIX I) TH]~ 0UTFJT :INFIX

3o zF ~ [?A + ?B] :inFiX

OVrIK~ (s~?l~c~ "SUM I ~ I X :A PREFIX :B)

OUTPUT (S~NT~CE "DI~I~/~CE PREFIX :A PREFIX :S)

50 zF MA~ [?A * ?B] :n~zx
~ (S~TI'~CE "PRODUCT ~IX :A PREFIX :B)

60 ~ ~ m [?A I ?S] :zm~zx
OU'I'I~ (S~I'I'~OE "QUOTIENT PREFIX :A PREFIX :B)

70 == [~Om S~AX]

The following testruns show how the program

w o r k s :

s u ~ u v

113

A ~ l ~ E ~ ~ o ~ r ~ ~ o ~ c A

This version of the program can be extended

easily to include other o p e r a t o r s like ">" o r
"<" :

~ (S~'I~C@ " ~ ' l " ~ ~ :~ R ~ I ~ :~)

CIJTRE (S~TE~CE "I~ I~IX :a PREFIX :~)

I t i e an instance in the class of ru le systems
which we mentioned e a r l i e r . The order ing o f the
r u l e s t a k e s c a r e f o r t h e p r e c e d e n c e c o n v e n t i o n s
o f i n f i x n o t a t i o n . We h a v e c h o s e n t h i s
a p p l i c a t i o n s p e c i f i c a l l y t o support our claim
t h a t many p r o b l e m s c o n s i d e r e d t o be
m a t h e m a t i c a l can be more c l e a r l y u n d e r s t o o d by
l ook ing s t them f r o m • l i n g u i s t i c v iewpo in t
(and t h e APL e x p e r i e n c e shows t h a t c h a n g i n g t h e
p r e c e d e n c e r u l e s f o r t h e e v a l u a t i o n o f
a r i t h m e t i c express ions poses a n o n - t r i v i a l
problem).

A n o t h e r a p p l i c a t i o n o f t h e p a t t e r n m a r c h e r
w o u l d be t o p a r s e s e n t e n c e s i n a l a n g u a g e w h e r e
t h e grammar is g i v e n . For t h i s p u r p o s e we

assume t h a t t h e p a t t e r n may c o n t a i n p r e d i c a t e s
(w h i c h e r e marked by "<" and ">"):

TRUE

The f o l l o w i n g g r a m m e r may s e r v e ss an e x a m p l e
(i t d e s c r i b e s t h e l a n g u a g e o f s t l e a s t one "O"
f o l l o w e d by a t l e a s t one " 1 ") :

<$8~1~ --> <SO> <$1>
<SB> - -> 0 I 0<$1>
<51> --> 11 1<51>

SENT, SO and S I can be i m p l e m e n t e d w i t h t h e
p a t t e r n m s t c h e r aa l o l l o w e d :

Io 0OTI~ ~TCHP [<SO> <sl>] : I ~ t ~

~OSO :D~er
10 ~Y ~tITC]~ 0 :]];POT ~ ~ " ~
2o 0mg~ ~nc~ [o <so>] :n~oT

~0 $I :I]l@~

10 :IY ~t~TC]~ I :D~t~ ~ Otfigb5 " T I ~
20 OU'lg~ ~ [:1 <St>] : ~

A few t e s t r u n s show the working of the p a r s e r :

?ALSE

I~II~ ~ [0 0 0 1] PIlINT SI~T [0 t O 1]
TRUE FALSE

7 . I m o l i c e t ~ o n s f o r p r o b l e m e o l v ~ n q and
e d u c a t i o n

Powerful ideas have the potential to lead to a

breakdown of the traditional boundaries between

established scientific disciplines and reduce

the d i v i s i o n of school knowledge i n t o
d i s J u n c t i v e compartments. ~By working on some of
t h e p r o J e c t s d e s c r i b e d a b o v e o u r s t u d e n t s f o u n d
t ha t the knowledge which they acqu i red or
discovered was not only useful in the context

of a specific task but could be successfully

u s e d t o u n d e r s t a n d end s o l v e p r o b l e m s i n o t h e r
domalns as well, which should be illustrated

through the fo l low ing two spec i f i c examples:

1) t h e s t u d e n t s b e c a m e a w a r e t h a t t h e
e v a l u a t i o n of a r i t h m e t i c e x p r e s s i o n s (a s i t
i s commonly used in mathematics) is not
something determined by God but that i t is
only s convention and that the laws behind i t
can be easily explained by the use of a
g rammar .

2) s s t u d e n t d i s c o v e r e d why m a t h e m a t i c i a n s
t a l k a b o u t o n e - t o - o n e m a p p i n g s (w h l c h n e v e r
made any s e n s e t o him in mathematics) by
t r y i n g to design secret codes in some of the
language games (eg Pig Lat in and other ones)

A n o t h e r i m p o r t a n t f e a t u r e of o u r a p p r o a c h wee

t ha t the s tudents extended the range of t h e i r
" s u b j e c t i v e l y c o m p u t a b l e " p r o b l e m s , w h i c h
h e l p e d t h e m t o r e p l a c e t h e i r v i e w o f t h e
computer being a g iant adding machine with the
m o r e a d e q u a t e v i e w of being s g e n e r a l
information processing device. We challenged

t h e i r views t h i n k i n g about the c o m p u t e r .
Despi te the f ac t that computation is s t i l l in
i t s in fancy there are many strong be l i e f s whet
c o m p u t e r s a r e , w h e t t h e y can do and what t h e y
can n o t do .

By being exposed to the complex problems
mentioned above the students got f a m i l i a r with
genera l problem s o l v i n g ideas about
r e p r e s e n t a t i o n s , p lann ing and debugging. The
i n t u i t i v e unders tand ing which a person has
about h i s / h e r own language provided the basis
t ha t debugging incomple te and i n c o r r e c t
programs b e c o m e s an e a s y - t o - g r a s p a c t i v i t y ,
b e c a u s e bugs in language programs have a high
v i s i b i l i t y (i e we c a n d i s c o v e r them by
i n s p e c t i o n and not on ly by e x t e n s i v e
c a l c u l a t i o n s l i k e i t i s t h e case i n n u m e r i c a l
computations).

Problems in CL p rov ide good p ro to t ypes to
understand the t h e o r e t i c a l re levance of
debugging. Opposed to the dominant view in

114

computer science, where many people regard bugs
as an awkward obstacle (or as an indication

that the programmer is unable to think clearly

and carefully enough) we consider bugs as

potentially informative friends and as a

starting point to find out about the

discrepancies between'a specification (a model,

e theory) and an implementation (s program). In

CL, most people are aware that if a conflict

arises we can not always conclude that the

specificat.ions are correct and t h e
implementation is wrong (as in Galileo's case,

where the theory was wrong and his data were

c o r r e c t) .

Working on the projects described above, the

students can do work which is close to the

research front (if they would have done their

work ten years earlier they could have earned e

PhO degree with it). This makes this subject

material once again more interesting than much

of mathematics where the students have to think

about what is not even close to the current

research front.

9. [mpiricel findinqe

Most of the hypotheses and assertions of the

previous sections ere supported by the

empirical work in our project. We have not made

an effort to do any kind of formal evaluation,

but we have carried out a large number of

informal investigations to understand the

impact of our approach. Students filled out

questionaires, participated in think-aloud

protocols for many problem solving situations

end we tried to understand their programs and

the bugs they produced during the solution of a

complex problem. There is no space here to talk

about this in detail; the information is

documented in KLING et al (1977) end FISCHER

(1978 end 1979).

We believe that our approach turned out to be

very successful. The students enjoyed working

in our laboratory and they learned a lot about

language as well as general problem solving snd

programming skills. Especially students with

little interest in mathematical problems were

motivated by language-oriented applications.

They could work in an active mode and

investigate arbitrary formalisms and

conjectures. They could see that ideas from

linguistics could help them to understand

problems in other domains, which supports our

hypothesis that problems from CL can serve as

an entry point and as a transient object to the

world of problem solving, programming end

mathematics.

Acknow ledqemen ts

I would like to thank H.-D. Boecker, A. Fauser,

3. Laubsch end O. Roesner for many critical

comments about earlier drafts of this paper.

R e f e r e n c e s

Boecker,H.-O. and G. Fischer (1978): " I n te rak t i ves
Problemloesen mi t Computerhi l fe: Problemaufgaben zur
L i n g u i s t i k , In formet ik und Kuenstl ichen I n t e l l i g e n z " ,

Forschungsg~CUU, Darmstadt

Fischer, G. (1978). "Probleme und Erfehrungen bei dec
Programmiersuabildung im Informatik-Unterricht" in W. Arlt
(ed) ; "EDV-Einsatz in Schule und Ausbildung", Oldenburg
Verlaq, Huenchen, pp ?0-75

Fischer, G. (1979). "Fehlerdiegnose - Grundbauatein fuer ein

Verstehen yon Lehr- und Lernprozessen", in Beitreege zum

Methematikunterricht, Soh~oedel Verleg

Key, A. (1977): "Microelectronics and the personal computer",
Scientific America 1977, pp 2}I-2~w~

Kling, U., Boecker H.-D., Fischer, G., Freiburg, D.,
Schneider, B. end Schroeder, 3. (1977): "Projekt PROKOP",
Forschongscjruppe CUU, Darmstadt

Papert, S. (1979): "The LOGO Book", unpublished draft, MIT AI

Lab

Simon, H. (1978): "problem Solving and Education", CIP Working
Paper No. }91, Carnegie Mellon University

115

