Powerful ideas

in _computationsel lingquistics -

Implications for problem solving and education

Gerhard Fischer,

Institut fuer Informatik

Universitaet Stuttgart, West-Germany

Abstract

It is our firm belief that solving problems in
the domain of computational linguistics (CL)
can provide a set of metaphors or powerful
ideas which are of great importance to many
fields. We have taught several experimental
classes to students from high schools and
universities and s major part of our work was
centered around problems dealing with language.
We have set wup an experimental Language
Laboratory in which the students can explore
existing computer programs, modify them, design
new ones and implement them. The goal was that
the student should gain a deeper understanding
of language itself and that he/she should learn

general and transferable problem solving
skills.

l. Introduction

Problem solving with the computer for the

non-computer expert is slowly recognized as an
important activity in our educational system.
It is done best in a project-oriented course in
which the student learns toc solve problems in
different domains. In the past, activities of
this sort have been centered around numerical
problems, physics problems and the standard
computer science problems (eg like writing a
sorting procedure).

2. The state of the art

The relevance of problems from linguistics has
been ignored. The reasons for this fact are
eaay to explain:

1) the educational community in the
language-oriented fields hss very little
knowledge about using a computer to write
interesting programs to gain a deeper
understanding of the problems in their domain

2) the computer experts were not familiar
with linguistics

3) the most commonly used programming
languages and systems are inadequate to deal
with the data structures and dialog
requirements which are relevant for language
processing

4) new fields like artificial intelligence,
cognitive science and computational
linguistica were not widely known

The level of ignorance can best be seen by
using ELIZA as an example: many people thought
that it was a program which would "understand"
the contents of a dislog. It was not evident to
them that ELIZA represents nothing more than an

111

exercise in pattern matching and symbol
manipulation, where certain keywords trigger a
few prestored answers. It may also serve as an
example for how little machinery is necessary

to create the illusion of understanding.

In our interdisciplinary research project
(KLING et al, 1977) we have tried to overcome
these problems by providing opportunities for
the student to explore powerful ideas in the
context of non-trivial problems and by showing
that the computer prescence can do much more
for education than improve the delivery system
for curricula established independently of it.

3. Cognitive Science and Proqramming

In recent years the view has emerged that the
language of computation is the proper dialect
to describe basic 1issues in psychology,
linguistics and education. Research in
Cognitive Science has demonstrated that the
phenomena surrounding computers are deep and

obscure, requiring much experimentastion.
Cognitive Science theories about problem
golving, representation of knowledge and other

cognitive abilities provide the foundation for
our understanding of programming.

We believe that the whole enterprise of
programming can be much better explained with
concepts from CL than with those from
mathematics. Problems in CL are often
ill-defined, algorithms are seldom given and
programming is more s design task than it is a
coding of a known algorithm. The problem
formulation phase is more relevant than the
execution of a program and systems are needed
to support this phase of the problem solving
process. Successive formulation of programs
serve as stepping stones towards the goal of
defining the specification of a problem.

Humans have a good intuitive understanding of
the problems in CL and they can do the things
(like communicate in natural lanquage, deal
with vast amounts of knowledge, new
knowledge from exiting one) - even if they do
not know how they do it. Programming can be
understood as an effort to make our own
knowledge explicit and can provide us with
adequate metaphors to describe our own mental
functiona.

infer

4, Design of a lLanquaqe Laboratory

The design of learning environments is an
important goal for the educational theorist and
the teacher. The computer as a new technology
has created almost unlimited possibilities to
create new and chsllenging environments. The
Turtle world (PAPERT 1979) and the simulation
world of Smalltalk (KAY 1977) provide good
models of what can be done.

In our project we have aset up an experimental
Language Laboratory in which the students can
explore existing programs, modify them, design
new ones and implement them. We took great care
in our design (by following the tradition of
the LOGD projets as opposed to CAI approaches)
that the students could work in an active mode
and develop ideas in a personal way (not
limited by the teachers approach). Qur teaching

style was not to provide answers but the
learners were encouraged to use their own
language knowledge to find a solution. Their

work had to rely on self motivation which seems
a more reasonable goal in CL where the products
(eq poems, horoscopes, question/anawering
systems etc) can be more interesting and
aesthetically pleasing than a set of numbers
appearing as a result in numerical mathematics.
With our Language Laboratory we wanted to
create an environment in which the student's
task is not to learn a set of formal rules (eg
about the syntax of a programming language),
but to give them a world in which they could
develop sufficient inaside into the way they
used language to allow the transposition of
this self-knowledge into programs.

The students were exposed to different
formalisms (primarily to LOGO, but also to
LISP, ATNs, semantic networks, MICRO-PLANNER)
and could explore the range of possible models
which could be implemented in a cognitively
efficient way with these formalisms. We tried
to engage them in problems of moderste
complexity (the students were no researchers
working full-time in a project) and we crested
micro-versions of programs by ommiting features
which were not essential for a conceptual
understanding.

S. Powerful ideas

Thers is little doubt that we will be unable to
solve the problems of coverage in our school
and university subjects and of predicting what
specific knowledge our students will need in
thirty or forty years. Despite the fact that we
would like to have more empirical evidencs that
problem solving skills can be taught, we have
little choice, because we don't have any real

alternative (for a detailed discussion of this
issue, see SIMON 1978).

Cognitive Science and Artificial Intelligence
have contributed to our understanding of
problem solving processes and we believe that
general problem solving skills, crystallized as
powerful ideas, can be taught explicitly in the
context of a rich environment of problems. The
main goal of this paper is to show that CL
provides this rich context (which if it is not
superior than mathematics, at least complements
mathematics).

Powerful ideas are nuggets of knowledge, which
are universally usefuyl, which appear over and
over in different diaciplines and which can be
connected in a natural and illuminating way
with a large complex of other jdeas.

One example of @& powerful idea 1is the
heuristic: "divide and conquer”. It appears to
be an almost universsl truth, but how it is
done in the context of & concrete problem
gituation is far from being trivial. Many of
the typical problems (like writing a program to
compute Factorial, to sort a set of objects or
to solve a trivial puzzle) are too simple, so
there is little need to use this heuristic.
Furthermore many traditional programming
systems are not build for (or do not even
support) this problem solving approach, whereas
in our work the heuriastic took on a concrete
meaning and was the only successful way to
solve a problem.

In the following parts of this section we
briefly describe a set of powerful ideas which
can be explored in the context of realistic
problems and research areas in CL (the projecta
are fully described in BOECKER/FISCHER, 1978):

1) difference between syntax and semantic (eg
in the context of writing a program to generate
poetry, in solving word problems in algebra)

2) rule systems (a gort of production systemsa;
they are useful for the organisation of
programs to derive the plursl form of an
English noun given the singular, to conjugate
French verbs, to characterize the rules and
hsuriatics in a game or to implement the
evaluation procedure of LISP)

3) design and implementation of a sini-language
(this alle.s us to describe a problem in terms
which are characteristic for the problem
instesd of being forced to use a given general
purpose programming language; examples are:
production systeéems, pattern matcher, etc); in
programming, it is a natural task to design
your own representational system whereas in
mathematics people mostly use the
representational system given to them

4) experimentation with e wide variety of
different grammars (eg to generaste and analyse
algebrsic expressions; to transform arabic

numerals into roman ones and vice versa; to
explore transition networks and augmented
trangition networks in dealing with natural
language)

5) knowledge representation: eg to derive
implicit knowledge and to study the impact of
processing at read-time (antecendent theorems)
versus question-time (consequent theorems) in a
system which dealt with family relations (a
system of this sort can be contrasted with
ELIZA or a program to cast horoscopes); the
following diagram illustrates how 9 implicit
relationships (---) can be derived from 3
explicit ones within a family of four persons:

M
— __._:\\
Zomm™® W <Y
[AN~ 3
5§ ~N ~ \
\ { %o~ ~\ /
\ ~ N \

\ —_— \
KAIN(m)_

—~——

6) exploration of statistical properties of
languages in the context of a wide variety of
different language games (eg like designing the
distribution of a Scrabble game, infaormation
content of vowels in different languages etc)

7) general computational ideas (eg like
backtracking, which is encounterd in parsing
non-deterministc grammars and which could be
applied to pattern matching end tree like data
structures)

6. Pattern Matching - an example for the design

and implementatjon of a mini-lanquage

A matching capability can be a key element for
many problem solving tasks involving the
computer to make otherwise large, complicated
efforts reachable. The following powerful ideas
can be investigated in the context of this
project:

1) incremental design: we can start with a
pattern matcher which is basicly an EQUAL
predicate. The next steps could be: a
membership predicate, a pattern with slots of
fixed size, a pattern with slots of arbitrary
size (which creates the need for back-up),
the possibilty for simultanous agssignment of
matched elements to pattern variables, the
restriction of matching by using predicates
etc

2) the problem is ill-defined: the
specification of the pattern matcher should
be derived from the needs of using it to
simplify problem solving tasks. A partial
implementation can be an important help for a
further specification or for a revision of

113

problem
of the

already existing parts, ie the
formulation is an important part
problem solving process

3) definition of a new language layer: the
pattern matcher can be used as a new language
layer between the problem and the programming
language and it can help to reduce the
distance between the two.

4) glass-box approach: in many .situations, we
are primarily interested in using the pattern
matcher. But by making use of an already
existing program the student is not confined
to a black box (like it would be in CAI
environment); at any time he/she can look
inside the program, open it up, change it to
his/her own needs etc. A prerequisite for a
program to be a glass-box is that it is
implemented in a formalism the student is
familiar with.

5) recursive control structure: a pattern
matcher is a good example for the pawer of
recursive definitions and control structures
which can be used in many other situations

A pattern matcher can be used in all projects
where symbolic structures have to be dissected
and identified, eg for the translation from
infix to prefix, for parsing and translating
processes, for morphological analysis, for
simple I/0 routines (eg the identification of
keywords), for ELIZA like programs and for
symbolic manipulation of algebreic expressions.

We do not have the space to document the
problem solving processes (including all the
incomplete versions) which ‘occured in the
context of implementing the pattern matcher
(see BOECKER/FISCHER 1978) but we want to give
examples of its use. The simplification with
the help of a pattern matcher can be
demonstrated by a program for infix to prefix
translation (written in LOGO; the program also
nicely shows the power of recursive
definitions):

70 PREFIX :INFIX
10 LOCAL “A "B
20 IF (EQUAL COUNT :INFIX 1) THEN OUTPUT :INFIX
30 IF MATCHP [?A + ?B] :INFIX

THEN OUTPUT (SENTENCE "SUM PREFIX :A PREFIX :B)
40 IF MATCHP [?A - ?B] :INFIX

THEN OUTPUT (SENTENCE "DIFFERENCE PREFIX :A PREFIX :B)
50 IF MATCHP [?A * ?B] :INFIX

THEN OUTPUT (SENTENCE "PRODUCT PREFIX :A PREFIX :B)
60 IF MATCHP [?A / 7B] :INFIX

THEN OUTPUT (SENTENCE "QUOTIENT PREFIX :A PREFIX :B)
70 EXI? [WROMG SYNTAX]
END

The following testruns show how the progrem
works:

?PRINT PREFIX [U + V]
SUM U V

ZPRINT PREFIX (A + B* ¢ / A - D]
SUM A DIFFERENCE PRODUCT B QUOTIENT C A D

This version of the program can be extended

eagily to include other operators like ">" or:

'I<"=

65 IF MATCHP [?A > 7B] :INFIX

THEN OUTPUT (SENTENCE "GREATERP PREFIX :A PREFIX :B)
67 TP MATCHP [?A < 7B] :DWIX .

THEN OUTPUT (SENTENCE "LESSP PREPIX :A PREFIX :B)

It is an instance in the class of rule syatems
which we mentioned earlier. The ordering of the
rulea takes care for the precedence conventions
of infix notation. We have chosen this
application specifically to support our claim
that many problems conaidered to be
mathematical can be more clearly understood by
looking at them from a linguistic viewpoint
(and the APL experience shows that changing the
precedence rules for the evaluation of
arithmetic expressions poses a non-trivial
problem).

Another application of the pattern matcher
would be to parse sentences in a language where
the grammer is given. For this purpose we
agsume that the pattern may contain predicates
(which are marked by "<" and ">"):

PRINT MATCHP [A <NUMBERP> B <ZEROP>] [A 3 56 B 00]
TRUE

The following grammer may serve as an example
(it describea the language of at least one "O"
followed by at least one "1"):

CSEND —> <9 <SD
<s» -> 010<SD
<SD -> 1114<SD

SENT, SO and S1 can be implemented with the
pattern matcher as followed:

10 SEN? :INPUT
10 OUTPUT MATCHP [<SO> <S1>] :INPUT

10 90 :IXFOT

10 IF MATCHP O :INFUT THEN OUTPUT “TRUE
20 OUTPUT MATCHP [0 <S0>] :INPUT

END

0 S1 :INPOT

10 IP MATCHP 1 :INPUT THMEN OUTPUT “TRUE
20 OUTPUT MATCHP (1 <S1>] :INPUT

END

A few testruns show the working of the parser:

PRINT SENT [00 1 1 1] PRINT SENT [1 0 1]
TRUE PALSE

PRINT SEN? (000 1] PRINT SENT [0 1 O 1]
TRUE PALSE

J. Implications for problem solving and
aeducation

Powerful ideas have the potential to lead to a
breakdown of the traditional boundaries between
established scientific disciplines and reduce
the division of achool knowledge into
disjunctive compartments. 'By working on some of
the projects described above our students found
that the knowledge which they acquired or
discovered was not only useful in the context
of a specific task but could be successafully
used to understand and solve problems in other
domains as well, which should be illustrated
through the following two specific examples:

1) the students became aware that the
evaluation of arithmetic expressions (as it
is commonly used in mathematics) is not
something determined by God but that it is
only a convention and that the laws behind it
can be easily explained by the use of a
grammar.

2) a student discovered why mathemaeticians
talk about one-to-one mappings (which never
made any sense to him in mathematics) by
trying to design secret codes in some of the
language games (eg Pig Latin and other ones)

Another important feature of our approach was
that the students extended the range of their
"subjectively computable" problems, which
helped them to replace their view of the
computer being a giant adding machine with the
more adequate view of being a general
information processing device. We challenged
their views thinking about the computer.
Despite the fact that computation is still in
its infancy there are many strong beliefs what
computers are, what they can do and what they
can not do.

By being exposed to the complex problems
mentioned above the students got familiar with
general problem solving ideas about
representations, planning and debugging. The
intuitive understanding which a person has
about his/her own language provided the basis
that debugging incomplete and incorrect
programs becomes an easy-to-grasp activity,
because bugs in language programs have a high
visibility (ie we can discover them by
inspection and not only by extensive
calculations like it is the cesse in numerical
computations).

Problems in CL provide good prototypes to
understand the theoretical relevance of
debugging. Opposed to the dominant view in

computer science, where many people regard bugs
as an awkward obstacle (or as an indication
that the programmer is unable to think clearly

and carefully enough) we consider bugs as
potentially informative friends and as a
starting point to find out about the

discrepancies between'a gspecification (a model,
a theory) and an implementation (a program). In
CL, most people are aware that if a conflict
arises we can not always conclude that the
specifications are correct and the
implementation is wrong (as in Gslileo's case,
where the theory was wrong and his data were
correct).

Working on the projects described above, the
students can do work which is close to the
research front (if they would have done their
work ten years earlier they could have earned a
PhD degree with it). This makes this subject
material once again more interesting than much
of mathematics where the students have to think
about what is not even close to the current
research front.

9. Empirical findings

Most of the hypotheses and assertions of the
previous sections are supported by the
empirical work in our project. We have not made
an effort to do any kind of formal evaluation,
but we have carried out a large number of
informal inveatigations to wunderstand the
impact of our approach. Students filled out
questionaires, participated in think-aloud
protocols for many problem solving situations
and we tried to understand their programs and
the bugs they produced during the solution of a
complex problem. There is no space here to talk
about this in detail; the information is
documented in KLING et al (1977) and FISCHER
(1978 and 1979).

We believe that our approach turned out to be
very successful. The students enjoyed working
in our laboratory and they learned a lot about
language as well as general problem solving and
programming skills. Especially students with
little interest in mathematical problems were
motivated by language-oriented applications.
They could work in an active mode and
investigate arbitrary formalisms and
conjectures. They could see that ideas from
linguistics could help them to understand
problems in other domains, which supports our
hypothesis that problems from CL can serve as
an entry point and as a transient object to the
world of problem s9solving, programming and
mathematics.

115

Acknowledgements

I would like to thank H.-D. Boecker, A. Fauser,
3. Laubsch and D. Roesner for many critical
comments about earlier drafts of this paper.

References
Boecker,H.-D. and G. Fischer (1978): "Interaktives
Problemloesen mit Computerhilfe: Problemaufgaben zur

Linguistik, Informatik und Kuenstlichen Intelligenz",

Forschungsgruppe CW, Darmstadt

Fischer, G. (1978): "Probleme und Erfshrungen bei der
Progremmierausbildung im Informatik-Unterricht" in W. Arit
(ed): "EDV-£insatz in Schule und Ausbildung", Oldenburg
Verlag, Muenchen, pp 70-75

Fischer, G. (1979): "Fehlerdiagnose - Grundbaustein fuer ein
Verstehen von Lehr- und Lernprozessen", in Beitraege zum
Mathematikunterricht, Schroedel Verlag

Kay, A. (1977): "Microelectronics and the personal computar",
Scientific America 1977, pp 231-244

Kling, U., Boecker H.-D., Fischer, G., Freiburg, O.,
Schneider, B. and Schroeder, J. (1977): "Projekt PROKOP",
Forschungsgruppe CUW, Darmstadt

Papert, S. (1979): "The LOGD Book", unpublished draft, MIT AI
Lab

Simon, H. (1978): "Problem Solving and Education”, CIP Working
Paper No. 391, Carnegie Mellon University

