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I. YNTRODUCTYON 

Augmented transition network (ATN) grammars have, since 
their development by Woods [ 7; ~, become the most used 
method of describing grammars for natural language 
understanding end question answering systems. The ad- 
vantages of the ATN notation have been su,naarized as 
"I) perspicuity, 2) generative power, 3) efficiency of 
representation, 4) the ability to capture linguistic 
regularities and generalities, and 5) efficiency of 
operation., [ I ,p.191 ]. The usual method of utilizing an 
ATN grammar in a natural language system is to provide 
an interpreter which can take any ATH graam~ar, a lexi- 
con, and a sentence as data and produce either a parse 
of a sentence or a message that the sentence does not 
conform to the granunar. A compiler has been written 
[2;3 ] which takes an ATH grammar as input and produces 
a specialized parser for that grammar, but in this paper 
we will presume that an Interpreter is being used. 

A particular ATN grammar may be viewed as a program 
written in the ATH language. The program takes a sen- 
tence, a linear sequence of symbols, as input, and pro- 
duces as output a parse which is usually a parse tree 
(often represented by a LISP S-expression) or some 
"k~ewledge reprssentatioc" such as a semantic network. 
The operation of the program depends on the interpreter 
being used and the particular program (grannar), as well 
as on the input (sentence) being processed. 

Several methods have been described for using ATN gram- 
mars for sentence generation. One method [1,p.235]is 
to replace the usual interpreter by a generation inter- 
preter which con take an ATN grammar written for pars- 
ing and use it to produce random sentences conforming 
to the grammar. This is useful for testing and debug- 
ging the granmmLr. Another method [5 ] uses a modified 
interpreter to generate sentences from a semantic net- 
work. In this method, an ATN register is initialized to 
hold a node of the semantic network and the input to the 
grammar is a linear string of symbols providing a 
p a t t e r n  of t h e  s e n t e n c e  t o  be g e n e r a t e d .  Ano the r  method 
[4 ] a l s o  g e n e r a t e s  s e n t e n c e s  f rom a s e m a n t i c  ne twork .  
I n  t h i s  method,  i n p u t  t o  t h e  granmmr i s  t h e  s e m a n t i c  
ne twork  i t s e l f .  Tha t  i s ,  i n s t e a d  o f  s u c c e s s i v e  words o f  
a surface sentence or successive symbols of a linear 
sentence pattern being scanned as the ATM grammar is 
traversed by the interpreter, different nodes of the 
ssmantic network are scanned. The gramnar controls the 
syntax of the generated sentence based on the structural 
properties of the semantic network and the information 
contained therein. 

It was intended that a single ATN interpreter could be 
used both for standard ATN parsing and for generation 
based on this last method. However, a special inter- 
preter was written for generation grammars of the type 
described in [4 ], and, indeed, the definition of the ATN 
formalism given in that paper, though based on the 
standard ATN formalism, was inconsistent enough with the 
s t a n d a r d  n o t a t i o n  t h a t  a s i n g l e  i n t e r p r e t e r  c o u l d  n o t  be  
u s e d .  This paper r e p o r t s  t h e  resu l ts  of  work carr ied 
ou t  t o  r e m o ~  t h o s e  i n c o n s i s t e n c i e s .  A g e n e r a l i z a t i o n  
of the ATN formalism has been derived which allows a 
single interpreter to be used for both parsing and gen- 
erating g r a s ~ r e .  In f a c t ,  parsing and g e n e r a t i n g  
grammars c an  be  s u b - n e t w o r k s  o f  each  o t h e r .  For  example  
an A~M grammar can  be  c o n s t r u c t e d  so  t h a t  t h e  , ,parse, ,  
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of  a n a t u r a l  l a n g u a g e  q u e s t i o n  i s  t h e  n a t u r a l  l a n g u a g e  
s t a t e m e n t  which  answer s  i t ,  i n t e r a c t i o n  w i t h  r e p r e s e n t a -  
t i o n  end i n f e r e n c e  r o u t i n e s  be inR  done on a r c s  a l o n g  t h e  
way. The neW formalism is a strict generalization in 
the sense that it interprets all old ATN gralnars as 
having the same semantics (carrying out the same 
actions and producing the same parses) as before. 

2. Gm~ERATION FROM A S~2~ANTIC NETWGRK--BRIEF OV~VIEg 

I n  our  v iew,  e ach  node o f  a s e m a n t i c  ne twork  r e p r e s e a t s  
a c o n c e p t .  The g o a l  o f  t h e  g e n e r a t o r  i s ,  g i v e n  a node ,  
t o  e x p r e s s  t h e  concep t  r e p r e s e n t e d  by t h a t  node i n  a 
natural language surface string. The syntactic cate- 
gory of the surface string is determined by the 
grammar, which can include tests of the stracture of 
the semantic network connected to the node. In order 
to express the concept, it is often necessary to in- 
clude in the string substrings which express the con- 
cepts represented by adjacent nodes. For example, if 
a node represents a fact to he expressed as a state- 
ment, part of the statement may he a noun phrase 
expressing the concept represented by the node con- 
n e c t e d  t o  t h e  o r i g i n a l  node by  an AGENT c a s e  a r c .  
T h i s  can  be  done by  a r e c u r s i v e  c a l l  t o  a s e c t i o n  o f  
the grammar i n  charge of building noun phrases. This 
section will be passed the adjacent node. When it 
finishes, the original statement section of the grammar 
will continue adding additional substrings to the 
growing statement. 

I n  ATN g r m r s  w r i t t e n  f o r  p a r s i n g ,  a r e c u r s t v e  p u s h  
does  n o t  change  t h e  i n p u t  symbol  b e i n g  examined ,  b u t  
when t h e  o r i g i n a l  l e v e l  c o n t i n u e s ,  p a r s i n g  c o n t i n u e s  
a t  a d i f f e r e n t  symbol .  I n  t h e  g e n e r a t i o n  a p p r o a c h  we 
use, a recursive push o f t e n  involves a change in t h e  
senantic node being examined, and the original level 
continues with the original node. This difference is 
a major motivation of some of the generalizations to 
the ATN formalism discussed below. ~ne other major 
motivation is that, in parsing a string of symbols, 
the .,next.. symbol is well defined, but in ,.parsing. a 
network, .next" mast be explicitly specified. 

3. THE GEN~IALIZATION 

The following sub-sections shoW the generalized syn- 
tax of the ATN formalism, and assume a knowledge of the 
standard formalimm ([I ] is an excellent introduction). 
Syntactic structures already familiar to ATH users, 
but not discussed here remain unchanged. Parentheses 
and terms in upper case letters are terminal symbols. 
Lower case terms in angle brackets are non-terminals. 
Ternm enclosed in square brackets are optional. Terms 
followed by .*, m~ occur zero or more times in suc- 
cession. To avoid confusion, in the re, sAnder of this 
section we will underline the name of the * register. 

3.1 TERMINAL ACTIONS 

Successful traversal of an ATN arc might or might not 
consume an input symbol. When parsing, such consump- 
t i c n  n o r m a l l y  o c c u r s ,  when g e ~ e r a t i n g  i t  n o r m a l l y  does  
n o t ,  b u t  i f  i t  doe s ,  t h e  n e x t  symbol  ( s e m a n t i c  node)  
must be specified. To allow for these choices, we have 
r e t u r n e d  t o  t h e  t e c h n i q u e  o f  [6 ] o f  h a v i n g  t w o  t e r m i n a l  
a c t i o n ,  TO and  J ~ P ,  and  have  added  an  o p t i o n a l  s eco n d  
a r g e n t  t o  TO. The s y n t a x  i s :  

(TO <stats> [ ~ f o r ~ ] )  
(JUMP <state>) 
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Both cause the  p a r s e r  t o  e n t e r  the  given s t a t e  . 
JUMP never  conswms the  input  symbol; TO always does .  
I t  the <forw~ i s  absen t  in  tbe  TO a c t i o n ,  the  nex~ 
symbol to  be scanned will be the  next  one in  the  input  
buffer. If < f o r m  is present, its value will be the 
next symbol to be scanned. All traditional ATN arcs ex- 
cept JU~ and POP end with a terminal action. 

The explanation given for the replacement of the JUMP 
terminal action by the Ob~ are ~ac that, ,since POP, 
PUSH and VTR ares never advance the input, to decide 
whether or  not  an arc  advanced the  input  r e q u i r e d  k~o~- 
l e d g e  of  both  the arc  type  and t e r m i n a t i o n  a c t i o n .  The 
i n t r o d u c t i o n  o£ the  JUMP arc . . .  means t h a t  the  input  
edvancement i s  a f u n e t i n n  of  t he  arc  type a l o n e . "  [2] 
That our r e i n t r o d u c t i o n  of  the JUMP te r~L~t l  a c t i o n  
does not  b r i n g  back the  c o n / ~ i o n  i s  exp la ined  below in  
~ t i o n  h .  

3.2 APeS 

We retain a JU~ arc a8 veil as a JU~ temlnal action. 
The JUMP arc  provides  a p lace  to  make an a r b i t r a r y  t e s t  
and par'form sow actions without consuming an input 
symbol. We need such an are  t h a t  does conmmm its in- 
put s ~ b o l ,  bu t  TST i s  not  adequate s ince  i t ,  ~ CAT, 
is really a bundle o f  ares, one for each lexloal entry 
of the scarmed symbol, should the letter be lexlcall7 
ambiguous. A semntle node, however, does not have a 
lexlcal entry. We therefore introduce a TO eros 

(TO (<state> [ < ~ e m  ]) < t e s t >  < a e t i o n ~ )  

It < test> is successful, the  <aotion>s are performed 
and transfer is made to <state>. The input s~ubol is 
con~. The next symbol to be scanned is the value 
OF <form> if it is present or the next symbol in the 
input  b u f f e r  i f  ~ f e r ~  is ~Losing.  

The PUSH arc mBk~8 two asnn~ lo~ms  1 ) the f i r s t  
symbol t o  be s c u d  i n  ths ~zheetvoz4c i s  the cmTent  
contents of  the * r eg i s te r s  2) the cuzTent i npu t  symbol 
will be consuned~oy the subnet~ork, so the content8 of 

can be replaced by the value returned by the subnet- 
~ork.  We need an are  t h a t  causes  a ~ i v e  c a l l  t o  

su~aetwork, but  makes n e i t h e r  o f  ~heea two assmnp- 
t i o n s ,  so we in t roduce  the  CALL a rc :  

(CALL <sta te> ~ f o m  ~es~> <preac t ion  or  a c ~ i o n ~  
<rcgie te r>  <action>* <terminal action~ ) 

where <preaction or action> is <preaetice~ or <aotloa~>. 
Lf the <test> i s  successful, all the <action~e of  
< preactlon or  action> are performed and a zqenwslve 

i s  made to  the s ta te  <state> whore the nex t  s~mbol 
t o  be scanned i s  the  value of  < f o ~  and r e g i s t e r s  are  
i n i t i a l i z e d  by the  <prenc~Ion>s. Y.f the  subnetwerk 
succeeds, its value is placed  i n t o  <rsglstar> and the 
< a c t i o n , s  and <terminal ac t ion> a re  performed.  

Just as the normal TO terminal a c t i o n  i s  the general- 
Ised TO terminal action with. a default foru, the PUSH 
arc (which we retain) is the  CALL arc wi th  the folloe- 
ing d e f a n l t s s  <form> is e! the  <preactlon or  aotlon~s 
are only <prcaot ion>e!  < ~ g i s t e r >  i s  _~. 

The o n ~  f m ~  which must be added i s  

(OETA <arc> (<node t o m > ] )  " 

m <node f e r n  is  a form which evaluates to a seman- 
tic node. Y~ abeant, <node fozs~ defaults to ~. The 
value of  OETA i8 tha node a t  the end c~ the  a r~  l a b e l -  
led <arc> fm the spao i f i ed  node, o r  a IAst of such 
nodes L~ t h e r e  are  more than rose. 

3.2 TESTS, PREACTION, ETC. 

The generalization o£ the ATN formalism to one which 
a l l N  f o r  w r i t i n g  g r e ~ r s  which generate s~'Tace 
strings from semantic networks, yet csn be interpret- 
ed bY the same interpreter whAch handles parsing 
grsm~8, requires no changes other t~an the ones des- 
e r ibed  above.  Of cou r se ,  each t~p lemen ta t ion  of  an ATN 
i n t e r p r e t e r  con ta ins  s l i g h t  d i ~ e r e n c e s  in  t h e  s e t  of  
t e s t s  and a c t i o n s  implemented beyond the  b a s i c  ones .  

h .  M INPUT Bb~ee~ 

Zr~ut to  t he  ATN p a r s e r  can be thought  of  as be ing  the  
contents o£ a stack, called the input buffer. Zf the 
input is a string of' words, t he  ~ ~--'-~vill be at 
the top  of the  i npu t  buffer and successive words will 
be in successively deeper positions of the input buffer. 
ZF the input is a graph, the input buffer might controLs 
only a single node OF the graph. 

Ca antes-Lug an arc, the • register is set to the top 
element of the input buffer, uhlch must not be empty. 
The on~ exceptions to this are the VTR and POP arcs. 
VIR sets e to an element of the HOLD register. POP 
leaves .M, undefined since e is always the element to be 
accounted for by the current arc, and a POP arc is not 
t r y i n g  t o  account f o r  ar~ e l m m u t .  ~he inpu t  b u f f e r  i s  
not  changed between the  t ime a PUSH 8re i s  e n t e r e d  and 
t ~  f i n e  an arc  emanating from the sta ta  pushed to  is 
a n t o M )  8o the contents o f  e on the l a t t e r  ar~ w i l l  be 
the same as on the former. A CALL arc is allmred to 
opeei~ the centante of. on the arcs of the called 
s1~ta. This is accueplished by replacing the top 
element of the input buffer by that value before trans- 
fer t o  the  c a l l e d  s t a t e .  Y~ t h e  value i s  a l i s t  of  
o l e m n t o )  we push each e l m w n t  i n d i v i d u a l ~  onto the  
input buffer. ~ makes it particularly easy t o  loop 
thz~ a set of nodes, each o f  which uili contribute 
the sane syntactic tom to the growing santenee ( n o b  
as a st~A~g o£ adJectlves). 

on an arc  (except  f o r  POP), i . e .  dur ing  e v a l u a t i o n  
OF the t e s t  and the acts, the onntents OF ~ and the top 
elanent of the input buffer are the same. This re- 
qu i res  s p a e i a l  pz~eess ing  f o r  V~R, P~H, and CALL a r e s .  
A t t e r  setting % a VIR are pushes the contents of  ~ on-  
t o  tbe input buffer. When a PUSH are resuaes, and the 
lower level has sueceestu~ returned a value, the 
value i s  p laced  i n t o  * and a l s o  pushed onto the input  
buffer. ~an a CALL resumes, and the Immr level has 
8uceassfUlly returned a va lue,  the value is  placed into 
the spue i f i ed  r e g i s t e r ,  and the c e n t e r s  o f  ~ i s  pushed 
onto the inpu t  b u t t e r .  The s1~e i t i ed  r e g i s t e r  might o r  
might not be e. In  either case the contents of. e and 
the  top  OF the  inpu t  b u f f e r  a ~  t h e  sane. 

There a re  two p o s s i b l e  t e r m i n a l  a c t s ,  JUMP and TO. 
JUMP does not  a f f e c t  the  i npu t  b u f f e r ,  so the  con ten t s  
OF e w i l l  be same on the succes so r  ares (except  f o r  POP 
and VIR) as a t  t he  end OF the  c u r r e u t  a r c .  TO pops the  
input  b u f f e r ,  but  i f  provided wi th  an o p t i o n a l  t o m ,  
a l s o  pushes the value of  ~Jmt form on~o the  input b u t -  
l e r .  

POPping from ~ e  top l e v e l  i s  one7 l e g a l  i f  the  inpu t  
buffer is empty. POPPint fz~m any level should 
t h a t  a c o n s t i t u e n t  has been accounted f o r .  Accounting 
for a constituent should en~l removing it from the 
in1~t buffer. From this we conclude that ever~ path 
within a level fm an initial s t a t e  to  a POP ere  
oon1'~Lin at least one TO transfer, and in most cases, it 
is proper to trausfer TO ra~her than to JUMP to a state 
that hss a POP are emanat~ from it. TO will be 
terulnal ast for most V~R and PUSH a~s. 
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In  an~ ATN i n t e r p r e t e r  which abides  by t h i s  d i s c u s s i o n ,  
advancement of  the  inpu t  i s  a f u n c t i o n  of t he  t e rmina l  
a c t i o n  a lone  i n  t he  s ense  t h a t  a t  any s t a t e  JUMPed to ,  
the  top of  the  inpu t  b u f f e r  w i l l  be the  l a s t  va lue  of *,  
and at any state Jumped TO it will not be. 

Parsing and generating require a lexicon -- a file of 
words giving syntactic categories, features and inflec- 
tional forms ~or irregularly inflected words. Parsing 
and generating require different information, yet we 
wish to avoid duplication as much as possible. 

During parsing, morphological analysis is performed. 
The analyzer is given an inflected form, must segment 
it, find the stem in the lexicon and modify the lexical 
entry of the stem according to its analysis of the 
original form. Irregularly inflected forms must have 
their own entries in the lexicon. An entry in the lex- 
icon may be lexically ambiguous, so each entry must be 
associated with a list of one or more lexical feature 
lists. Each such list, whether stored in the lexicon 
or constructed by the morphological analyzer, must in- 
clude a syntactic category and a stem, which serves as 
a link to the semantic network, as well as other fea- 
tures such as transitivity for a verb. 

In the semantic network, sc~e nodes are associated with 
lexical entries. During generation, these entries, 
along with other information from the semantic network, 
are used by a morphological synthesizer to construct 
an inflected word. We assume that all such entries are 
unambiguous stems, and so contain only a single lexical 
feature l i s t .  This feature list must c o n t a i n  any ir- 
regularly inflected forms. 

In summary, a single lexicon may be used for both 
parsing and generating under the following conditions. 
An unambiguous stem can be used for both parsing and 
generating if its one lexlcal feature list contains 
features required for both operations. An ambiguous 
lexical entry will only be used during parsing. Each 
of its lexlcal feature lists ,met contain a unique but 
arbitrary ,stem,' for connection to the semantic net- 
work and for holding the lexical information required 
for generation. Every lexical feature list used for 
generating must contain the proper natural language 
spe!1~ng of its stem as well as any irregularly in- 
flected forms. Lexical entries for irregularly in- 
flected forms will only be used during parsing. 

For the purposes of this paper, it should be irrelevant 
whether the "stems,, connected to the semantic network 
are actual surface words llke "give,,, deeper sememes 
such as that underlying both ,,give, and ,,take", or 
primitives such as .ATRANS". 

6. EXAMPLE 

Figure I shOWs an example interaction using the SNePS 
Semantic Network Processing ~ystem [5] in which I/O is 
controlled by a parsing-generating ATN grammar. Lines 
begun by "**" are user's input, which are all calls to 
the function named ,, : ". This function passes its 
argument llst as the input buffer for a parse to begin 
in state S. The form popped by the top level ATN ned- 
worm is then printed, folluwed by the CPU time in 
milliseconds. (The system is partly c~lled, partly 
interpreted LISP on a CYB~ 173. The ATN gra,mer is 
interpreted. ) Figure 2 shores the grammar in abbrevi- 
ated graphical form, and Figure 4 gives the details of 
each a r c .  The p a r s i n g  network, beg inn ing  a t  s t a t e  S~ 
i s  inc luded f o r  comple teness ,  bu t  t he  reader  u n f a m i l i a r  
with  SMePSUL, the  S~ePS User Language, [5] is not  ex- 
pected to  unders tand  its details. 

The first arc in the network is a PUSH to the parsing 
network. This network determines whether the inlmat is 

a statement (type D) or a question (type Q). If a 
statement, the network builds a SNAPS network repre- 
senting the information contained in the sentence 
and pops a semantic node representing the fact con- 
rained in the main clause. If the input is a question 
the parsing network calls the SNePS deduction routines 
(DEDUCE) to find the answer, and pops the semantic 
node representing that (no actual deduction is re- 
quired in this example). Figure 3 shews the complete 
SNePS network built during this example. Nodes MTh- 
M85 were built by the first statement,nodes M89 and 
MgOby the second. 

When the  s t a t e  RESPOND i s  reached ,  the  i npu t  b u f f e r  
con ta ins  the  SNAPS node popped by the  p a r s i n g  network.  
The g e n e r a t i n g  network then b u i l d s  a s e n t e n c e .  The 
f i r s t  two sen t ences  were genera ted  from node M85 before  
M89 end MgO were b u i l t .  The t h i r d  sen tence  was gener -  
a ted  from MgO, and the  f o u r t h  from M85 a ga in .  Since 
the voice (VC) register is LIFTRed from the parsing 
network, the generated sentence has the same voice as 
the input sentence (see Figure I). 

Of p a r t i c u l a r  note  i s  the  sub-network a t  s t a t e  PRED 
which ana lyzes  the  proper  t e n se  f o r  the  gene ra ted  
s e n t e nc e .  For b r e v i t y ,  only s imple  t e n s e s  a re  inc luded  
here ,  bu t  the  more complicated t e n s e s  p r e s e n t e d  in  [4] 
can be handled  i n  a s i m i l a r  manner. Also of i n t e r e s t  
i s  the  subnetwork a t  s t a t e  ADJS which gene ra t e s  a 
s t r i n g  of  a d j e c t i v e s  which are  not  a l ready  scheduled  
to  be i n  the  s e n t e n c e .  (Compare the  t h i r d  and f o u r t h  
genera ted  s en t ences  of  Figure  1 . )  

7. CONCLUSIONS 

A generalization of the ATN formalism has been pre- 
sented which allows grammars to be written for gener- 
ating surface sentences from semantic networks. The 
generalization has involved: adding an optional 
argument to the TO terminal act; reintroducing the 
JUMP terminal act; introducing a TO arc similar to the 
JUMP arc; introducing a CALL arc which is a generaliza- 
tion of the PUSH arc; introducing a GETA form; clari- 
fying the management of the input buffer. The benefits 
of these few changes are that parsing and generating 
gramnars may be written in the same familiar notation, 
may be interpreted (or compiled) by a single program, 
and may use each other in the same parser-generator 
network grammar. 
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Figure I. Example Interaction 

~SH SP J ~ CALLNQ~3R J ) ( ~  CALL NP J ~ )  CALLPRED J~.~ 

ADJS J CALL NP TO 

CALL PAST TO 

CAT V TO ~ ~ ..... ~ _ J~ ~WRD BY TO PUSH gNP 

CAT ADJ TO ~ 

Figure 2. A ?arsL~-(~nerating Grammar 
Terminal acta are tnd:Lcated by "J" or "TO" 

Figure 3. Samnt, ic Hetwoz.tc Build by ~ent, encea of Figure 1 
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(S (PUSH SP T (JUMP RESPOND))) 
(RESPO~ (JeW G} (Z~ (OKrR TrPZ) 'D) (SKrR ST~INO '(I UtmmSTAND THAT))) 

(av~ G} (za (G~.'m ~PZ) ,~))) 

(O (JUMP ~ (AND (GE~A OBJECT) (OVERLAP (GETR VC) 'PASS)) (SErR ~ (O~A OBJECT))) 
(JUMP @$ (AND (O~A AGENT) (DISJOINT (OK"HI VC) ,PASS)) (SErR SUBJ (OK"rA AO~T)) (SErR VC 'ACT)) 
(~ ~ (OK'PA WHICH) (SEI'R 5~IBJ (GErA WHICH)) (SETR VC 'ACT))) 

(os (cALL NUmR SUSa T NUmR (szm m~z . )  (JUMP ore))) 
(081 (CaLL NP SUBJ T (S~Im DONE) (SENDR NUMBR) Rm (ADDR STRING REO) (JUMP SgB))) 
(SVB (CALL PRED * T (S~DR NUMBR) (S~#ER VC) (SENIR VB (OR (OKRA LEX (GETA VERB)) 'BE)) REG (AIER STRING PEG) 

(Ju~ smo~a))) 
(SUROBJ (CALL NP (OKRA AGENT) (AND GETA AGO'r) (OVERLAP VC 'PASS)) (SENDR DONE) * (ADDR STRING 'BY *) (TO ~D)) 

(CALL NP (OKRA OBJECT) (AnD (OKRA OBJECT) (OVmLAP VO 'ACT)) (S~Xm DONE) * (ADIR Sm~O *) (TO ram)) 
(CaLL NP (GETA ADJ) (OEPA ADJ) * (ADDR STRING * )  (TO ~D)) 
(TO (roD) T)) 

(z~ (POP smiNo T)) 
(NUMBR (TO (NUMBRI) (OR (OETA SUB-) (OKRA SUP-) (OKRA CLASS-)) (SKTR NUM~ 'FL)) 

(TO (NLR~RI) (NOT (OR (GE~A SUB-) (OKRA SUP-) (OKRA CLASS-))) (SETR NUMBR 'SING}))) 
(NU~RI (POP NUMSR T)) 
(PRED (CALL PAST (OKRA E'f~) T T~SE (TO O~VB)) 

(CALL ~ (OKRA 5"r~) T TENSE (TO GE~qVB)) 
(TO (G~-NVB) T (SKRR TENSE 'PRES))) 

(G}~ (IOP (V~{BIZE (G}EI~ NUMBR) (G}E~I~ TENSE) (GEI~ VC) (G}m VB)) T)) 
(PAST (TO (PASTEND) (OVmLAP * *NOW)) 

(TO (PAST (G}ETA BEFORE)) T)) 
(PASTmD (POP 'PAST T)) 
(FUTR (TO (ZUTRZ~) (ovmLAp. ~ow)) 

(TO (rUT~ (GETA Arrm)) T)) 
( ~  (POP ' ~  T)) 
(NP (TO (roD) (G}KRA LEX) (SE%~ STRING} (WHDIZE (G}ETR ~rb'Fd~R) (G}KRA IF, I[)))) 

(at.e N~A (~ (OKRA NANED-) (~ZSJOI~T (OKRA N~d~)~X~aZ))) 
(JUMP NPMA (AND (OKRA MEMBER-) (DISJOINT (OKRA MEMBER-) DONE)))) 

(trP~A (CALl. ADJS (OKRA WHICH-) (G}KrA WHICH-) (SE~ DONE) RZO (ADIR ETRINO Rm) (JUMP ~N)) 
(JUMP ~P~ T)) 

(~ (TO ~m) (~. STRI.G} (VaCaTE (G}KRR ~m'~) (OKRA ;2X (OZ~A rt~MZ (OKRA ~))))))) 
(~Pm (CALL A~S (OZn WHICH-) (OnA WHZC.-) (S~DS m~Z) Rm (aam s'miNo 'A zm) (JUMP ~)) 

(~ ~ T (ADDR STRING} 'A))) 
(NPM (CALL NP (GETA CLASS (OKRA M~SER-)) T (S~T~R DONE) REG (AD~R STRING} REG) (TO roD))) 
(ADJS (CALL NP (GETA ADJ) (DISJOINT * DONE) (S~DR DONE) * (ADDR STRING *) (TO ADJS)) 

(TO (A~JS) T) 
(raP STRING T)) 

(sP (w~ WHO T (SKrR TYPE 'Q) (LIFTS TYPE) (szm sVSa ~X (To v)) 
(maSH NPP T (sz~mR net ,D) (SETR n'PZ 'D) (Un~ n~Z) (sz'm susa .) (To v))) 

(v (CaT v T (szm vs (FmmREurm LZX (+(OKrR *)))) (SKrR TNS (OKrZ Z~SZ)) (W COMPL))) 
(C(~L (CAT V (AND (GETF PPRT) (OVmLAP (GETR VB) (GETA I~X- 'BE))) (SKTR OBJ (OKTR SUBJ)) (SETR SIBJ NIL) 

(SKrR VC 'PASS) (szm ~ (FINmPaUZU~ ~ (~(ozm .)))) (To sv)) 
(CaT ADJ (OVERlaP (ore VB) (OETA LEX- 'BE)) (SKrR ADJ (FINDORBUILD LEX (~(GETR *)))) (TO SVO)) 
(JUMP SV T)) 

(SV (JUMP 0 (EQ (OETR TNS) 'FRES) (SErR STM (BUILD BEI~ORE *NOW (BUILD AFTra *NOW) - ETM))) 
(ame o (zQ (GZ'm T.S) 'PAS'r) (SZ~ STM (BUrLD Sm'ORZ (B,ZLD sm~oaz .Now) - KrM)))) 

(0 (WRD BY (EQ (O~ VC) 'PASS) (TO PAO)) 
(~SH ~P r (sm~'m n, Pz) (szm oBJ .) (LZ~ VC) (TO SVO))) 

(PAO (PUS~ NPP T (S~]~R TYPE) (SETR SUBJ *) (LIFTR VC) (TO SVO))) 
(~ (raP (BU~.n AG~ (÷(OETR ~J)) VERB (+(OE'I~R ~))OBJECT (~(Gm OBJ))ST~2{E.'(f(OETR S'rM)) ~ *~TH) 

(zQ (ozm T~PZ 'D)) 
(rap (~AL (BU~ (•mmcz AOZtrr + v~ + OSJmT +) s~mJ w o~)) (zQ (ozm TrPz) ,Q))) 

(SVC (POp (EVAL (BIHIIX~ (FINDORBUILD WHICH + AIIJ +) SUBJ ADJ)) (~ (GKTR T3[PE) 'D)) 
(POP (EVAL (B~ (DEDUCE WHICH + ADJ +) S~J ~)) (EQ (OEI'R TYPE) 'Q))) 

(~ (~n~ A T (sm~ ~ T) (To ~PDKr)) 
(~ NPDET T)) 

(~nZT (CA~ Am T (HOLD (P~m,SU~ ~X (,(ozm .)))) (m ~)) 
(CAT N (AND (GETR INDEF) (EQ (OE'i~ TYPE) 'D)) 

(sin ~ (BOND Mmsm- (~u'~ c~ass (ziNmPa~LD ~x (*(oz'm .)))))) (TO re,A)) 
(CAT N (AND (OETR ]~qDEF) (EQ (OETR TI'PE) 'Q)) 

(SKrR ~ (FIND M~B~R- (DEDUCE M~ER %Y CLASS (TBUILD LEX (+(OKTR *)))))) (TO ICPA)) 
(CAT NPR T (SETR NH (FINDORBUILD NAMED- (FINDORBUILD NAME (F~UILD LEX (+(GETR *)))))) (TO ~Z))) 

(~A Orm ~ T (~AL (B~r~ (FZ~rmREuI~m W~CH. Aa)J *) ~H)) (TO ~PA)) 
(POP ~ T)) 

Figure 4. Details of the Parser~2en~rator ~t~mork 
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