
GENF~ALIZED AUGMENTED TRANSITION NETWORK GRAMMARS
FOR GENERATION FROM SD£%NTIC NETWORKS

S t u a r t C. Shap i ro
Depar tment o f Computer S c i e n c e , SUNY a t B u f f a l o

I. YNTRODUCTYON

Augmented transition network (ATN) grammars have, since
their development by Woods [7; ~, become the most used
method of describing grammars for natural language
understanding end question answering systems. The ad-
vantages of the ATN notation have been su,naarized as
"I) perspicuity, 2) generative power, 3) efficiency of
representation, 4) the ability to capture linguistic
regularities and generalities, and 5) efficiency of
operation., [I ,p.191]. The usual method of utilizing an
ATN grammar in a natural language system is to provide
an interpreter which can take any ATH graam~ar, a lexi-
con, and a sentence as data and produce either a parse
of a sentence or a message that the sentence does not
conform to the granunar. A compiler has been written
[2;3] which takes an ATH grammar as input and produces
a specialized parser for that grammar, but in this paper
we will presume that an Interpreter is being used.

A particular ATN grammar may be viewed as a program
written in the ATH language. The program takes a sen-
tence, a linear sequence of symbols, as input, and pro-
duces as output a parse which is usually a parse tree
(often represented by a LISP S-expression) or some
"k~ewledge reprssentatioc" such as a semantic network.
The operation of the program depends on the interpreter
being used and the particular program (grannar), as well
as on the input (sentence) being processed.

Several methods have been described for using ATN gram-
mars for sentence generation. One method [1,p.235]is
to replace the usual interpreter by a generation inter-
preter which con take an ATN grammar written for pars-
ing and use it to produce random sentences conforming
to the grammar. This is useful for testing and debug-
ging the granmmLr. Another method [5] uses a modified
interpreter to generate sentences from a semantic net-
work. In this method, an ATN register is initialized to
hold a node of the semantic network and the input to the
grammar is a linear string of symbols providing a
p a t t e r n of t h e s e n t e n c e t o be g e n e r a t e d . Ano the r method
[4] a l s o g e n e r a t e s s e n t e n c e s f rom a s e m a n t i c ne twork .
I n t h i s method, i n p u t t o t h e granmmr i s t h e s e m a n t i c
ne twork i t s e l f . Tha t i s , i n s t e a d o f s u c c e s s i v e words o f
a surface sentence or successive symbols of a linear
sentence pattern being scanned as the ATM grammar is
traversed by the interpreter, different nodes of the
ssmantic network are scanned. The gramnar controls the
syntax of the generated sentence based on the structural
properties of the semantic network and the information
contained therein.

It was intended that a single ATN interpreter could be
used both for standard ATN parsing and for generation
based on this last method. However, a special inter-
preter was written for generation grammars of the type
described in [4], and, indeed, the definition of the ATN
formalism given in that paper, though based on the
standard ATN formalism, was inconsistent enough with the
s t a n d a r d n o t a t i o n t h a t a s i n g l e i n t e r p r e t e r c o u l d n o t be
u s e d . This paper r e p o r t s t h e resu l ts of work carr ied
ou t t o r e m o ~ t h o s e i n c o n s i s t e n c i e s . A g e n e r a l i z a t i o n
of the ATN formalism has been derived which allows a
single interpreter to be used for both parsing and gen-
erating g r a s ~ r e . In f a c t , parsing and g e n e r a t i n g
grammars c an be s u b - n e t w o r k s o f each o t h e r . For example
an A~M grammar can be c o n s t r u c t e d so t h a t t h e , ,parse, ,

T h i s m a t e r i a l i s b a s e d on work s u p p o r t e d i n p a r t by t h e
MaticeuLl Science Foundation unde r Gran t #MCS78-O2274.

of a n a t u r a l l a n g u a g e q u e s t i o n i s t h e n a t u r a l l a n g u a g e
s t a t e m e n t which answer s i t , i n t e r a c t i o n w i t h r e p r e s e n t a -
t i o n end i n f e r e n c e r o u t i n e s be inR done on a r c s a l o n g t h e
way. The neW formalism is a strict generalization in
the sense that it interprets all old ATN gralnars as
having the same semantics (carrying out the same
actions and producing the same parses) as before.

2. Gm~ERATION FROM A S~2~ANTIC NETWGRK--BRIEF OV~VIEg

I n our v iew, e ach node o f a s e m a n t i c ne twork r e p r e s e a t s
a c o n c e p t . The g o a l o f t h e g e n e r a t o r i s , g i v e n a node ,
t o e x p r e s s t h e concep t r e p r e s e n t e d by t h a t node i n a
natural language surface string. The syntactic cate-
gory of the surface string is determined by the
grammar, which can include tests of the stracture of
the semantic network connected to the node. In order
to express the concept, it is often necessary to in-
clude in the string substrings which express the con-
cepts represented by adjacent nodes. For example, if
a node represents a fact to he expressed as a state-
ment, part of the statement may he a noun phrase
expressing the concept represented by the node con-
n e c t e d t o t h e o r i g i n a l node by an AGENT c a s e a r c .
T h i s can be done by a r e c u r s i v e c a l l t o a s e c t i o n o f
the grammar i n charge of building noun phrases. This
section will be passed the adjacent node. When it
finishes, the original statement section of the grammar
will continue adding additional substrings to the
growing statement.

I n ATN g r m r s w r i t t e n f o r p a r s i n g , a r e c u r s t v e p u s h
does n o t change t h e i n p u t symbol b e i n g examined , b u t
when t h e o r i g i n a l l e v e l c o n t i n u e s , p a r s i n g c o n t i n u e s
a t a d i f f e r e n t symbol . I n t h e g e n e r a t i o n a p p r o a c h we
use, a recursive push o f t e n involves a change in t h e
senantic node being examined, and the original level
continues with the original node. This difference is
a major motivation of some of the generalizations to
the ATN formalism discussed below. ~ne other major
motivation is that, in parsing a string of symbols,
the .,next.. symbol is well defined, but in ,.parsing. a
network, .next" mast be explicitly specified.

3. THE GEN~IALIZATION

The following sub-sections shoW the generalized syn-
tax of the ATN formalism, and assume a knowledge of the
standard formalimm ([I] is an excellent introduction).
Syntactic structures already familiar to ATH users,
but not discussed here remain unchanged. Parentheses
and terms in upper case letters are terminal symbols.
Lower case terms in angle brackets are non-terminals.
Ternm enclosed in square brackets are optional. Terms
followed by .*, m~ occur zero or more times in suc-
cession. To avoid confusion, in the re, sAnder of this
section we will underline the name of the * register.

3.1 TERMINAL ACTIONS

Successful traversal of an ATN arc might or might not
consume an input symbol. When parsing, such consump-
t i c n n o r m a l l y o c c u r s , when g e ~ e r a t i n g i t n o r m a l l y does
n o t , b u t i f i t doe s , t h e n e x t symbol (s e m a n t i c node)
must be specified. To allow for these choices, we have
r e t u r n e d t o t h e t e c h n i q u e o f [6] o f h a v i n g t w o t e r m i n a l
a c t i o n , TO and J ~ P , and have added an o p t i o n a l s eco n d
a r g e n t t o TO. The s y n t a x i s :

(TO <stats> [~ f o r ~])
(JUMP <state>)

25

Both cause the p a r s e r t o e n t e r the given s t a t e .
JUMP never conswms the input symbol; TO always does .
I t the <forw~ i s absen t in tbe TO a c t i o n , the nex~
symbol to be scanned will be the next one in the input
buffer. If < f o r m is present, its value will be the
next symbol to be scanned. All traditional ATN arcs ex-
cept JU~ and POP end with a terminal action.

The explanation given for the replacement of the JUMP
terminal action by the Ob~ are ~ac that, ,since POP,
PUSH and VTR ares never advance the input, to decide
whether or not an arc advanced the input r e q u i r e d k~o~-
l e d g e of both the arc type and t e r m i n a t i o n a c t i o n . The
i n t r o d u c t i o n o£ the JUMP arc . . . means t h a t the input
edvancement i s a f u n e t i n n of t he arc type a l o n e . " [2]
That our r e i n t r o d u c t i o n of the JUMP te r~L~t l a c t i o n
does not b r i n g back the c o n / ~ i o n i s exp la ined below in
~ t i o n h .

3.2 APeS

We retain a JU~ arc a8 veil as a JU~ temlnal action.
The JUMP arc provides a p lace to make an a r b i t r a r y t e s t
and par'form sow actions without consuming an input
symbol. We need such an are t h a t does conmmm its in-
put s ~ b o l , bu t TST i s not adequate s ince i t , ~ CAT,
is really a bundle o f ares, one for each lexloal entry
of the scarmed symbol, should the letter be lexlcall7
ambiguous. A semntle node, however, does not have a
lexlcal entry. We therefore introduce a TO eros

(TO (<state> [< ~ e m]) < t e s t > < a e t i o n ~)

It < test> is successful, the <aotion>s are performed
and transfer is made to <state>. The input s~ubol is
con~. The next symbol to be scanned is the value
OF <form> if it is present or the next symbol in the
input b u f f e r i f ~ f e r ~ is ~Losing.

The PUSH arc mBk~8 two asnn~ lo~ms 1) the f i r s t
symbol t o be s c u d i n ths ~zheetvoz4c i s the cmTent
contents of the * r eg i s te r s 2) the cuzTent i npu t symbol
will be consuned~oy the subnet~ork, so the content8 of

can be replaced by the value returned by the subnet-
~ork. We need an are t h a t causes a ~ i v e c a l l t o

su~aetwork, but makes n e i t h e r o f ~heea two assmnp-
t i o n s , so we in t roduce the CALL a rc :

(CALL <sta te> ~ f o m ~es~> <preac t ion or a c ~ i o n ~
<rcgie te r> <action>* <terminal action~)

where <preaction or action> is <preaetice~ or <aotloa~>.
Lf the <test> i s successful, all the <action~e of
< preactlon or action> are performed and a zqenwslve

i s made to the s ta te <state> whore the nex t s~mbol
t o be scanned i s the value of < f o ~ and r e g i s t e r s are
i n i t i a l i z e d by the <prenc~Ion>s. Y.f the subnetwerk
succeeds, its value is placed i n t o <rsglstar> and the
< a c t i o n , s and <terminal ac t ion> a re performed.

Just as the normal TO terminal a c t i o n i s the general-
Ised TO terminal action with. a default foru, the PUSH
arc (which we retain) is the CALL arc wi th the folloe-
ing d e f a n l t s s <form> is e! the <preactlon or aotlon~s
are only <prcaot ion>e! < ~ g i s t e r > i s _~.

The o n ~ f m ~ which must be added i s

(OETA <arc> (<node t o m >]) "

m <node f e r n is a form which evaluates to a seman-
tic node. Y~ abeant, <node fozs~ defaults to ~. The
value of OETA i8 tha node a t the end c~ the a r~ l a b e l -
led <arc> fm the spao i f i ed node, o r a IAst of such
nodes L~ t h e r e are more than rose.

3.2 TESTS, PREACTION, ETC.

The generalization o£ the ATN formalism to one which
a l l N f o r w r i t i n g g r e ~ r s which generate s~'Tace
strings from semantic networks, yet csn be interpret-
ed bY the same interpreter whAch handles parsing
grsm~8, requires no changes other t~an the ones des-
e r ibed above. Of cou r se , each t~p lemen ta t ion of an ATN
i n t e r p r e t e r con ta ins s l i g h t d i ~ e r e n c e s in t h e s e t of
t e s t s and a c t i o n s implemented beyond the b a s i c ones .

h . M INPUT Bb~ee~

Zr~ut to t he ATN p a r s e r can be thought of as be ing the
contents o£ a stack, called the input buffer. Zf the
input is a string of' words, t he ~ ~--'-~vill be at
the top of the i npu t buffer and successive words will
be in successively deeper positions of the input buffer.
ZF the input is a graph, the input buffer might controLs
only a single node OF the graph.

Ca antes-Lug an arc, the • register is set to the top
element of the input buffer, uhlch must not be empty.
The on~ exceptions to this are the VTR and POP arcs.
VIR sets e to an element of the HOLD register. POP
leaves .M, undefined since e is always the element to be
accounted for by the current arc, and a POP arc is not
t r y i n g t o account f o r ar~ e l m m u t . ~he inpu t b u f f e r i s
not changed between the t ime a PUSH 8re i s e n t e r e d and
t ~ f i n e an arc emanating from the sta ta pushed to is
a n t o M) 8o the contents o f e on the l a t t e r ar~ w i l l be
the same as on the former. A CALL arc is allmred to
opeei~ the centante of. on the arcs of the called
s1~ta. This is accueplished by replacing the top
element of the input buffer by that value before trans-
fer t o the c a l l e d s t a t e . Y~ t h e value i s a l i s t of
o l e m n t o) we push each e l m w n t i n d i v i d u a l ~ onto the
input buffer. ~ makes it particularly easy t o loop
thz~ a set of nodes, each o f which uili contribute
the sane syntactic tom to the growing santenee (n o b
as a st~A~g o£ adJectlves).

on an arc (except f o r POP), i . e . dur ing e v a l u a t i o n
OF the t e s t and the acts, the onntents OF ~ and the top
elanent of the input buffer are the same. This re-
qu i res s p a e i a l pz~eess ing f o r V~R, P~H, and CALL a r e s .
A t t e r setting % a VIR are pushes the contents of ~ on-
t o tbe input buffer. When a PUSH are resuaes, and the
lower level has sueceestu~ returned a value, the
value i s p laced i n t o * and a l s o pushed onto the input
buffer. ~an a CALL resumes, and the Immr level has
8uceassfUlly returned a va lue, the value is placed into
the spue i f i ed r e g i s t e r , and the c e n t e r s o f ~ i s pushed
onto the inpu t b u t t e r . The s1~e i t i ed r e g i s t e r might o r
might not be e. In either case the contents of. e and
the top OF the inpu t b u f f e r a ~ t h e sane.

There a re two p o s s i b l e t e r m i n a l a c t s , JUMP and TO.
JUMP does not a f f e c t the i npu t b u f f e r , so the con ten t s
OF e w i l l be same on the succes so r ares (except f o r POP
and VIR) as a t t he end OF the c u r r e u t a r c . TO pops the
input b u f f e r , but i f provided wi th an o p t i o n a l t o m ,
a l s o pushes the value of ~Jmt form on~o the input b u t -
l e r .

POPping from ~ e top l e v e l i s one7 l e g a l i f the inpu t
buffer is empty. POPPint fz~m any level should
t h a t a c o n s t i t u e n t has been accounted f o r . Accounting
for a constituent should en~l removing it from the
in1~t buffer. From this we conclude that ever~ path
within a level fm an initial s t a t e to a POP ere
oon1'~Lin at least one TO transfer, and in most cases, it
is proper to trausfer TO ra~her than to JUMP to a state
that hss a POP are emanat~ from it. TO will be
terulnal ast for most V~R and PUSH a~s.

26

In an~ ATN i n t e r p r e t e r which abides by t h i s d i s c u s s i o n ,
advancement of the inpu t i s a f u n c t i o n of t he t e rmina l
a c t i o n a lone i n t he s ense t h a t a t any s t a t e JUMPed to ,
the top of the inpu t b u f f e r w i l l be the l a s t va lue of *,
and at any state Jumped TO it will not be.

Parsing and generating require a lexicon -- a file of
words giving syntactic categories, features and inflec-
tional forms ~or irregularly inflected words. Parsing
and generating require different information, yet we
wish to avoid duplication as much as possible.

During parsing, morphological analysis is performed.
The analyzer is given an inflected form, must segment
it, find the stem in the lexicon and modify the lexical
entry of the stem according to its analysis of the
original form. Irregularly inflected forms must have
their own entries in the lexicon. An entry in the lex-
icon may be lexically ambiguous, so each entry must be
associated with a list of one or more lexical feature
lists. Each such list, whether stored in the lexicon
or constructed by the morphological analyzer, must in-
clude a syntactic category and a stem, which serves as
a link to the semantic network, as well as other fea-
tures such as transitivity for a verb.

In the semantic network, sc~e nodes are associated with
lexical entries. During generation, these entries,
along with other information from the semantic network,
are used by a morphological synthesizer to construct
an inflected word. We assume that all such entries are
unambiguous stems, and so contain only a single lexical
feature l i s t . This feature list must c o n t a i n any ir-
regularly inflected forms.

In summary, a single lexicon may be used for both
parsing and generating under the following conditions.
An unambiguous stem can be used for both parsing and
generating if its one lexlcal feature list contains
features required for both operations. An ambiguous
lexical entry will only be used during parsing. Each
of its lexlcal feature lists ,met contain a unique but
arbitrary ,stem,' for connection to the semantic net-
work and for holding the lexical information required
for generation. Every lexical feature list used for
generating must contain the proper natural language
spe!1~ng of its stem as well as any irregularly in-
flected forms. Lexical entries for irregularly in-
flected forms will only be used during parsing.

For the purposes of this paper, it should be irrelevant
whether the "stems,, connected to the semantic network
are actual surface words llke "give,,, deeper sememes
such as that underlying both ,,give, and ,,take", or
primitives such as .ATRANS".

6. EXAMPLE

Figure I shOWs an example interaction using the SNePS
Semantic Network Processing ~ystem [5] in which I/O is
controlled by a parsing-generating ATN grammar. Lines
begun by "**" are user's input, which are all calls to
the function named ,, : ". This function passes its
argument llst as the input buffer for a parse to begin
in state S. The form popped by the top level ATN ned-
worm is then printed, folluwed by the CPU time in
milliseconds. (The system is partly c~lled, partly
interpreted LISP on a CYB~ 173. The ATN gra,mer is
interpreted.) Figure 2 shores the grammar in abbrevi-
ated graphical form, and Figure 4 gives the details of
each a r c . The p a r s i n g network, beg inn ing a t s t a t e S~
i s inc luded f o r comple teness , bu t t he reader u n f a m i l i a r
with SMePSUL, the S~ePS User Language, [5] is not ex-
pected to unders tand its details.

The first arc in the network is a PUSH to the parsing
network. This network determines whether the inlmat is

a statement (type D) or a question (type Q). If a
statement, the network builds a SNAPS network repre-
senting the information contained in the sentence
and pops a semantic node representing the fact con-
rained in the main clause. If the input is a question
the parsing network calls the SNePS deduction routines
(DEDUCE) to find the answer, and pops the semantic
node representing that (no actual deduction is re-
quired in this example). Figure 3 shews the complete
SNePS network built during this example. Nodes MTh-
M85 were built by the first statement,nodes M89 and
MgOby the second.

When the s t a t e RESPOND i s reached , the i npu t b u f f e r
con ta ins the SNAPS node popped by the p a r s i n g network.
The g e n e r a t i n g network then b u i l d s a s e n t e n c e . The
f i r s t two sen t ences were genera ted from node M85 before
M89 end MgO were b u i l t . The t h i r d sen tence was gener -
a ted from MgO, and the f o u r t h from M85 a ga in . Since
the voice (VC) register is LIFTRed from the parsing
network, the generated sentence has the same voice as
the input sentence (see Figure I).

Of p a r t i c u l a r note i s the sub-network a t s t a t e PRED
which ana lyzes the proper t e n se f o r the gene ra ted
s e n t e nc e . For b r e v i t y , only s imple t e n s e s a re inc luded
here , bu t the more complicated t e n s e s p r e s e n t e d in [4]
can be handled i n a s i m i l a r manner. Also of i n t e r e s t
i s the subnetwork a t s t a t e ADJS which gene ra t e s a
s t r i n g of a d j e c t i v e s which are not a l ready scheduled
to be i n the s e n t e n c e . (Compare the t h i r d and f o u r t h
genera ted s en t ences of Figure 1 .)

7. CONCLUSIONS

A generalization of the ATN formalism has been pre-
sented which allows grammars to be written for gener-
ating surface sentences from semantic networks. The
generalization has involved: adding an optional
argument to the TO terminal act; reintroducing the
JUMP terminal act; introducing a TO arc similar to the
JUMP arc; introducing a CALL arc which is a generaliza-
tion of the PUSH arc; introducing a GETA form; clari-
fying the management of the input buffer. The benefits
of these few changes are that parsing and generating
gramnars may be written in the same familiar notation,
may be interpreted (or compiled) by a single program,
and may use each other in the same parser-generator
network grammar.

R~ENCES

[1] Ba tes , Nadele ine . The theo ry and p r a c t i c e of aug-
mented t r a n s i t i o n network grammars. In L. Bloc, ed.
Na tu ra l Language Communication wi th Ccm~uters, Springev-
~'erlag, Berlin, 197U, 192-259.

[2] Burton, R.R. Semantic grammar, an engineering
technique for constructing natural language understand-
ing systems. BBN Report No. 3h53, Bolt Beranek and
Newman, Inc., Cambridge, MA., December 1976.

[3] Burton, Richard R. and Woods, ~ . A. A compi l ing
sys tem f o r augmented t r a n s i t i o n networks . P r t p r i n t s of
COLING 76z The L n t e r n a t i o n a l Conference on Computation-
a l L i n g u i s t i c s , Ottawa, June 1976.

[4] Shapiro, Stuart C. Genera t ion as p a r s i n g from a
network i n t o a l i n e a r s t r i n g . AJCL Microfiche 33 (1975)
~5-62.

[5] Shapiro , S tua r t C. The SNoPS semant ic network
p r o c e s s i n g sys t em. In N.Y. F ind le r , ed . , A s s o c i a t i v e
Networks: Representation and Use of KnowledKe by Com-
puters, Academic Press, New York, I~79, 17~-203.

[6] ~1~ew, R. and Slocum, J. Generating e~gllsh
discot~ 'se from e ~ t i c ne tworks . CACN ~, 10 (October
1972), 8 ~ - 9 0 5 .

27

[7] Woods, W.A. Transition natwcrk ~smuars for ~.~(z A DOG KISSED YOUNG LUCY)
natural langua@s ana~TSlSo CACM I~, 10 (October 1970), (I UND~STAND THAT A DOG KISSED YOUNG LUCY)
591 ...606. 3769 MSECS

[8] Woods, W.A. An experimental parsing system for #~(, WHO KISS~ LUCY)
transition network Rrsmmaz~. In Ro Rns~Ln, ed., Nat- (A DOG KIS3~ YOUNG LUCY)
u~al LanRua~e P,-ocessin~. Algorlthmlcs Press, Mew~o~, 2714 MSEC3
1973, 111-15~.

~(, LUCY IS SWEET)
(I ~D~L~TAND THAT YOUNG LUCT IS SWEET)
2127 MSECS

#,~(z WHO WAS KISSED ~ A DOG)
(SWEET YOUNG LUCY WAS KISSED BY A raG)
3OOh MSZCS

Figure I. Example Interaction

~SH SP J ~ CALLNQ~3R J) (~ CALL NP J ~) CALLPRED J~.~

ADJS J CALL NP TO

CALL PAST TO

CAT V TO ~ ~ ~ _ J~ ~WRD BY TO PUSH gNP

CAT ADJ TO ~

Figure 2. A ?arsL~-(~nerating Grammar
Terminal acta are tnd:Lcated by "J" or "TO"

Figure 3. Samnt, ic Hetwoz.tc Build by ~ent, encea of Figure 1

28

(S (PUSH SP T (JUMP RESPOND)))
(RESPO~ (JeW G} (Z~ (OKrR TrPZ) 'D) (SKrR ST~INO '(I UtmmSTAND THAT)))

(av~ G} (za (G~.'m ~PZ) ,~)))

(O (JUMP ~ (AND (GE~A OBJECT) (OVERLAP (GETR VC) 'PASS)) (SErR ~ (O~A OBJECT)))
(JUMP @$ (AND (O~A AGENT) (DISJOINT (OK"HI VC) ,PASS)) (SErR SUBJ (OK"rA AO~T)) (SErR VC 'ACT))
(~ ~ (OK'PA WHICH) (SEI'R 5~IBJ (GErA WHICH)) (SETR VC 'ACT)))

(os (cALL NUmR SUSa T NUmR (szm m~z .) (JUMP ore)))
(081 (CaLL NP SUBJ T (S~Im DONE) (SENDR NUMBR) Rm (ADDR STRING REO) (JUMP SgB)))
(SVB (CALL PRED * T (S~DR NUMBR) (S~#ER VC) (SENIR VB (OR (OKRA LEX (GETA VERB)) 'BE)) REG (AIER STRING PEG)

(Ju~ smo~a)))
(SUROBJ (CALL NP (OKRA AGENT) (AND GETA AGO'r) (OVERLAP VC 'PASS)) (SENDR DONE) * (ADDR STRING 'BY *) (TO ~D))

(CALL NP (OKRA OBJECT) (AnD (OKRA OBJECT) (OVmLAP VO 'ACT)) (S~Xm DONE) * (ADIR Sm~O *) (TO ram))
(CaLL NP (GETA ADJ) (OEPA ADJ) * (ADDR STRING *) (TO ~D))
(TO (roD) T))

(z~ (POP smiNo T))
(NUMBR (TO (NUMBRI) (OR (OETA SUB-) (OKRA SUP-) (OKRA CLASS-)) (SKTR NUM~ 'FL))

(TO (NLR~RI) (NOT (OR (GE~A SUB-) (OKRA SUP-) (OKRA CLASS-))) (SETR NUMBR 'SING})))
(NU~RI (POP NUMSR T))
(PRED (CALL PAST (OKRA E'f~) T T~SE (TO O~VB))

(CALL ~ (OKRA 5"r~) T TENSE (TO GE~qVB))
(TO (G~-NVB) T (SKRR TENSE 'PRES)))

(G}~ (IOP (V~{BIZE (G}EI~ NUMBR) (G}E~I~ TENSE) (GEI~ VC) (G}m VB)) T))
(PAST (TO (PASTEND) (OVmLAP * *NOW))

(TO (PAST (G}ETA BEFORE)) T))
(PASTmD (POP 'PAST T))
(FUTR (TO (ZUTRZ~) (ovmLAp. ~ow))

(TO (rUT~ (GETA Arrm)) T))
(~ (POP ' ~ T))
(NP (TO (roD) (G}KRA LEX) (SE%~ STRING} (WHDIZE (G}ETR ~rb'Fd~R) (G}KRA IF, I[))))

(at.e N~A (~ (OKRA NANED-) (~ZSJOI~T (OKRA N~d~)~X~aZ)))
(JUMP NPMA (AND (OKRA MEMBER-) (DISJOINT (OKRA MEMBER-) DONE))))

(trP~A (CALl. ADJS (OKRA WHICH-) (G}KrA WHICH-) (SE~ DONE) RZO (ADIR ETRINO Rm) (JUMP ~N))
(JUMP ~P~ T))

(~ (TO ~m) (~. STRI.G} (VaCaTE (G}KRR ~m'~) (OKRA ;2X (OZ~A rt~MZ (OKRA ~)))))))
(~Pm (CALL A~S (OZn WHICH-) (OnA WHZC.-) (S~DS m~Z) Rm (aam s'miNo 'A zm) (JUMP ~))

(~ ~ T (ADDR STRING} 'A)))
(NPM (CALL NP (GETA CLASS (OKRA M~SER-)) T (S~T~R DONE) REG (AD~R STRING} REG) (TO roD)))
(ADJS (CALL NP (GETA ADJ) (DISJOINT * DONE) (S~DR DONE) * (ADDR STRING *) (TO ADJS))

(TO (A~JS) T)
(raP STRING T))

(sP (w~ WHO T (SKrR TYPE 'Q) (LIFTS TYPE) (szm sVSa ~X (To v))
(maSH NPP T (sz~mR net ,D) (SETR n'PZ 'D) (Un~ n~Z) (sz'm susa .) (To v)))

(v (CaT v T (szm vs (FmmREurm LZX (+(OKrR *)))) (SKrR TNS (OKrZ Z~SZ)) (W COMPL)))
(C(~L (CAT V (AND (GETF PPRT) (OVmLAP (GETR VB) (GETA I~X- 'BE))) (SKTR OBJ (OKTR SUBJ)) (SETR SIBJ NIL)

(SKrR VC 'PASS) (szm ~ (FINmPaUZU~ ~ (~(ozm .)))) (To sv))
(CaT ADJ (OVERlaP (ore VB) (OETA LEX- 'BE)) (SKrR ADJ (FINDORBUILD LEX (~(GETR *)))) (TO SVO))
(JUMP SV T))

(SV (JUMP 0 (EQ (OETR TNS) 'FRES) (SErR STM (BUILD BEI~ORE *NOW (BUILD AFTra *NOW) - ETM)))
(ame o (zQ (GZ'm T.S) 'PAS'r) (SZ~ STM (BUrLD Sm'ORZ (B,ZLD sm~oaz .Now) - KrM))))

(0 (WRD BY (EQ (O~ VC) 'PASS) (TO PAO))
(~SH ~P r (sm~'m n, Pz) (szm oBJ .) (LZ~ VC) (TO SVO)))

(PAO (PUS~ NPP T (S~]~R TYPE) (SETR SUBJ *) (LIFTR VC) (TO SVO)))
(~ (raP (BU~.n AG~ (÷(OETR ~J)) VERB (+(OE'I~R ~))OBJECT (~(Gm OBJ))ST~2{E.'(f(OETR S'rM)) ~ *~TH)

(zQ (ozm T~PZ 'D))
(rap (~AL (BU~ (•mmcz AOZtrr + v~ + OSJmT +) s~mJ w o~)) (zQ (ozm TrPz) ,Q)))

(SVC (POp (EVAL (BIHIIX~ (FINDORBUILD WHICH + AIIJ +) SUBJ ADJ)) (~ (GKTR T3[PE) 'D))
(POP (EVAL (B~ (DEDUCE WHICH + ADJ +) S~J ~)) (EQ (OEI'R TYPE) 'Q)))

(~ (~n~ A T (sm~ ~ T) (To ~PDKr))
(~ NPDET T))

(~nZT (CA~ Am T (HOLD (P~m,SU~ ~X (,(ozm .)))) (m ~))
(CAT N (AND (GETR INDEF) (EQ (OE'i~ TYPE) 'D))

(sin ~ (BOND Mmsm- (~u'~ c~ass (ziNmPa~LD ~x (*(oz'm .)))))) (TO re,A))
(CAT N (AND (OETR]~qDEF) (EQ (OETR TI'PE) 'Q))

(SKrR ~ (FIND M~B~R- (DEDUCE M~ER %Y CLASS (TBUILD LEX (+(OKTR *)))))) (TO ICPA))
(CAT NPR T (SETR NH (FINDORBUILD NAMED- (FINDORBUILD NAME (F~UILD LEX (+(GETR *)))))) (TO ~Z)))

(~A Orm ~ T (~AL (B~r~ (FZ~rmREuI~m W~CH. Aa)J *) ~H)) (TO ~PA))
(POP ~ T))

Figure 4. Details of the Parser~2en~rator ~t~mork

29

