GENERALIZED AUGMENTED TRANSITION NETWORK GRAMMARS
FOR GENERATION FROM SEMANTIC NETWORKS

Stuart C. Shapiro
Department of Camputer Science, SUNY at Buffalo

1. INTRODUCTION

Augmented transition network (ATN) grammars have, since
their development by Woods [7;8), become the most used
method of describing grammars for natural language
understanding and question answering systems. The ad-
vantages of the ATN notation have been summarized as
"1) perspicuity, 2) generative power, 3) efficiency of
representation, L) the ability to capture linguistic
regularities and generalities, and 5) efficiency of
operation” [1,p.191]. The usual method of utilizing an
ATN grammar in a natural language system is to provide
an interpreter which can take any ATN grammar, a lexie
con, and a sentence as data and produce either a parse
of a sentence or a message that the sentence does not
conform to the grammar. A compiler has been written
[2;3] which takes an ATN grammar as input and produces
a specialized parser for that grammar, but in this paper
we will presume that an interpreter is being used.

A particular ATN grammar may be viewed as a program
written in the ATN language. The program takes a sen=-
tence, a linear sequence of symbols, as input, and pro=
duces as output a parse which is usually a parse tree
(often represented by a LISP Seexpression) or some
"knowledge representation” such as a semantic network.
The operation of the program depends on the interpreter
being used and the particular program (grammar), as well
as on the input (sentence) being processed.

Several methods have been described for using ATN grame
mars for sentence generation. One method {1,p.235]) 1s
to replace the usual interpreter by a generation inter=
preter which can take an ATN grammar written for parse
ing and use it to produce random sentences conforming
to the grammar. This is useful for testing and debug-
ging the grammar. Another method (5] uses a modified
interpreter to generate sentences from a semantic nete
work, In this method, an ATN register is initialized to
hold a node of the semantic network and the input to the
grammar is a linear string of symbols providing a .
pattern of the sentence to be generated. Another method
{i] also generates sentences from a semantic network.

In this method, input to the grammar is the semantic
network itself. That is, instead of successive words of
a surface sentence or succeasive symbols of a linear
sentence pattern being scanned as the ATN grammar is
traversed by the interpreter, different nodes of the
semantic network are scanned, The grammar controls the
syntax of the generated sentence based on the structural
properties of the semantic network and the information
contained therein.

It was intended that a single ATN interpreter could be
used both for standard ATN parsing and for generation
based on this last method. However, a special intere
preter was written for generation grammars of the type
described in (L), and, indeed, the definition of the ATN
formalism given in that paper, though based on the
standard ATN formalism, was inconsistent enough with the
standard notation that a single interpreter could not be
used. This paper reports the results of work carried
out to remow those inconsistencies. A generalization
of the ATN formalism has been derived which allows a
single interpreter to be used for both parsing and gene
erating grammars. In fact, parsing and generating
grammars can be sub-networks of each other. For example
an ATN grammar can be constructed so that the "parse"

This material is based on work supported in part by the
National Science Foundation under Grant #MCS78-0227L.

25

of a natural language question is the natural language
statement which answers it, interaction with representa-
tion and inference routines being done on arcs along the
way. The new formalism is a strict generalization in
the sense that it interprets all old ATN grammars as
having the same semantics (carrying out the same
actions and producing the same parses) as before.

2. GENERATION FROM A SEMANTIC NETWORK-=BRIEF OVERVIEW

In our view, each node of a semantic network represeats
a concept. The goal of the generator is, given a node,
to express the concept represented by that node in a
natural language surface string. The syntactic cate-
gory of the surface string is determined by the
grammar, which can include tests of the structure of
the semantic network connected to the node. In order
to express the concept, it is often necessary to ine
clude in the string substrings which express the con=-
cepts represented by adjacent nodes. For exampls, if
a node represents a fact to be expressed as a state~
ment, part of the statement may be a noun phrase
expressing the concept represented by the node con-
nected to the original node by an AGENT case arc.

This can be done by a recursive call to a section of
the grammar in charge of building noun phrases. This
section will be passed the adjacent node. When it
finishes, the original statement section of the grammar
will continue adding additional substrings to the
growing statement.

In ATN grammars written for parsing, a recursive push
does not change the input symbol being examined, but
when the.original level contimues, parsing continues
at a different symbol. In the generation approach we
uss, a recursive push often involves a change in the
semantic node being examined, and the original level
continues with the original node. This difference is
a major motivation of socme of the generalizations to
the ATN formaliam discussed below. The other major
motivation is that, in parsing a string of symbols,
the "next" symbol is well defined, but in "parsing" a
network, "next" must be explicitly specified.

3. THE OENERALIZATTON

The following sub=-sections show the gesneralized syn~
tax of the ATN formalism, and assume a knowledge of the
standard formalism ([1] is an excellent introduction).
Syntactic structures already familiar to ATN users,
but not discussed here remain unchanged. Parentheses
and terms in upper case letters are terminal symbols.
Lower case terms in angle brackets are non-terminals.
Terms enclosed in square brackets are optional. Terms
followed by "#" may occur zero or more times in suc-
cession. To aveld confusion, in the remainder of this
section we will underline the name of the # register.
3.1 TERMINAL ACTIONS

Successful traversal of an ATN arc might or might not
consume an input symbol. When parsing, such consump-
tion normally ocours, when generating it normally does
not, but if it does, the next symbol (semantic nods)
must be specified. To allow for these choices, we have
returned to the technique of (6] of having two.terminal
actions, T0 and JUMP, and have added an optional second
argument to TO. The syntax is:

(TO <atate> [<form>])
(JUMP <state>)

Both cause the parser to enter the given state .

JUMP never consumes the input symbol; TO always does.

If the <form> is absent in the TO action, the next
symbol to be scanned will be the next one in the input
buffer. If <form> is present, its value will be the
next symbol to be scanned. All traditional ATN arcs ex-~
cept JUMP and POP end with a terminal action.

The explanation given for the replacement of the JUMP
terminal action by the JUMP arc was that, "since POP,
PUSH and VIR arcs never advance the input, to decide
whether or not an are advanced the input required lmow-
ledge. of both the arc type and termination action. The
introduction of the JUMP arc ... means that the input
advancement is a function of the arc type alone." (2]
That our reintroduction of the JUMP terminal action
does not bring dback the confusion is explained below in

3.2 ARCS

We retain a JUMP arc as well as a JUMP terminal action.
The JUMP arc provides a place to make an arbitrary test
and perform soms actions without consuming an input
symbol. We need such an arc that does consume its ine
put symbol, but TST is not adequate since it, like CAT,
is really a bundle of arcs, ons for each lsxical entry
of the scanned symbol, should the latter be lexically
ambiguous. A semantic node, however, does not have a
lexical entry. We therefore introduce a TO arc:

(TO (<state> [<form>]) <teat> <actiony#)

If <test> is successful, the <action>s are performed

and transfer is made to <state>. The input symbol is
consumed. The next symbol to be scanned is the value
of <form> if it is present or the next symbol in the

input buffer if «formo> is missing.

The PUSH arc makes two assumptions: 1) the first
symbol to be scanned in the subnetwork is the current
contents of the # register; 2) the. current input symbol
will be consumed by the subnetwork, so the contents of
* can be replaced by the value returned by the subnet-
work. We need an arc that causes a recursive call to
§ subnstwork, but makes neither of these two assumpe
tions, 3o we introduce the CALL arec:

(CALL <state> <form> <test> <preaction or action>»
<register> <action>* <terminal action>)

where <preaction or action> is <preaction> or <action>.
If the <test> is successful, all the <actiomm>s of
<preaction or sction> are performed and a recursive
push is made to the state <state> where the naxt symbol
to be scanned is the value of <form> and registers are
initialized by the <Ppreaction>s. If the subnetwork
succeeds, its valus is placed into <register> and the
<gction>s and <terminal action> are performed.

Just as the normal 70 terminal action is the general=-
1zed TO terminal action with a default form, the PUSH
arc (which we retsin) is the CALL arc with the followe
ing defaulta: <form> is *; the <preaction or action>s
are only <preaction>sj <register> is %,

3.3 FORMS
The only form which must be added is

(GETA <arc> [<node form>]).
where <node form> is a form which evaluates to a seman-
tic node. If absent, <nodes form> defaults to %*. The
value of GETA is the node at the end of the are label-

led <are> from the specified node, or a list of such
nodss if there are more than one.

26

3.s TESTS, PREACTION, ETC.

The generalization of the ATN formalism to one which
allows for writing grammars which generats surface
strings from semantic networks, yst can be intarpret-
ed by the same interpreter which handles parsing
grammars, requires no changes other than the ones des-
eribed above. Of course, each implementation of an ATN
interpreter contains slight differences in the set of
tests and actions implemented bevond the basic ones.

4. THE INPUT BUFFER

Input to the ATN parser can be thought of as being the
contents of a stack, called the input buffer. If the
input is a string of words, the n‘% word will be at
the top of the input buffer and successive words will
be in successively deeper positions of the input buffer.
If the input is a graph, the input buffer might contain
only a single node of the graph.

On entering an arc, the # register is set to the top
element of the input buffer, which must not be empty.
The only exceptions to this are the VIR and POP arcs.
VIR sets # to an element of the HOLD register. POP
leaves # undefined since # is always the element to be
sccounted for by the current are, and a POP arc is not
trying to account for any element. The input buffer is
not changed between the time a PUSH arc is entered and
the time an arc emanating from the state pushed to 1is
entered, so the contents of # on the latter arc will be
the same as on the former. A CALL arc 1s allowed to
specify the contents of # on the arcs of the called
state. This is accomplished by replacing the top
element of the input buffer by that value befors transe
for to the called state. If the value is a list of
elements, we push each element individually onto the
input buffer. This makes it particularly easy to loop
through a set of nodes, each of which will contribute
the same syntactic form to the growing sentence (such
as a string of adjectives).

While on an arc (except for POP), i.e. during evaluation
of the test and the acts, the contents of # and the top
element of the input buffer are the same. This re-

" quires special processing for VIR, PUSH, and CALL arcs.

After setting #, a VIR arc pushes the contents of # one
to the input buffer. When a PUSH arc resumes, and the
lowar level has successfully rsturned a value, the
valus is placed into # and also pushed onto the input
buffer. When a CALL resumes, and the lower level has
successfully returned a valus, the valus is placed into
the specified register, and the contents of # is pushed
onto the input buffer, The specified register might or
might not be #. In either case the contents of # and
the top of the input buffer ars the same.

There are two possible terminal acts, JUMP and TO.

JUMP does not affect ths input buffer, so the contents
of » will be same on the successor arcs (except for POP
and VIR) as at the end of the current arc. T0 pops the
input buffer, but if provided with an optiocnal form,
also pushes the value of that form onto the input buf-
feor.

POPping from the top level is only legal if the input
buffer is empty. POPping from any level should mean
that a constituent has been accounted for. Accounting
for a constituent should entail removing it from the
input buffer. From this we conclude that every path
within a level from an initial state to a POP arc must
contain at least one 70 transfer, and in most cases, it
is proper to transfer TO rather than to JUMP to a state
that has a POP arc esmanating from it. TO will be the
terminal act for most VIR and PUSH ares.

In any ATN interpreter which abides by this discussion,
advancemsnt of the input is a function of the terminal
action alone in the sense that at any state JUMPed to,
the top of the input buffer will be the last value of ¥,
and at any state jumped TO it will not be.

5. THE LEXICON

Parsing and generating require a lexicon == a file of
words giving syntactic categories, features and inflec-
tional forms for irregularly inflected words. Parsing
and generating require different information, yet we
wish to avoid duplication as much as possible.

During parsing, morphological analysis is performed.
The analyzer is given an inflected form, must segment
it, find the stem in the lexicon and modify the lexical
entry of the stem according to its analysis of the
original form. Irregularly inflected forms must have
their own entries in the lexicon. An entry in the lex=-
icon may be lexically ambiguous, so each entry must be
associated with a list of one or more lexical feature
lists. Each such 1ist, whether stored in the lexicon
or constructed by the morphological analyzer, must ine-
clude a syntactic category and a stem, which serves as
a link to the semantic network, as well as other fea~
tures such as transitivity for a verb.

In the semantic network, some nodes are associated with
lexical entries. During generation, these entries,
along with other information from the semantic networik,
are used by a morphological synthesizer to construct
an inflected word. We assume that all such entries are
unambiguous stems, and so contain only a single lexical
feature list. This feature list must contain any ire
regularly inflected forms.

In summary, a single lexicon may be used for both
parsing and generating under the following conditions.
An unambiguous stem can be used for both parsing and
gensrating if its one lexdcal feature list contains
features required for both operations. An ambiguous
lexical entry will only be used during parsing. Each
of ite lexical featurs lists must contain a unique but
arbitrary "stem'" for comnection to the semantic nete
work and for holding the lexical information required
for generation. Every lexical feature list used for
generating must contain the proper natural language
spelling of its stem as well as any irregularly in-
flected forms. Lexical entries for irregularly in=-
flected forms will only be used during parsing.

For the purposes of this papsr, it should be irrelevant
whether the "stems" connected to the semantic network
are actual surface words like "give", deeper sememes
such as that underlying both "give" and "take", or
primitives such as "ATRANS".

6. EXAMPLE

Figure 1 shows an example interaction using the SNePS
Semantic Network Processing System (5] in which I/0 is
controlled by a parsing-gensrating ATN grammar. Lines
begun by "##" are user's input, which are all calls to
the function named ":". This function passes its
argument list as the input buffer for a parse to begin
in state S. The form popped by the top level ATN net~
work is then printed, followed by the CPU time in
milliseconds. (The system is partly compiled, partly
interpreted LISP on a CYBER 173. The ATN grammar is
interpreted.) Figure 2 shows the grammar in abbrevi-
ated graphical form, and Figure L gives the details of
each arc. The parsing network, beginning at state SP
is included for completeness, but the reader unfamiliar
with SNePSUL, the SNePS User Langusge, [5] is not ex~
pected to understand its details.

The first arc in the network is a PUSH to the parsing
network. This network determines whether the input is

a statement (type D) or a question (type Q). If a
statement, the network builds a NePS network repre-
senting the information contained in the sentence

and pops a semantic node representing the fact cone
tained in the main clause. If the input is a question
the parsing network calls the SNePS deduction routines
(DEDUCE) to find the answer, and pops the semantic
node representing that (no actual deduction is re-
quired in this example). Figure 3 shows the complete
SNePS network built during this example. Nodes M74-
M85 were built by the first statement,nodes M89 and
M90 by the second.

When the state RESPOND is reached, the input buffer
contains the SNePS node popped by the parsing network.
The generating network then builds a sentence. The
first two sentences were generated fram node M85 before
M89 and M90 were built. The third sentence was gener-
ated from M90, and the fourth from M85 again. Since
the voice (VC) register is LIFTRed from the parsing
network, the generated sentence has the same voice as
the input sentence (see Figure 1).

Of particular note is the sub-network at state PRED
vhich analyzes the proper tense for the generated
sentence. For brevity, only simple tenses are included
here, but the more complicated tenses presented in (L)
can be handled in a simjilar manner. Also of interest
is the subnetwork at state ADJS which generates a
string of adjectives which are not already scheduled
to be in the sentence. (Compare the third and fourth
generated sentences of Figure 1.)

7. CONCLUSIONS

A generalization of the ATN formalism has besn pree
sented which allows grammars to be written for genere
ating surface sentences from semantic networks. The
generalization has involved: adding an optional
argument to the TO terminal act; reintroducing the
JUMP terminal act; introducing a TO arc similar to the
JUMP arc; introducing a CALL arc which is a generaliza=-
tion of the PUSH arc; introducing a GETA formj clari-
fying the management of the input buffer. The benefits
of these few changes are that parsing and generating
grammars may be written in the same familisr notation,
may be interprsted (or compiled) by a single program,
and mey use each other in the same parser=-gsnerator
network grammar.

REFERENCES

{1] Bates, Madeleine. The thesory and practice of aug-
mented transition network grammars. In L. Bloec, ed.

Natural Lan, s Communication with C ters, Springere
Verﬁg, Berﬁn, 1§7B, 192259+

(2] Burton, R,R. Semantic grammar: an engineering
technique for constructing natural language understand-
ing systams. BBN Report No. 3453, Bolt Beranek and
Newman, Inc., Cambridgs, MA., December 1976.

{3] Burton, Richard R. and Woods, Wm. A. A compiling
system for augmented transition networks. Preprints of
COLING 76: The International Conference on Computatione
al Linguistics, Ottawa, June 1976.

(] Shapiro, Stuart C. Generation as parsing from a
Ll;:.zork into a linear string. AJCL Microfiche 33 (1975)
2.

{S] Shapiro, Stuart C. The SNePS semantic network
processing system. In N.V. Findler, ed., Associative

Networks: Representation and Use of Knowle OfMe
puters, Aca c Press, New York, » =203 .

(6] Simmons, R. and Slocum, J. Generating english
discourse from semantic networks. CACM 5, 10 (October
1972)’ 891'96-

(7] Woods, W.A. Transition netwark grammars for
rsmtuz-:l_éQS language analysis. CACM 13, 10 (October 1970),
bl o

(8] Woods, W.A. An experimental parsing system for
transition network grammars. In R, Rustin, ed., Nate

##(1 A DOG KISSED YOUNG LUCY)
(I UNDERSTAND THAT A IDG KISSED YOUNG LUCY)
3769 MSECS

##(: WHO KISSED LUCY)
(A DOG KISSED YOUNG LUCY)

2714 MSECS

##(: LUCY IS SWEET)
(I UNDERSTAND THAT YOUNG LUCY IS SWEET)
2127 MSECS

ural Lan Processing, Algorithmics Prass, New Yark,
903, i

#%(1 WHO WAS KISSED BY A DOG)
(SWEET YOUNG LUCY WAS KISSED BY A I0G)
3004 MSECS

Figure 1. Example Interaction

CALL NOMER J G5y, CALL NP J__ G5y cuz.rnzn%x@

@ ALL ADJS_J CALL NP TO
w/\‘(@———-—
CALL PAST T0

CALL NP TO
ADJS Y-

T
-y
HRDB!'N PUSH NNP TO
SR i o

Figure 2. A Parsing-Generating Grammar
Terminal acts are indicated by "Jg" or "TO"

Figure 3. Semantic Network Build by Sentences of Figure 1

28

(S (PUSH SP T (JUMP RESPOND)))
(RESPOND (JUMP G (EQ (GETR TYPE) 'D) (SETR STRING '(T UNDERSTAND THAT)))
(JuMP ¢ (EQ (GETR TYPE) 'Q)))

(¢ (JUMP GS (AND (GETA OBJECT) (OVERLAP (GETR VC) 'PASS)) (SETR SUBJ (GETA OBJECT)))
(JuMP GS (AND (GETA AGENT) (DISJOINT (GETR VC) 'PASS)) (SETR SUBJ (GETA AGENT)) (SETR VC 'ACT))
(JuMP GS (GETA WHICH) (SETR SUBJ (GETA WHICH)) (SETR VC 'ACT)))
(GS (CALL NUMBR SUBJ T NUMBR (SETR DONE ») (JUMP GS1)))
(Gs1 (CALL NP SUBJ T (SENDR DONE) (SENDR NUMBR) REG (ADDR STRING REG) (JUMP SVB)))
(svB (cALL r(m:n * T (sm)n)n; NUMBR) (SENIR VC) (SENIR VB (OR (GETA LEX (GETA VERB)) 'BE)) REG (ADDR STRING REG)
JUMP SUROBJ ‘
(SUROBJ (CALL NP (GETA AGENT) (AND GETA AGENT) (OVERLAP VC 'PASS)) (SENDR DONE) # (ADDR STRING °'BY #) (TO END))
(CALL NP (GETA OBJECT) (AND (GETA OBJECT) (OVERLAP VC tACT)) (SENDR DONE) # (ADDR STRING #) (T0 END))
(CALL NP (GETA ADJ) (GETA ADJ) # (ADDR STRING #) (TO END))
(10 (END) T))
(END (POP STRING T))
(NUMBR (TO (NUMBR?1) (OR (GETA SUB-) (GETA SUP-) (GETA CLASS=-)) (SETR NUMBR 'PL))
(T0 (NUMBR1) (NOT (OR (GETA SUB-) (GETA SUP-) (GETA CLASS-))) (SETR NUMBR 'SING)))
(NUMBR1 (POP NUMBR T))
(PRED (CALL PAST (GETA ETIME) T TENSE (TO GENVB))
(CALL FUTR (GETA STIME) T TENSE (TO GENVB))
(TO (GENVB) T (SETR TENSE 'PRES)))
(GENVB (POP (VERBIZE (GETR NUMBR) (GETR TENSE) (GETR VC) (GETR VB)) T))
(PAST (TO (PASTEND) (OVERLAP »* #NOW))
(To (PAST (GETA BEFORE)) T))
(PASTEND (POP 'PAST T))
(FUTR (T0 (FUTREND) (OVERLAP # #NOW))
(T0 (FUTR (GETA AFTER)) T))
(FUTREND (POP 'FUTR T))
(NP (TO (END) (GETA LEX) (SETR STRING (WRDIZE (GETR NUMBR) (GETA LEX))))
(JUMP NPNA (AND (GETA NAMED-) (DISJOINT (GETA NAMED=-)DONE)))
(JUMP NPMA (AND (GETA MEMBER-) (DISJOINT (GETA MEMBER=) DONE))))
(NPNA ECALL ADJS gc):m WHICH=) (GETA WHICH-) (SENDR DONE) REG (ADIR STRING REG) (JUMP NPN))
JUMP NPN T
(NPN (70 END) (ADDR STRING (WRDIZE (GETR NUMBR) (GETA LEX (GETA NAME (GETA NAMED=)))))))
(NPMA (CALL ADJS (GETA WHICH-) (GETA WHICH-) (SENDR DONE) REG (ADIR STRING 'A REG) (JUMP NPM))
(JUMP NPM T (ADDR STRING 'A)))
(NPM (CALL NP (GETA CLASS (GETA MEMBER-)) T (SENDR DONE) REG (ADIR STRING REG) (TO END)))
(ADJS (CALL NP (GETA ADJ) (DISJOINT # DONE) (SENDR DONE) » (ADDR STRING #) {TO ADJS))
(T0 (ADJS) T)
(POP STRING T))

(SP (WRD WHO T (SETR TYPE 'Q) (LIFIR TYPE) (SETR SUBJ %X (10 V))
(PUSH NPP T (SENDR TYPE 'D) (SETR TYPE 'D) (LIFTR TYPE) (SETR SUBJ #) (10 V)))
(v (cAT V T (SETR VB (FINDORBUILD LEX (+(GEIR +)))) (SETR TNS (GETF TENSE)) (70 COMPL)))
(COMPL (CAT V (AND (GETF PPRT) (OVERLAP (GETR VB) (GETA LEX~ 'BE))) (SETR OBJ (GETR SUBJ)) (SETR SUBJ NIL)
(SETR VC 'PASS) (SETR VB (FINDORBUILD LEX (4(GETR *)))) (T0 sV))
gcn ADJ (c;v)'mp (GETR VB) (GETA LEX- 'BE)) (SETR AN (FINDORBUILD LEX (#(GETR *)))) (10 swc))
JUMP SV T
(sv (JuMP 0 (EQ (GETR TNS) 'PRES) (SETR STM (BUILD BEFORE #NOW (BUILD AFTER *NOW) = ETM)))
(JUMP 0 (EQ (GETR TNS) 'PAST) (SETR STM (BUILD BEFORE (BUILD BEFORE #NOW) = ETM))))
(0 (WRD BY (EQ (GETR VC) 'PASS) (TO PAG))
(PUSH NPP T (SENDR TYPE) (SETR OBJ #) (LIFTR VC) (T0 SV0)))
(PAG (PUSH NPP T (SENDR TYPE) (SETR SUBJ #) (LIFTR VC) (T0 SV0))) ,
(svo (roP gnun(.n AGENT (*(Gt)rg'n SUBJ)) VERB (+(GETR VB)) OBJECT (#(GETR OBJ)) STIME (4(GETR STM)) ETIME #ETM)
EQ (GETR TYPE 'D
(POP (EVAL (BUILDQ (DEDUCE AGENT + VERB + OBJECT +) SUBJ VB 0BJ)) (EQ (GETR TYPE) qQ)))
(svc (POP (EVAL (BUILDQ (FINDORBUILD WHICH + ADJ +) SUBJ ADJ)) (EQ (GETR TYPE) 'D))
(PoP (EVAL (BUILDQ (DEDUCE WHICH + ADJ +) SUBJ ADJ)) {EQ (GETR TYPE) 'Q)))
(NPP (WRD A T (SETR INDEF T) (T0 NPDET))
(JUMP NPDET 7))
(NPDET (CAT ADJ T (HOLD (FINDORBUILD LEX (+(GETR #)))) (TO NPDET))
(CAT N (AND (GETR INDEF) (EQ (GETR TYPE) 'D))
(SETR NH (BUILD MEMBER~- (BUILD CLASS (FINDORBUILD LEX ((GETR #)))))) (TO NPA))
(CAT N (AND (GETR INDEF) (EQ (GETR TYPE) 'Q))
(SETR NH (FIND MEMBER- (DEDUCE MEMBER %Y CLASS (TBUILD LEX (+(GETR #)))))) {10 NPA))
(CAT NPR T (SETR NH (FINDORBUILD NAMED- (FINDORBUTLD NAME (FINDORBUILD LEX (+(GETR #)))))) (10 NPA)))
(NPA Evm ADJ 1)')(Evu. (BUILDQ (FINDORBUILD WHICH + ADJ #) NH)) (TO NPA))
FOP NH T

Figure 4. Details of the Parser-Generator Network

29

