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1 Goal of the Tutorial

In this tutorial, we wish to cover the foundational,
methodological, and system development aspects
of translating structured data (such as data in tab-
ular form) and knowledge bases (such as knowl-
edge graphs) into natural language. The attendees
of the tutorial will be able to take away from this
tutorial, (1) the basic ideas around how modern
NLP and NLG techniques could be applied to de-
scribe and summarize textual data in format that is
non-linguistic in nature or has some structure, and
(2) a few interesting open-ended questions, which
could lead to significant research contributions in
future.

The tutorial aims to convey challenges and nu-
ances in translation structured data into natural
language forms, data representation techniques,
and domain adaptable solutions. Various solu-
tions, starting from traditional rule based/heuristic
driven and modern data-driven and ultra-modern
deep-neural style architectures will be discussed,
and will be followed by a brief discussion on eval-
uation and quality estimation. A significant por-
tion of the tutorial will be dedicated towards unsu-
pervised, scalable, and adaptable solutions, given
that systems for such an important task will never
naturally enjoy sustainable large scale domain in-
dependent labeled (parallel) data.

2 Tutorial Overview

Natural Language Generation (NLG) has under-
gone significant advancement in the recent past,
and various NLG systems are being used for ei-
ther data-to-text tasks (e.g. generating financial
reports from tables, generating weather reports) or
text-to-text tasks (e.g. summarizing news reports,
text-style transfer).

Structured data and knowledge bases or knowl-
edge graphs are a key machine representation
mechanism used in a wide variety of domains to
capture domain-specific knowledge. For exam-
ple, 1) the financial performance of companies

and industries in financial domain, or 2) informa-
tion about chemical composition of drugs, patient
records, etc. in healthcare domain, or 3) inventory
records of products and their features in retail, are
all captured with domain-specific KGs/KBs. For
AI driven interaction applications, often times it is
important to communicate the content being rep-
resented in such knowledge bases in the form of
natural language (such as English). Take an ex-
ample in question-answering setting in Financial
domain where a question:

“How did XYZ corp. perform compared to its
competitors in North America in last 2 quarters?”
would query a DB/KG and retrieves a result set ta-
ble containing the relevant financial performance
numbers about revenues, profit margin, competi-
tors, technology segments, quarterly breakdown,
etc.. However, it is not just sufficient for an AI
system to simply display such a table of numbers,
but rather, go one step further and explain in plain
natural language the key message that addresses
the user’s question, for example, by saying,

“In the N.A. region, XYZ Corp’s revenues in the
Cloud segment increased by 11% to $8.9B in the
last 2 quarters as compared to its key competitor
Microsoft. However, in the Analytics segment its
revenues declined by 3% while Microsoft revenues
grew by 4% and that of other smaller players in
Analytics increased much more (around 8%).”

Another important use-case is story-telling from
data such as report generation – for example in
weather domain (localized weather reports), fi-
nance (company performance reports) or health-
care (patient reports).

Motivated by above, this first-of-its kind tutorial
intends to provide the conceptual underpinnings of
the natural language generation (NLG) from a va-
riety of structured representations. We will discuss
various NLG paradigms ranging from heuristics
to the modern data-driven techniques that include
end-to-end neural architectures. A brief overview
of evaluation methods and output quality estima-
tion techniques will also be provided.
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3 Type of the tutorial

Cutting-edge : We believe this topic picked up
steam in the recent years given the deluge of pa-
pers regarding data-to-text. To the best of our
knowledge, this topic has not been covered in any
ACL/EMNLP-IJCNLP/NAACL tutorial.

4 Content of the Tutorial

We plan to organize a three-hour tutorial based on
the following content. We will make efforts to
make the tutorial interactive by having quizzes at
regular intervals and also we hope to accommo-
date questions in between:

4.1 PART-I

1. Introduction to NLG from Structured data
and Knowledge Bases (20 mins)

• Data-to-text and text-to-text paradigms
• Motivation: Why is this problem is im-

portant
• Challenges in structured data transla-

tion: Why known text-to-text methods
can not be applied to this problem?
• Roadmap of the tutorial

2. Heuristic Driven Methods (20 mins)

• Rule-based approaches
• Template-based approaches
• Current industry solutions
• Shortcomings of this paradigm

3. Statistical and Neural Methods (30 mins)

• Probabilistic Generation Models
• Context-free Grammar based Ap-

proaches
• Three-phase Approach : Planning, Se-

lection and Surface Realization
• End-to-end Encoder Decoder Paradigm
• seq2seq approaches with attention

4. Evaluation Methods for NLG (10 mins)

• N-gram based methods : BLEU,
ROUGE
• Document similarity based methods
• Task-specific evaluation
• Human evaluation metrics

4.2 PART-II

1. Hybrid Methods - More adaptable (20
mins)

• Structured data input formats
• Canonicalization
• Simple Language Generation
• Ranking of simple sentences
• Sentence Compounding
• Coreference Replacement

2. Role of Semantics and Pragmatics (15
mins)

• Role of Knowledge Graphs
• Domain-specific ontologies
• Reasoning and Inference in Generation

3. Open Problems and Future Directions (20
mins)

• Structure-aware Generation
• Theme/Topic based Generation
• Argumentative Text Generation
• Controllable Text Generation
• Creative Text Generation

4. Conclusion and Closing Remarks (15
mins)

Below we provide a bit more details about each of
the above proposed sections to be covered in this
tutorial.

Introduction to NLG from Structured data
and Knowledge Bases: According to (Nema
et al., 2018), the approaches for NLG range from
(i) rule based approaches (ii) modular statistical
approaches which divide the process into three
phases (planning, selection and surface realiza-
tion) and use data driven approaches for one or
more of these phases (iii) hybrid approaches which
rely on a combination of handcrafted rules and
corpus statistics and (iv) the more recent neu-
ral network based models. Recent availability of
large-scale parallel datasets like WIKIBIO (Lebret
et al., 2016), WEBNLG (Gardent et al., 2017)
have been like a catalyst for the recent research in
NLG from structured data using data-driven neural
models. However, modern NLG still faces chal-
lenges in various phases of content selection, sur-
face realization and evaluation, as pointed out by
Wiseman et al. (2017).



45

Heuristic Driven Methods: This paradigm
was followed by early research in NLP and NLG
(e.g., (Dale et al., 2003; Reiter et al., 2005; Green,
2006; Galanis and Androutsopoulos, 2007; Turner
et al., 2010)). They range from rule-based tech-
niques to template-based techniques. Often these
approaches involve choosing the right set of rules
or retrieving the appropriate template for the gen-
eration task. Many popular industry solutions like
Arria NLG1 and Automated Insights2 also follow
this approach. As evident, there can only be a
limited number of cases which can be handled by
rules or that templates can cover. Hence, this ap-
proaches are not scalable or adaptable, paving the
way for statistical approaches.

Statistical and Neural Methods: These ap-
proaches were formulated to alleviate some lim-
itations of the earlier approaches. Some notable
approaches are based on probabilistic language
generation process (Angeli et al., 2010), context-
free grammar based generation (Konstas and Lap-
ata, 2012) and others (Barzilay and Lapata, 2005;
Belz, 2008; Kim and Mooney, 2010). They pop-
ularized the three-phase paradigm by breaking
the problem into three phases, namely, content
planning, content selection and surface realiza-
tion. The more recent neural approaches follow-
ing the encoder-decoder paradigm, however, have
tried to circumvent the three-phase approach by
using a single-phase end-to-end architecture. This
was mainly popularized by the advent of attention
mechanism for seq2seq (Bahdanau et al., 2014),
later followed by many (Mei et al., 2016; Lebret
et al., 2016; Nema et al., 2018; Jain et al., 2018;
Bao et al., 2018). However, these approaches are
data-hungry and perform miserably on datasets
from unseen domains (Gardent et al., 2017). Real-
izing this, some of the very recent works in data-
to-text generation such as Wiseman et al. (2018)
have focused on learning templates from corpora
for neural NLG.

Evaluation Methods for NLG: Alongside
discussion of methods for automatic genera-
tion of natural language, it is much needed to
acquaint the participants about automatic evalu-
ation metrics like BLEU(Papineni et al., 2002),
ROUGE(Ganesan, 2018), METEOR(Banerjee
and Lavie, 2005), among many others. Often, a
different kind of evaluation is needed to measure

1https://www.arria.com/
2https://automatedinsights.com/

the semantic relatedness which the above N-gram
overlap based metrics may not always capture.
In addition, for various NLG tasks, specialized
metrics have been proposed like FleschKincaid
for readability and SARI (Xu et al., 2016) for text
simplification. However, the automatic metrics
are not always enough to capture nuances like
fluency, adequacy, coherence and correctness,
which many NLG systems fallback on humans for
evaluation.

Hybrid Methods: Some earlier approaches
like (Langkilde and Knight, 1998; Soricut and
Marcu, 2006; Mairesse and Walker, 2011) try to
follow a combination of rules and corpus statis-
tics to overcome the above shortcomings. In this
portion of the tutorial, we are going to present a
hybrid modular approach developed by us which
can be broken down into three simple steps: (1)
Canonicalization, (2) Simple Language Genera-
tion, and (3) Discourse synthesis and Language
Enrichment. This has been developed in a domain-
agnostic way without the need for any parallel cor-
pora to train. This is not very data dependent and
adaptable to various unseen domains as the gen-
eration steps are mostly restricted to linguistic as-
pects. We believe this is how the data-to-text gen-
eration research should progress.

Role of Semantics and Pragmatics: In this
section we point out shortcomings of the above ap-
proaches which consider only surface-level char-
acteristics for generation. Through this we mo-
tivate the necessity of knowledge graphs and
domain-specific ontologies to understand the con-
cepts present in structured data and assist the gen-
eration step through a deeper understanding. In
this section, we will present a unification of litera-
ture from knowledge graphs area, like entity reso-
lution, relation canonicalization, etc., KG embed-
dings as well as heuristics which encode domain-
specific pragmatics coupled with NLG to infer and
produce higher-level and more complex natural
language discourse.

Open Problems and Future Directions: This
part will focus on various aspects of natural lan-
guage generation which are far from being real-
ized. The presenters will get highly creative and
also borrow connections from some recent trends
(Jain et al., 2017; Munigala et al., 2018; Hu et al.,
2017; Jain et al., 2019) in NLG literature to formu-
late future directions for automatic text generation.
The goal of this section is not only to motivate and

https://www.arria.com/
https://automatedinsights.com/
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convey open research problems, but mainly to start
a discussion paving the way for newer problems in
the area.

Conclusion and Closing Remarks: We close
with discussions about all approaches and some
practical (as well as funny) observations for prac-
tical NLG realizations.

5 URLs

Slides: https://drive.google.
com/open?id=1HaGCNc6n_
sjyGLdaGzAVPvAeT0ZhhL3Q
Website: https://sites.google.com/
view/acl-19-nlg

6 Breadth

This tutorial has more than 60% material which
are not research outputs of the presenters. Thus
majority of the material covered is discussion of
the work done by other researchers.

7 Prerequisite Knowledge

We would like to ensure that the tutorial is self-
contained. We do not assume any specific exper-
tise from the audience. However, general aware-
ness about Natural Language Processing and Ma-
chine Learning, and Deep Learning methods (such
as Recurrent Neural Network, and Sequence-to-
Sequence models) will be helpful.
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