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1 Introduction

This introductory tutorial addresses the advances
in deep Bayesian learning for natural language
with ubiquitous applications ranging from speech
recognition (Saon and Chien, 2012; Chan et al.,
2016) to document summarization (Chang and
Chien, 2009), text classification (Blei et al.,
2003; Zhang et al., 2015), text segmentation
(Chien and Chueh, 2012), information extraction
(Narasimhan et al., 2016), image caption genera-
tion (Vinyals et al., 2015; Xu et al., 2015), sen-
tence generation (Li et al., 2016), dialogue control
(Zhao and Eskenazi, 2016), sentiment classifica-
tion, recommendation system, question answering
(Sukhbaatar et al., 2015) and machine translation
(Bahdanau et al., 2014), to name a few. Tradi-
tionally, “deep learning” is taken to be a learn-
ing process where the inference or optimization
is based on the real-valued deterministic model.
The “semantic structure” in words, sentences, en-
tities, actions and documents drawn from a large
vocabulary may not be well expressed or correctly
optimized in mathematical logic or computer pro-
grams. The “distribution function” in discrete or
continuous latent variable model for natural lan-
guage may not be properly decomposed or esti-
mated. This tutorial addresses the fundamentals
of statistical models and neural networks, and fo-
cus on a series of advanced Bayesian models and
deep models including hierarchical Dirichlet pro-
cess (Teh et al., 2006), Chinese restaurant process
(Blei et al., 2010), hierarchical Pitman-Yor pro-
cess (Teh, 2006), Indian buffet process (Ghahra-
mani and Griffiths, 2005), recurrent neural net-
work (Mikolov et al., 2010; Van Den Oord et al.,
2016), long short-term memory (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), sequence-
to-sequence model (Sutskever et al., 2014), varia-
tional auto-encoder (Kingma and Welling, 2014),

generative adversarial network (Goodfellow et al.,
2014), attention mechanism (Chorowski et al.,
2015; Seo et al., 2016), memory-augmented neu-
ral network (Graves et al., 2014; Sukhbaatar et al.,
2015), skip neural network (Campos et al., 2018),
stochastic neural network (Bengio et al., 2014;
Miao et al., 2016), predictive state neural network
(Downey et al., 2017) and policy neural network
(Mnih et al., 2015; Yu et al., 2017). We present
how these models are connected and why they
work for a variety of applications on symbolic and
complex patterns in natural language. The varia-
tional inference and sampling method are formu-
lated to tackle the optimization for complicated
models (Rezende et al., 2014). The word and sen-
tence embeddings, clustering and co-clustering are
merged with linguistic and semantic constraints.
A series of case studies and domain applications
are presented to tackle different issues in deep
Bayesian processing, learning and understanding.
At last, we will point out a number of directions
and outlooks for future studies.

2 Objective of tutorial

Owing to the current growth in research and re-
lated emerging technologies in machine learning
and deep learning, it is timely to introduce this tu-
torial to a large number of researchers and prac-
titioners who are attending ACL 2019 and work-
ing on statistical models, deep neural networks, se-
quential learning and natural language processing
and understanding. To the best of our knowledge,
there is no similar tutorial presented in previous
ACLs. This three-hour tutorial will concentrate
on a wide range of theories and applications and
systematically present the recent advances in deep
Bayesian learning which are impacting the com-
munities of machine learning, natural language
processing and human language technology.
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3 Tutorial outline

• Introduction

– motivation and background
– probabilistic models
– neural networks
– modern natural language models

• Bayesian Learning

– inference and optimization
– variational Bayesian (VB) inference
– Monte Carlo Markov chain (MCMC)
– Bayesian nonparametrics (BNP)
– hierarchical theme and topic model
– hierarchical Pitman-Yor-Dirichlet proc.
– nested Indian buffet process

• Deep Learning

– deep unfolded topic model
– gated recurrent neural network (RNN)
– generative adversarial network (GAN)
– memory-augmented neural network
– sequence-to-sequence learning
– convolutional neural network (CNN)

(Coffee Break)
– dilated recurrent neural network
– attention network using transformer

• Deep Bayesian Processing and Learning

– Bayesian recurrent neural network
– variational auto-encoder (VAE)
– variational recurrent auto-encoder
– stochastic temporal convolutional net
– stochastic recurrent neural network
– regularized recurrent neural network
– stochastic learning & normalizing flows
– VAE with VampPrior
– skip recurrent neural network
– temporal difference VAE
– Markov recurrent neural network
– reinforcement learning & understanding
– sequence GAN

• Summarization and Future Trend

4 Target audience

This tutorial will be useful to research students
working in natural language processing and re-
searchers who would like to explore machine
learning, deep learning and sequential learning.
The prerequisite knowledge includes calculus, lin-
ear algebra, probability and statistics. This tuto-
rial serves the objectives to introduce novices to
major topics within deep Bayesian learning, moti-
vate and explain a topic of emerging importance
for natural language understanding, and present
a novel synthesis combining distinct lines of ma-
chine learning work.

5 Description of tutorial content

The presentation of this tutorial is arranged into
five parts. First of all, we share the current
status of researches and applications on natu-
ral language processing, statistical modeling and
deep neural network (Bahdanau et al., 2014), and
address the key issues in deep Bayesian learn-
ing for discrete-valued observation data and la-
tent semantics. Modern natural language mod-
els are introduced to address how data analysis is
performed from language processing to semantic
learning, memory networking, knowledge mining
and understanding. Secondly, we address a num-
ber of Bayesian models ranging from latent vari-
able model to VB inference (Chien and Chueh,
2011; Chien, 2015b; Chien and Chang, 2014),
MCMC sampling and BNP learning (Chien, 2016,
2015a, 2018; Watanabe and Chien, 2015) for hi-
erarchical, thematic and sparse topics from nat-
ural language. In the third part, a series of
deep models including deep unfolding (Chien and
Lee, 2018), RNN (Hochreiter and Schmidhuber,
1997), GAN (Goodfellow et al., 2014), mem-
ory network (Weston et al., 2015; Chien and
Lin, 2018; Tsou and Chien, 2017), sequence-to-
sequence learning (Graves et al., 2006; Gehring
et al., 2017), CNN (Kalchbrenner et al., 2014;
Xingjian et al., 2015; Dauphin et al., 2017), di-
lated RNN (Chang et al., 2017) and attention net-
work with transformer (Vaswani et al., 2017; De-
vlin et al., 2018) are introduced. The coffee break
is arranged within this part. Next, the fourth part
focuses on a variety of advanced studies which
illustrate how deep Bayesian learning is devel-
oped to infer the sophisticated recurrent models
for natural language understanding. In partic-
ular, the Bayesian RNN (Gal and Ghahramani,
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2016; Chien and Ku, 2016), VAE (Kingma and
Welling, 2014), variational recurrent auto-encoder
(Chien and Wang, 2019), neural variational learn-
ing (Serban et al., 2017; Chung et al., 2015),
stochastic temporal convolutional network (Ak-
san and Hilliges, 2019), neural discrete represen-
tation (Jang et al., 2017; van den Oord et al.,
2017), recurrent ladder network (Rasmus et al.,
2015; Prémont-Schwarz et al., 2017), stochastic
recurrent neural network (Fraccaro et al., 2016;
Goyal et al., 2017; Chien and Kuo, 2017), predic-
tive state neural network (Downey et al., 2017),
Markov recurrent neural network (Venkatraman
et al., 2017; Kuo and Chien, 2018), reinforcement
learning (Tegho et al., 2017), sequence GAN (Yu
et al., 2017), and temporal difference VAE (Gregor
et al., 2019) are introduced in various deep mod-
els. Enhancing the prior/posterior representation
in variational inference is addressed (Rezende and
Mohamed, 2015; Tomczak and Welling, 2018).
These sophisticated models open a window to nu-
merous practical tasks such as reading comprehen-
sion, sentence generation, dialogue system, ques-
tion answering and machine translation. Vari-
ational inference methods based on normalizing
flows (Rezende and Mohamed, 2015) and “vari-
ational mixture of posteriors” prior (VampPrior)
(Tomczak and Welling, 2018) are addressed. Pos-
terior collapse problem in variational sequential
learning is compensated. In the final part, we spot-
light on some future directions for deep language
understanding which can handle the challenges of
big data, heterogeneous condition and dynamic
system. In particular, deep learning, structural
learning, temporal and spatial modeling, long his-
tory representation and stochastic learning are em-
phasized. Slides of this tutorial are available at
(http://chien.cm.nctu.edu.tw/home/acl-tutorial).

6 Instructor

Jen-Tzung Chien is now with the Department of
Electrical and Computer Engineering, National
Chiao Tung University, Taiwan, where he is cur-
rently the University Chair Professor. He held
the visiting researcher position with the IBM T.
J. Watson Research Center, Yorktown Heights,
NY, in 2010. His research interests include ma-
chine learning, deep learning, natural language
processing and computer vision. He served as
the associate editor of the IEEE Signal Process-
ing Letters in 2008-2011, the guest editor of the

IEEE Transactions on Audio, Speech and Lan-
guage Processing in 2012, the organization com-
mittee member of ICASSP 2009, the area coordi-
nator of Interspeech 2012, EUSIPCO 2017-2019,
the program chair of ISCSLP 2018, the general
chair of MLSP 2017, and currently serves as an
elected member of the IEEE Machine Learning
for Signal Processing (MLSP) Technical Commit-
tee. He received the Best Paper Award of IEEE
Automatic Speech Recognition and Understand-
ing Workshop in 2011 and the AAPM Farring-
ton Daniels Award in 2018. Dr. Chien has pub-
lished extensively including the books “Bayesian
Speech and Language Processing”, Cambridge
University Press, in 2015, and “Source Separa-
tion and Machine Learning”, Academic Press, in
2018. He has served as the Tutorial Speaker
for APSIPA 2013, ISCSLP 2014, Interspeech
2013, 2016, ICASSP 2012, 2015, 2017, COLING
2018, AAAI 2019, KDD 2019, and IJCAI 2019.
(http://chien.cm.nctu.edu.tw/)
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