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1 Introduction

The development and adoption of natural language
processing (NLP) methods by the political science
community dates back to over twenty years ago. In
the last decade the usage of computational meth-
ods for text analysis has drastically expanded in
scope and has become the focus of many social
science studies, allowing for a sustained growth of
the text-as-data community (Grimmer and Stew-
art, 2013). Political scientists have in particular
focused on exploiting available texts as a valu-
able (additional) data source for a number of anal-
yses types and tasks, including inferring policy
positions of actors from textual evidence (Laver
et al., 2003; Slapin and Proksch, 2008; Lowe et al.,
2011, inter alia), detecting topics (King and Lowe,
2003; Hopkins and King, 2010; Grimmer, 2010;
Roberts et al., 2014), and analyzing stylistic as-
pects of texts, e.g., assessing the role of language
ambiguity in framing the political agenda (Page,
1976; Campbell, 1983) or measuring the level of
vagueness and concreteness in political statements
(Baerg et al., 2018; Eichorst and Lin, 2018).

Just like in many other domains, much of the
work on computational analysis of political texts
has been enabled and facilitated by the develop-
ment of dedicated resources and datasets such as,
the topically coded electoral programmes (i.e., the
Manifesto Corpus) (Merz et al., 2016) developed
within the scope of the Comparative Manifesto
Project (CMP) (Werner et al., 2014; Mikhaylov
et al., 2012) or the topically coded legislative texts
annotated for numerous countries within the scope
of the Comparative Agenda Project (Baumgartner
et al., 2006; Bevan, 2019).

While political scientists have dedicated a lot of
effort to creating resources and using NLP meth-
ods to automatically process textual data, they
have largely done so in isolation from the NLP
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community. For example, political text scaling —
one of the central tasks in quantitative political sci-
ence, where the goal is to quantify positions of
politicians and/or parties on a scale based on the
textual content they produce — has not received any
attention by the NLP community until last year,
whereas it has been at the core of political science
research for almost two decades. At the same time,
NLP researchers have addressed closely related
tasks such as election prediction (O’Connor et al.,
2010), ideology classification (Hirst et al., 2010),
stance detection (Thomas et al., 2006), and agree-
ment measurement (Gottipati et al., 2013), all
rarely considered in the same format by the text-
as-data political science community. In summary,
these two communities have been largely agnostic
of one another, resulting in NLP researchers not
contributing to relevant research questions in po-
litical science and political scientists not employ-
ing cutting-edge NLP methodology for their tasks.

The main goal of this tutorial is to systematize
and analyze the body of research work on compu-
tational analysis of political texts from both com-
munities. We aim to provide a gentle, all-round
introduction to methods and tasks related to com-
putational analysis of political texts. Our vision
is to bring the two research communities closer to
each other and contribute to faster and more sig-
nificant developments in this interdisciplinary re-
search area. To that effect, this tutorial presents
a continuation of our efforts which started with a
very successful cross-community event organized
in December 2017 (Nanni et al., 2018). In paral-
lel with this tutorial at the 57th Annual Meeting
of the Association for Computational Linguistics
(ACL 2019), we will give a complementary tuto-
rial at the 5th International Conference on Com-
putational Social Science (IC2S2 2019).
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2 Tutorial Overview

This introductory tutorial aims to systematically
organise and analyse the overall body of research
in computational analysis of political texts. This
body of work has been split between two largely
disjoint research communities — researchers in nat-
ural language processing and researchers in polit-
ical science — and the tutorial is designed bearing
this in mind. We first explain the role that textual
data plays in political analyses and then proceed
to examine the concrete resources and tasks ad-
dressed by the text-as-data political science com-
munity. Continuing, we present the research ef-
forts carried out by the NLP researchers. We close
the tutorial by presenting text scaling, a challeng-
ing task that is at the center of the quantitative po-
litical science and has recently also attracted atten-
tion of NLP scholars. Accordingly, we divide the
tutorial into the following four parts:

1. Text as Data in Political Science. We begin
with an overview of the role that textual data
has always played in political science research
as a source for determining leader’s positions
(Winter and Stewart, 1977), campaign strate-
gies (Petrocik, 1996), media attention (Semetko
and Valkenburg, 2000), and crowd perception of
the democratic process (Miller, 1990). We will
further analyze the inherent difficulties in col-
lecting political texts and political data in gen-
eral and analyze crowdsourcing as an efficient
and agile method for producing political data
(Benoit et al., 2016).

2. Resources and Tasks. We then present com-
putational research tasks based on textual data,
which are relevant for the political science com-
munity (Grimmer and Stewart, 2013). We ex-
amine the type of applications and discuss the
complex challenges currently faced, especially
concerning cross-lingual and topic-based stud-
ies. We will analyze in detail the corpora de-
veloped within the scope of two major anno-
tation projects: Comparative Manifesto Project
(Werner et al., 2014; Mikhaylov et al., 2012)
and Comparative Agendas Project (Baumgart-
ner et al., 2006; Bevan, 2019). We will also
describe other datasets, annotated corpora, gold
standards, and benchmarks that are already
promptly available (Bakker et al., 2015; Merz
etal., 2016; Schumacher et al., 2016; Van Agge-
len et al., 2017; Doring and Regel, 2019).

3. Topical Analysis of Political Texts. Next,
we focus on a large body of work of topi-
cal analysis of political texts, covering unsu-
pervised topic induction, including dictionary-
based, topic-modelling and text segmentation
approaches (Quinn et al., 2006, 2010; Grim-
mer, 2010; Albaugh et al., 2013; Glavas et al.,
2016; Menini et al., 2017), as well as supervised
topic classification studies (Hillard et al., 2008;
Collingwood and Wilkerson, 2012; Karan et al.,
2016). We will also cover more recent work
on cross-lingual topic classification in political
texts (Glavas et al., 2017a; Subramanian et al.,
2018). We will further emphasize topic classifi-
cation models that exploit large manually ano-
tated corpora from CMP (Zirn et al., 2016; Sub-
ramanian et al., 2017) and CAP (Karan et al.,
2016; Albaugh et al., 2013) projects, which we
cover in the previous part.

4. Political Text Scaling. Finally, we present a
detailed overview of the task of political text
scaling, which has the goal of inferring policy
position of actors from textual evidence. Af-
ter introducing the text scaling task, we will
present in detail the traditional scaling models
that operate on lexical text representations such
as Wordscores (Laver et al., 2003) and Word-
Fish (Slapin and Proksch, 2008; Lowe et al.,
2011) as well as a more recent scaling approach
that exploits latent semantic text representations
(Glavas et al., 2017b; Nanni et al., 2019). Fur-
thermore, we will discuss the task of scaling
multilingual text collections, presenting poten-
tial approaches and inherent issues. We con-
clude the tutorial with a short discussion of key
challenges and foreseeable future developments
in computational analysis of political texts.

3 Tutorial Outline
Part I: Text-as-Data in Political Science (30 min)

e Quick introduction to quantitative methods in
political science

e Reliability and suitability of textual data for
political analyses

e Constructing corpora of political texts

e Crowdsourcing political data:
and potential pitfalls

advantages



Part I1: Resources and Tasks (30 minutes)

e Overview of computational analysis of polit-
ical texts in the political science community

e International annotation projects: Compara-
tive Manifesto Project (CMP) and Compara-
tive Agendas Project (CAP)

e Other large collection of political texts (Eu-
roParl, UK Hansard Corpus, etc.) and associ-
ated tasks

Part III: Topical Analysis of Political Texts
(60 minutes)

e Dictionary-based approaches to classification
of political text

e Unsupervised topical analysis of political
texts with topic models

e Models for supervised topic classification of
political texts

e Hierarchical and fine-grained topic classifica-
tion

e Cross-lingual topic classification

Part I'V: Political Text Scaling and Conclusion
(60 minutes)

o Lexical models for political text scaling:

Wordscores and WordFish

Text scaling using latent semantic text repre-
sentations

Policy dimensions in scaling: pitfalls and
artefacts

Cross-lingual scaling

Conslusion: short discussion of key chal-
lenges and presumed future developments

4 Tutorial Breadth

In our previous work, we contributed to the re-
search efforts on topic classification (Nanni et al.,
2016; Zirn et al., 2016; Glavas et al., 2017a), se-
mantic scaling of political texts (Glava$ et al.,
2017b) as well as (dis-)agreement detection in
party manifestos (Menini et al., 2017). However,
the key objective of this tutorial is to provide a
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comprehensive overview of recent and current re-
search on computational analysis of political texts,
both in NLP and political science communities.
We estimate that at most one quarter of the tuto-
rial will be dedicated to covering our own work.

5 Presenters

Goran Glavas is an Assistant Professor for Sta-
tistical Natural Language Processing at the Data
and Web Science group, University of Mannheim.
He obtained his Ph.D. at the Text Analysis and
Knowledge Engineering Lab (TakeLab), Univer-
sity of Zagreb. His research efforts and interests
are in the areas of statistical natural language pro-
cessing (NLP) and information retrieval (IR), with
focus on lexical and computational semantics,
multi-lingual and cross-lingual NLP and IR, infor-
mation extraction, and NLP applications for social
sciences. He has (co-)authored over 60 publica-
tions in the areas of NLP and IR, publishing at top-
tier NLP and IR venues (ACL, EMNLP, NAACL,
EACL, SIGIR, ECIR). He is a co-organizer of the
TextGraphs workshop series on graph-based NLP.
He is a research associate at the Collaborative Re-
search Center SFB 884 “Political Economy of Re-
forms” where he participates in two projects.

Federico Nanni is a Post-Doctoral researcher in
Political Text Analyisis at the Collaborative Re-
search Center SFB 884 "Political Economy of Re-
forms” and at the Data and Web Science Group
of the University of Mannheim. He obtained his
Ph.D. in History of Technology from the Univer-
sity of Bologna. The focus of his research is on
adopting (and adapting) Natural Language Pro-
cessing methods for supporting studies in Compu-
tational Social Sciences and Digital Humanities.
Currently, he works on developing new methods
for cross-lingual topic detection and scaling in po-
litical texts. He actively works as a researcher on
two projects of the Collaborative Research Cen-
ter SFB 884 — Project C4: “Measuring a common
space and the dynamics of reform positions: Non-
standard tools, non-standard actors” and Project
B6: “Nonparametric and nonlinear panel data and
time series analysis”.

Simone Paolo Ponzetto is Professor of Informa-
tion Systems at the University of Mannheim and
member of the Data and Web Science Group,
where he leads the NLP and IR group. Simone ob-
tained his Ph.D. from the Institute for Natural Lan-



guage Processing, University of Stuttgart and has
spent almost 15 years of service in the ACL com-
munity, enthusiastically contributing as reviewer,
area chair and tutorial presenter at various *ACL
events. His main research interests lie in the ar-
eas of knowledge acquisition, text understanding,
and the application of NLP methods for research
in the digital humanities and computational social
sciences. Simone is currently a principal inves-
tigator of the Collaborative Research Center SFB
884 Political Economy of Reforms” where he is
a co-PI on two projects (Project C4: “Measuring
a common space and the dynamics of reform po-
sitions: Non-standard tools, non-standard actors’;
and Project B6: “Nonparametric and nonlinear
panel data and time series analysis”).

6 Target audience / prerequisites

This tutorial is designed for students and re-
searchers in Computer Science and Natural Lan-
guage Processing. We assume only a basic,
graduate-level understanding of NLP problems
and machine learning techniques for NLP, as com-
monly possessed by the typical ACL event at-
tendee. No prior knowledge of computational so-
cial science or political science is assumed.

Prerequisites

e Math: Basic knowledge of linear algebra,
graph theory, and numeric optimization.

e Linguistics: None.

e Machine Learning: The tutorial will not go
into the basics of underlying machine learn-
ing models. Knowledge of basic (supervised)
machine learning concepts is required.

7 Recommended reading list

1. Justin Grimmer and Brandon M. Stewart. 2013.
Text as data: The Promise and Pitfalls of Au-
tomatic Content Analysis Methods for political
texts.Political Analysis, 21(3): 267-297.

2. Michael Laver, Kenneth Benoit, and John
Garry. 2003. Extracting Policy Positions from
Political Texts Using Words as Data. American
Political Science Review, 97(02): 311-331.

Jonathan B. Slapin and Sven-Oliver Proksch.
2008. A Scaling Model for Estimating Time-
Series Party Positions from Texts. American
Journal of Political Science, 52(3): 705-722.
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8 Other Information

Tutorial type: Introductory.

Tutorial materials: All tutorial materials and
other information related to the tutorial are avail-

able at: https://poltexttutorial.wordpress.com
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