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1 Description

Latent structure models are a powerful tool for

modeling compositional data, discovering linguis-

tic structure, and building NLP pipelines (Smith,

2011). Words, sentences, paragraphs, and docu-

ments represent the fundamental units in NLP, and

their discrete, compositional nature is well suited

to combinatorial representations such as trees, se-

quences, segments, or alignments. When available

from human experts, such structured annotations

(like syntactic parse trees or part-of-speech infor-

mation) can help higher-level models perform or

generalize better. However, linguistic structure is

often hidden from practitioners, in which case it

becomes useful to model it as a latent variable.

While it is possible to build powerful models

that obliviate linguistic structure almost completely

(such as LSTMs and Transformer architectures),

there are two main reasons why modeling it is de-

sirable: first, incorporating structural bias during

training can lead to better generalization, since it

corresponds to a more informed and more appropri-

ate prior. Second, discovering hidden structure

provides better interpretability: this is particu-

larly useful when used in conjunction with neu-

ral networks, whose typical architectures are not

amenable to interpretation. The learnt structure

offers highly valuable insight into how the model

organizes and composes information.

This tutorial will cover recent advances in latent

structure models in NLP. In the last couple of years,

the general idea of hidden linguistic structure has

been married to latent representation learning

via neural networks. This has allowed powerful

modern NLP models to learn to uncover, for exam-

ple, latent word alignments or parse trees, jointly,

in an unsupervised or semi-supervised fashion,

from the signal of higher-level downstream tasks

like sentiment analysis or machine translation. This

avoids the need for preprocessing data with off-

the-shelf tools (e.g., parsers, word aligners) and

engineering features based on their outputs; and it

is an alternative to techniques based on parameter

sharing, transfer learning, multi-task learning, or

scaffolding (Swayamdipta et al., 2018; Peters et al.,

2018; Devlin et al., 2019; Strubell et al., 2018), as

well as techniques that incorporate structural bias

directly in model design (Dyer et al., 2016; Shen

et al., 2019).

The proposed tutorial is about such discrete la-

tent structure models. We discuss their motiva-

tion, potential, and limitations, then explore in de-

tail three strategies for designing such models:

• Reinforcement learning;

• Surrogate gradients;

• End-to-end differentiable methods.

A challenge with structured latent models is that

they typically involve computing an “argmax” (i.e.

finding a best scoring discrete structure such as a

parse tree) in the middle of a computation graph.

Since this operation has null gradients almost ev-

erywhere, gradient backpropagation cannot be used

out of the box for training. The methods we cover

in this tutorial differ among each other by the way

they handle this issue.

Reinforcement learning. In a stochastic compu-

tation graph, such methods seek the hidden dis-

crete structures that minimize an expected loss on a

downstream task (Yogatama et al., 2017); similar to

maximizing an expected reward in reinforcement

learning with discrete actions. Estimated stochastic

gradients are typically obtained with a combination
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of Monte Carlo sampling and the score function es-

timator (a.k.a. REINFORCE, Williams, 1992). Such

estimators often suffer from instability and high

variance, requiring care (Havrylov et al., 2019).

Surrogate gradients. Such techniques usually

involve approximating the gradient of a discrete,

argmax-like mapping by the gradient of a continu-

ous relaxation. Examples are the straight-through

estimator (Bengio et al., 2013) and the structured

projection of intermediate gradients optimization

technique (SPIGOT; Peng et al. 2018). In stochas-

tic graphs, surrogate gradients yield biased but

lower-variance gradient estimators compared to the

score function estimator. Related is the Gumbel

softmax (Jang et al., 2017; Maddison et al., 2017;

Choi et al., 2018; Maillard and Clark, 2018), which

uses the reparametrization trick and a temperature

parameter to build a continuous surrogate of the

argmax operation, which one can then differentiate

over. Structured versions were recently explored

by Corro and Titov (2019a,b). One limitation of

straight-through estimators is that backpropagat-

ing with respect to the sample-independent means

may cause discrepancies between the forward and

backward pass, which biases learning.

End-to-end differentiable approaches. Here,

we directly replace the argmax by a continuous

relaxation for which the exact gradient can be com-

puted and backpropagated normally. Examples

are structured attention networks and related work

(Kim et al., 2017; Maillard et al., 2017; Liu and La-

pata, 2018; Mensch and Blondel, 2018), which use

marginal inference, or SparseMAP (Niculae et al.,

2018a,b), a new inference strategy which yields a

sparse set of structures. While the former is usually

limited in which the downstream model can only

depend on local substructures (not the entire latent

structure), the latter allows combining the best of

both worlds. Another line of work imbues structure

into neural attention via sparsity-inducing priors

(Martins and Astudillo, 2016; Niculae and Blondel,

2017; Malaviya et al., 2018).

This tutorial will highlight connections among

all these methods, enumerating their strengths and

weaknesses. The models we present and analyze

have been applied to a wide variety of NLP tasks,

including sentiment analysis, natural language in-

ference, language modeling, machine translation,

and semantic parsing. In addition, evaluations spe-

cific to latent structure recovery have been pro-

posed (Nangia and Bowman, 2018; Williams et al.,

2018). Examples and evaluation will be covered

throughout the tutorial. After attending the tutorial,

a practitioner will be better informed about which

method is best suited for their problem.

2 Type of Tutorial & Relationship to

Recent Tutorials

The proposed tutorial mixes the introductory

and cutting-edge types. It will offer a gen-

tle introduction to recent advances in struc-

tured modeling with discrete latent variables,

which were not previously covered in any

ACL/EMNLP/IJCNLP/NAACL related tutorial.

The closest related topics covered in recent tuto-

rials at NLP conferences are:

• Variational inference and deep generative models

(Aziz and Schulz, 2018); 1

• Deep latent-variable models of natural language

(Kim et al., 2018).2

Our tutorial offers a complementary perspective

in which the latent variables are structured and

discrete, corresponding to linguistic structure. We

will briefly discuss the modeling alternatives above

in the final discussion.

3 Outline

Below we sketch an outline of the tutorial, which

will take three hours, separated by a 30-minutes

coffee break.

1. Introduction (30 min)

• Why latent variables?

• Motivation and examples of latent structure in

NLP

• Continuous vs. discrete latent variables

• Bypassing latent variables

– Pipelines / external classifiers

– Transfer learning / parameter sharing

– Multi-task learning

• Challenges: gradients of argmax

• Categorical versus structured: the simplex and

the marginal polytope

2. Reinforcement learning methods (30 min)

1
https://github.com/philschulz/VITutorial

2
http://nlp.seas.harvard.edu/

latent-nlp-tutorial.html
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• SPINN: parsing and classification with shared

parameters

• Stochastic computation graphs

• The Score Function Estimator and REIN-

FORCE (application: RL-SPINN with unsu-

pervised parsing)

• Example: the ListOps diagnostic dataset

benchmark

• Actor-critic methods & variance reduction

3. Surrogate gradient methods (30 min)

• Unstructured: straight-through estimators

• Structured: SPIGOT

• Sampling categoricals with Gumbel-argmax

• Gumbel-softmax: reparametrization and

straight-through variants

• Example: Gumbel Tree-LSTM to compose

tree structures

• Perturb-and-MAP / Perturb-and-parse

Coffee break (30 min)

4. End-to-end differentiable formulations (60 min)

• Attention mechanisms & hidden alignments

• Sparse and grouped attention mechanisms

• Structured attention networks

• Example: dense / sparse differentiable dy-

namic programming

• SparseMAP

• Relationships with gradient approximation

• Example: Natural language inference with

latent structure (matchings and trees)

5. Closing Remarks and Discussion (30 min)

• Is it Syntax? Addressing if existing methods

learn recognizable grammars

• Alternative perspectives:

– Structural bias in model design

– Deep generative models with continuous

latent variables

• Current open problems and discussion.

4 Breadth

We aim to provide the first unified perspective into

multiple related approaches. Of the 31 referenced

works, only 6 are co-authored by the presenters. In

the outline, the first half presents exclusively work

by other researchers and the second half present a

mix of our own work and other people’s work.

5 Prerequisites and reading

The audience should be comfortable with:

• math: basics of differentiability.

• language: basic familiarity with the building

blocks of structured prediction problems in NLP,

e.g., syntax trees and dependency parsing.

• machine learning: familiarity with neural net-

works for NLP, basic understanding of backprop-

agation and computation graphs.

6 Instructors

André Martins3 is the Head of Research at

Unbabel, a research scientist at Instituto de

Telecomunicações, and an invited professor at In-

stituto Superior Técnico in the University of Lis-

bon. He received his dual-degree PhD in Lan-

guage Technologies in 2012 from Carnegie Mellon

University and Instituto Superior Técnico. His re-

search interests include natural language process-

ing, machine learning, deep learning, and opti-

mization. He received a best paper award at the

Annual Meeting of the Association for Compu-

tational Linguistics (ACL) for his work in natu-

ral language syntax, and a SCS Honorable Men-

tion at CMU for his PhD dissertation. He is one

of the co-founders and organizers of the Lisbon

Machine Learning Summer School (LxMLS). He

co-presented tutorials at NAACL in 2012, EACL

in 2014, and EMNLP in 2014. He co-organized

the NAACL 2019 Workshop on Structured Predic-

tion for NLP (http://structuredprediction.

github.io/SPNLP19) and the ICLR 2019 Work-

shop “Deep Reinforcement Learning Meets Struc-

tured Prediction”.

Tsvetomila Mihaylova4 is a PhD student in the

DeepSPIN project at Instituto de Telecomunicações

in Lisbon, Portugal, supervised by André Martins.

She is working on empowering neural networks

with a planning mechanism for structural search.

She has a master’s degree in Information Retrieval

from the Sofia University, where she was also a

teaching assistant in Artificial Intelligence. She is

part of the organizers of a shared task in SemEval

2019.

3
https://andre-martins.github.io

4
https://tsvm.github.io
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Nikita Nangia5 is a PhD student at New York Uni-

versity, advised by Samuel Bowman. She is work-

ing on building neural network systems in NLP

that simultaneously do structured prediction and

representation learning. This work focuses on find-

ing structure in language without direct supervision

and using it for semantic tasks like natural language

inference and summarization.

Vlad Niculae6 is a postdoc in the DeepSPIN

project at the Instituto de Telecomunicações in Lis-

bon, Portugal. His research aims to bring struc-

ture and sparsity to neural network hidden layers

and latent variables, using ideas from convex opti-

mization, and motivations from natural language

processing. He earned a PhD in Computer Sci-

ence from Cornell University in 2018. He received

the inaugural Cornell CS Doctoral Dissertation

Award, and co-organized the NAACL 2019 Work-

shop on Structured Prediction for NLP (http://

structuredprediction.github.io/SPNLP19).
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