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Abstract

Embeddings are a fundamental component of
many modern machine learning and natural
language processing models. Understanding
them and visualizing them is essential for gath-
ering insights about the information they cap-
ture and the behavior of the models. In this
paper, we introduce Parallax!, a tool explicitly
designed for this task. Parallax allows the user
to use both state-of-the-art embedding analy-
sis methods (PCA and t-SNE) and a simple yet
effective task-oriented approach where users
can explicitly define the axes of the projection
through algebraic formulae. In this approach,
embeddings are projected into a semantically
meaningful subspace, which enhances inter-
pretability and allows for more fine-grained
analysis. We demonstrate’ the power of the
tool and the proposed methodology through a
series of case studies and a user study.

1 Introduction

Learning representations is an important part of
modern machine learning and natural language
processing. These representations are often real-
valued vectors also called embeddings and are ob-
tained both as byproducts of supervised learning
or as the direct goal of unsupervised methods. In-
dependently of how the embeddings are learned,
there is much value in understanding what infor-
mation they capture, how they relate to each other
and how the data they are learned from influences
them. A better understanding of the embedded
space may lead to a better understanding of the
data, of the problem and the behavior of the model,
and may lead to critical insights in improving such
models. Because of their high-dimensional nature,
they are hard to visualize effectively.
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Figure 1: Screenshot of Parallax.

In this paper, we introduce Parallax, a tool for
visualizing embedding spaces. The most widely
adopted projection techniques (Principal Com-
ponent Analysis (PCA) (Pearson, 1901) and t-
Distributed Stochastic Neighbor Embedding (t-
SNE) (van der Maaten and Hinton, 2008)) are
available in Parallax. They are useful for obtaining
an overall view of the embedding space, but they
have a few shortcomings: 1) projections may not
preserve distance in the original space, 2) they are
not comparable across models and 3) do not pro-
vide interpretable axes, preventing more detailed
analysis and understanding.

PCA projects embeddings on a lower dimen-
sional space that has the directions of the high-
est variance in the dataset as axes. Those dimen-
sions do not carry any interpretable meaning, so
by visualizing the first two dimensions of a PCA
projection, the only insight obtainable is semantic
relatedness (Budanitsky and Hirst, 2006) between
points by observing their relative closeness, and
therefore, topical clusters can be identified. More-
over, as the directions of highest variance differ
from embedding space to embedding space, the
projections are incompatible among different em-
beddings spaces, and this makes them incompara-
ble, a common issue among dimensionality reduc-
tion techniques.
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t-SNE, differently from PCA, optimizes a loss
that encourages embeddings that are in their re-
spective close neighborhoods in the original high-
dimensional space to be close in the lower di-
mensional projection space. t-SNE projections vi-
sually approximate better the original embedding
space and topical clusters are more clearly distin-
guishable, but do not solve the issue of compara-
bility of two different sets of embeddings, nor do
they solve the lack of interpretability of the axes
or allow for fine-grained inspection.

For these reasons, there is value in mapping em-
beddings into a more specific, controllable and in-
terpretable semantic space. In this paper, a new
and simple method to inspect, explore and debug
embedding spaces at a fine-grained level is pro-
posed. This technique is made available in Par-
allax alongside PCA and t-SNE for goal-oriented
analysis of the embedding spaces. It consists of
explicitly defining the axes of projection through
formulae in vector algebra that use embedding la-
bels as atoms. Explicit axis definition assigns in-
terpretable and fine-grained semantics to the axes
of projection. This makes it possible to analyze in
detail how embeddings relate to each other with
respect to interpretable dimensions of variability,
as carefully crafted formulas can map (to a certain
extent) to semantically meaningful portions of the
space. The explicit axes definition also allows for
the comparison of embeddings obtained from dif-
ferent datasets, as long as they have common la-
bels and are equally normalized.

We demonstrate three visualizations that Par-
allax provides for analyzing subspaces of inter-
est of embedding spaces and a set of example
case studies including bias detection, polysemy
analysis and fine-grained embedding analysis, but
additional ones, like diachronic analysis and the
analysis of representations obtained through graph
learning or any other means, may be performed as
easily. Moreover, the proposed visualizations can
be used for debugging purposes and, in general,
for obtaining a better understanding of the embed-
ding spaces learned by different models and rep-
resentation learning approaches. We show how
this methodology can be widely used through a
series of case studies on well known models and
data, and furthermore, we validate its usefulness
for goal-oriented analysis through a user study.

Parallax interface, shown in Figure 1, presents a
plot on the left side (scatter or polar) and controls
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on the right side that allow users to define parame-
ters of the projection (what measure to use, values
for the hyperparameters, the formuale for the axes
in case of explicit axes projections are selected,
etc.) and additional filtering and visualization pa-
rameters. Filtering parameters define logic rules
applied to embeddings metadata to decide which
of them should be visualized, e.g., the user can de-
cide to visualize only the most frequent words or
only verbs if metadata about part-of-speech tags is
made available. Filters on the embeddings them-
selves can also be defined, e.g., the user can decide
to visualize only the embeddings with cosine sim-
ilarity above 0.5 to the embedding of “horse”.
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Figure 2: In the top we show professions plotted on
“male” and “female” axes in Wikipedia embeddings.
In the bottom we show their comparison in Wikipedia
and T'witter datasets.

In particular, Parallax’s capability of explicitly
defining axes is useful for goal-oriented analyses,
e.g., when the user has a specific analysis goal in
mind, like detecting bias in the embeddings space.
Goals are defined in terms of dimensions of vari-
ability (axes of projection) and items to visualize
(all the embeddings that are projected, after filter-
ing). In the case of a few dimensions of variability



(up to three) and potentially many items of inter-
est, a Cartesian view is ideal. Each axis is the vec-
tor obtained by evaluating the algebraic formula it
is associated with, and the coordinates displayed
are similarities or distances of the items with re-
spect to each axis. Figure 2 shows an example of a
bi-dimensional Cartesian view. In the case where
the goal is defined in terms of many dimensions
of variability, a polar view is preferred. The polar
view can visualize many more axes by showing
them in a circle, but it is limited in the number of
items it can display, as each item will be displayed
as a polygon with each vertex lying on a differ-
ent axis and too many overlapping polygons would
make the visualization cluttered. Figure 5 shows
an example of a five-dimensional polar view.

The use of explicit axes allows for interpretable
comparison of different embedding spaces, trained
on different corpora or on the same corpora but
with different models, or even trained on two dif-
ferent time slices of the same corpora. The only
requirement for embedding spaces to be compara-
ble is that they contain embeddings for all labels
present in the formulae defining the axes. More-
over, embeddings in the two spaces do not need
to be of the same dimension, but they need to be
normalized. Items will now have two sets of co-
ordinates, one for each embedding space, and thus
they will be displayed as lines. Short lines are in-
terpreted as items being embedded similarly in the
subspaces defined by the axes in both embedding
spaces, while long lines are interpreted as really
different locations in the subspaces, and their di-
rection gives insight on how items shift in the two
subspaces. The bottom side of Figure 2 shows an
example of how to use the Cartesian comparison
view to compare embeddings in two datasets.

2 Case Studies

In this section, a few goal-oriented use cases are
presented, but Parallax’s flexiblity allows for many
others. We used 50-dimensional publicly avail-
able GloVe (Pennington et al., 2014) embeddings
trained on Wikipedia and Gigaword 5 summing to
6 billion tokens (for short Wikipedia) and 2 billion
tweets containing 27 billion tokens (Twitter).

Bias detection The task of bias detection is to
identify, and in some cases correct for, bias in data
that is reflected in the embeddings trained on such
data. Studies have shown how embeddings incor-
porate gender and ethnic biases ((Garg et al., 2018;
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Bolukbasi et al., 2016; Islam et al., 2017)), while
other studies focused on warping spaces in order
to de-bias the resulting embeddings ((Bolukbasi
et al., 2016; Zhao et al., 2017)). We show how our
proposed methodology can help visualize biases.

To visualize gender bias with respect to pro-
fessions, the goal is defined with the formulae
avg(he, him) and avg(she, her) as two dimen-
sions of variability, in a similar vein to (Garg
et al., 2018). A subset of the professions used
by (Bolukbasi et al., 2016) is selected as items
and cosine similarity is adopted as the measure
for the projection. The Cartesian view visualizing
Wikipedia embeddings is shown in the left of Fig-
ure 2. Nurse, dancer, and maid are the professions
closer to the “female” axis, while boss, captain,
and commander end up closer to the “male” axis.

The Cartesian comparison view comparing the
embeddings trained on Wikipedia and Twitter is
shown in the right side of Figure 2. Only the em-
beddings with a line length above 0.05 are dis-
played. The most interesting words in this visual-
ization are the ones that shift the most in the direc-
tion of negative slope. In this case, chef and doc-
tor are closer to the “male” axis in Twitfer than in
Wikipedia, while dancer and secretary are closer
to the bisector in Twitter than in Wikipedia.

Polysemy analysis Methods for representing
words with multiple vectors by clustering con-
texts have been proposed (Huang et al., 2012; Nee-
lakantan et al., 2014), but widely used pre-trained
vectors conflate meanings in the same embedding.

Widdows (2003) showed how using a binary or-
thonormalization operator that has ties with the
quantum logic not operator it is possible to remove
part of the conflated meaning from the embedding
of a polysemous word. The authors define the op-
erator ngnot(a,b) = a — ‘g—";b and we show with
a comparison plot how it can help distinguish the
different meanings of a word.

For illustrative purposes, we choose the same
polysemous word used by (Widdows, 2003), suit,
and use the ngnot operator to orthonormalize with
respect to lawsuit and dress, the two main mean-
ings used as dimensions of variability. The items
in our goal are the 20,000 most frequent words
in the Wikipedia embedding space removing stop-
words. In Figure 3, we show the overall plot and
we zoom on the items that are closer to each axis.
Words closer to the axis negating lawsuit are all re-
lated to dresses and the act of wearing something,
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Figure 3: Plot of embeddings in Wikipedia with suit negated with respect to lawsuit and dress respectively as axes.
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Figure 4: The top figure is a fine-grained comparison
of the subspace on the axis google and microsoft in
Wikipedia, the bottom one is the -SNE counterpart.

while words closer to the axis negating dress are
related to law. This visualization clearly confirms
the ability of the ngnot operator to disentangle
multiple meanings from polysemous embeddings.

Fine-grained embedding analysis We consider
embeddings that are close to be semantically re-
lated, but even close embeddings may have nu-
ances that distinguish them. When projecting in
two dimensions through PCA or t-SNE we are
conflating a multidimensional notion of similar-
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Figure 5: Two polar views of countries and foods.

ity to a bi-dimensional one, losing the fine-grained
distinctions. The Cartesian view allows for a
more fine-grained visualization that emphasizes
nuances that could otherwise go unnoticed.

To demonstrate this capability, we select as
dimensions of variability single words in close
vicinity to each other in the Wikipedia embedding
space: google and microsoft, as google is the clos-
est word to microsoft and microsoft is the 3¢ clos-
est word to google. As items, we pick the 30,000
most frequent words removing stop-words and re-
move the 500 most frequent words (as they are too
generic) and keeping only the words that have a
cosine similarity of at least 0.4 with both google
and microsoft and a cosine similarity below 0.75
with respect to google + microsoft, as we are in-
terested in the most polarized words.

The left side of Figure 4 shows how even if
those embeddings are close to each other, it is
easy to identify peculiar words (highlighted with
red dots). The ones that relate to web companies
and services (twitter, youtube, myspace) are much
closer to the google axis. Words related to both
legal issues (lawsuit, antitrust) and videogames
(ps3, nintendo, xbox) and traditional I'T companies
are closer to the microsoft axis.

For contrast, the t-SNE projection is shown in
the right side of Figure 4: it is hard to appreciate
the similarities and differences among those em-
beddings other than seeing them being close in the
projected space. This confirms on one hand that
the notion of similarity between terms in an em-



Accuracy  Factor F,01y p-value
Projection | Projection 46.11  0.000"**
X | Task 1.709  0.194
Task | Projection x Task  3.452  0.066
Projection | Projection 57.73  0.000"**
x | Obfuscation 23.93  0.000"**
Obfuscation | Projection x Obf 5.731  0.019*

Table 1: Two-way ANOVA analyses of Task (Com-
monality vs. Polarization) and Obfuscation (Obfus-
cated vs. Non-obfuscated) over Projection (Explicit
Formulae vs. t-SNE).

bedding space hides many nuances that are cap-
tured in those representations, and on the other
hand, that the proposed methodology enables for
a more detailed inspection of the embedded space.

Multi-dimensional similarity nuances can be vi-
sualized using the polar view. In Figure 5, we
show how to use Parallax to visualize a small num-
ber of items on more than two axes, specifically
five food-related items compared over five coun-
tries’ axes. The most typical food from a spe-
cific country is the closest to the country axis,
with sushi being predominantly close to Japan and
China, dumplings being close to both Asian coun-
tries and Italy, pasta being predominantly closer to
Italy, chocolate being close to European countries
and champagne being closer to France and Italy.
This same approach could be also be used for bias
detection among different ethnicities, for instance.

3 User Study

We conducted a user study to find out if and
how visualizations using user-defined semanti-
cally meaningful algebraic formulae help users
achieve their analysis goals. What we are not test-
ing for is the projection quality itself, as in PCA
and t-SNE it is obtained algorithmically, while in
our case it is explicitly defined by the user. We for-
malized the research questions as: Q1) Does Ex-
plicit Formulae outperform t-SNE in goal-oriented
tasks? Q2) Which visualization do users prefer?
To answer these questions we invited twelve
subjects among data scientists and machine learn-
ing researchers, all acquainted with interpreting
dimensionality reduction results. We defined two
types of tasks, namely Commonality and Polariza-
tion, in which subjects were given a visualization
together with a pair of words (used as axes in Ex-
plicit Formulae or highlighted with a big font and
red dot in case of t-SNE). We asked the subjects to
identify either common or polarized words w.r.t.
the two provided ones. The provided pairs were:
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banana & strawberry, google & microsoft, nerd &
geek, book & magazine. The test subjects were
given a list of eight questions, four per task type,
and their proposed lists of five words are compared
with a gold standard provided by a committee of
two computational linguistics experts. The tasks
are fully randomized within the subject to prevent
from learning effects. In addition, we obfuscated
half of our questions by replacing the words with
a random numeric ID to prevent prior knowledge
from affecting the judgment. We track the accu-
racy of the subjects by calculating the number of
words provided that are present in the gold stan-
dard set, and we also collected an overall prefer-
ence for either visualizations.

As reported in Table 1, two-way ANOVA tests
revealed significant differences in accuracy for the
factor of Projection and t-SNE against both Task
and Obfuscation, which is a strong indicator that
the proposed Explicit Formulae method outper-
forms t-SNE in terms of accuracy in both Com-
monality and Polarization tasks. We also observed
significant differences in Obfuscation: subjects
tend to have better accuracy when the words are
not obfuscated. We run post-hoc t-tests that con-
firmed how the accuracy of Explicit Formulae on
Non-obfuscated is significantly better than Obfus-
cated, which in turn is significantly better that t-
SNE Non-obfuscated, which is significantly better
than t-SNE Obfuscated. Concerning Preference,
nine out of all twelve (75%) subjects chose Ex-
plicit Formulae over t-SNE. In conclusion, our an-
swers to the research questions are that (Q1) Ex-
plicit Formulae leads to better accuracy in goal-
oriented tasks, (Q2) users prefer Explicit Formu-
lae over t-SNE.

4 Related Work

A consistent body of research went into research-
ing distributional semantics and embedding meth-
ods ((Lenci, 2018) for a comprehensive overview),
but we will focus om the embedding visualization
literature. In their recent paper, (Heimerl and Gle-
icher, 2018) extracted a list of routinely conducted
tasks where embeddings are employed in visual
analytics for NLP, such as compare concepts, find-
ing analogies, and predict contexts. iVisCluster-
ing (Lee et al., 2012) represents topic clusters as
their most representative keywords and displays
them as a 2D scatter plot and a set of linked visual-
ization components supporting interactively con-



structing topic hierarchies. ConceptVector (Park
et al., 2018) makes use of multiple keyword sets
to encode the relevance scores of documents and
topics: positive words, negative words, and irrel-
evant words. It allows users to select and build a
concept iteratively. (Liu et al., 2018) display pairs
of analogous words obtained through analogy by
projecting them on a 2D plane obtained through a
PCA and an SVM to find the plane that separates
words on the two sides of the analogy. Besides
word embeddings, visualization has been used to
understand topic modeling (Chuang et al., 2012)
and how topic models evolve over time (Havre
et al., 2002). Compared to existing literature, our
work allows for more fine-grained direct control
over the conceptual axes and the filtering logic, al-
lowing users to: 1) define concepts based on ex-
plicit algebraic formulae beyond single keywords,
2) filter depending on metadata, 3) perform mul-
tidimensional projections beyond the common 2D
scatter plot view using the polar view, and 4) per-
form comparisons between embeddings from dif-
ferent data sources. Those features are absent in
other proposed tools.

5 Conclusions

We presented Parallax, a tool for embedding visu-
alization, and a simple methodology for projecting
embeddings into lower-dimensional semantically-
meaningful subspaces through explicit algebraic
formulae. We showed how this approach al-
lows goal-oriented analyses, more fine-grained
and cross-dataset comparisons through a series of
case studies and a user study.
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A Appendix

In this appendix we show all the images presented
in the main body of the paper in full size for mak-
ing reading them easier.
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Figure 6: Screenshot of Parallax.
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Figure 11: Fine-grained comparison of the subspace on the axis google and microsoft in Wikipedia.
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Figure 13: t-SNE visualization of google and microsoft in Wikipedia.
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Figure 14: Two polar view of countries and foods in Wikipedia.
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