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Abstract

The Intelligent Conversation Engine: Code
and Pre-trained Systems (Microsoft ICECAPS)
is an upcoming open-source natural language
processing repository. ICECAPS wraps Tensor-
Flow functionality in a modular component-
based architecture, presenting an intuitive
and flexible paradigm for constructing so-
phisticated learning setups. Capabilities in-
clude multitask learning between models with
shared parameters, upgraded language model
decoding features, a range of built-in archi-
tectures, and a user-friendly data process-
ing pipeline. The system is targeted to-
ward conversational tasks, exploring diverse
response generation, coherence, and knowl-
edge grounding. ICECAPS also provides pre-
trained conversational models that can be ei-
ther used directly or loaded for fine-tuning
or bootstrapping other models; these models
power an online demo of our framework.

1 Introduction

Neural conversational systems have seen great im-
provements over the past several years, with cur-
rent models able to generate surprisingly coherent
dialogs (Gao et al., 2019a). Business applications,
games, and potentially other settings can bene-
fit from intelligent conversational agents, inviting
users to interact intuitively with complex systems.

Although a range of open-source tools is avail-
able to train neural network models for natural lan-
guage processing (Vaswani et al., 2018; Gardner
et al., 2018; Klein et al., 2017), only a few em-
phasize multi-turn conversational settings (Miller
et al., 2017; Burtsev et al., 2018). Conversations
present distinct challenges. They generally consist
of many turns, and agents need to contextualize re-
sponses in these multi-turn contexts. Agents may
also need to contextualize their responses in other
cues, such as style, intent, and external knowledge,
while retaining a conversational flow.
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We present ICECAPS!, a conversation model-
ing toolkit developed to bring together these de-
sirable characteristics. ICECAPS is built on top
of TensorFlow functionality wrapped in a user-
friendly paradigm. Users can build agents with in-
duced personalities, capable of generating diverse
responses, grounding those responses in external
knowledge, and avoiding particular phrases. Our
toolkit’s foundation is an extensible framework
based on composable model structures, supporting
complex configurations with component chaining
and multi-task training schedules. We also pro-
vide large pre-trained conversational systems to
support fast exploration.

2 Architecture

ICECAPS is designed for modularity, flexibility,
and ease of use. Modules are built on top of Ten-
sorFlow Estimators, making them easy for devel-
opers to use and extend flexibly. ICECAPS sup-
ports arbitrary architectures of modules chained
together within versatile multi-task configurations.

2.1 Component chaining

Sequence-to-sequence models can be abstracted
as chains of sequence encoders and sequence de-
coders. Our library implements various encoders
and decoders, which can be chained together to
form a single, end-to-end functional model. This
chaining paradigm allows users to flexibly com-
bine components and create topologies including
multiple models with shared components. Chain-
ing also allows users to bootstrap new models
from components of previously trained models.

2.2 Multi-task learning

Multi-task learning is a powerful training
paradigm that promotes robust feature represen-
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Figure 1: An example of a basic multi-task configu-
ration. Two encoder-decoder chains share a common
decoder, alternately trained on separate datasets.

tations (Gao et al., 2019b; Liu et al., 2019). By
unifying a conversational sequence-to-sequence
model and an autoencoder with a shared decoder,
multi-task learning can personalize the conver-
sational model (Luan et al., 2017). Multi-task
learning has potentially many other powerful
applications for inducing biases in conversational
systems. ICECAPS allows users to build arrays of
models with arbitrary sharing of components, and
place them in a multi-task learning environment.
Users can construct arbitrary multi-task training
schedules, assigning different tasks or balances
among tasks per training step.

3 Built-in modules and configurations

ICECAPS provides several built-in modules and
configurations. Most standard NLP architectures
are available, including transformers (Vaswani
et al., 2017), LSTM-based seq2seq models
(Sutskever et al., 2014) with attention (Bahdanau
et al., 2015; Luong et al., 2015), n-gram convo-
lutional language models, and deep convolutional
networks for baseline image grounding. Where
applicable, these are implemented as chains of
simpler components as per our design philosophy.
We also provide features that target conversational
scenarios, from individual chainable components
to custom multi-task learning presets.

3.1 Personality grounding

Inspired by recent work on modeling personality
differences in conversational systems (Li et al.,
2016b), ICECAPS provides implementations of
personality-grounded seq2seq and transformer de-
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I’'m not interested in
the game

I'd love to play it

A

[Context] Anyone want
to start this game?

Figure 2: Illustration of latent space under SpaceFu-
sion. The distance between predicted response vectors
and contexts represents relevance; the angle between
them represents intent. Figure from (Gao et al., 2019b).

coders. This architecture consists of additional
personality embeddings, which are provided to the
decoder alongside token embeddings at each time-
step of decoding. Grounding generated responses
helps condition outputs based on a given person-
ality embedding: for the same query, the system
learns to generate responses in different styles, all
while preserving the underlying context.

3.2 SpaceFusion

SpaceFusion (Gao et al., 2019b) is a learning
paradigm that aligns latent spaces learned by dif-
ferent models trained over different datasets. Of
particular interest is its application to neural con-
versation modelling, where SpaceFusion can opti-
mize the relevance and diversity of generated re-
sponses jointly. ICECAPS implements a SpaceFu-
sion preset that extends its multi-task capabilities.
SpaceFusion constructs a multi-task environment
of two seq2seq models with a shared decoder, as
in (Luan et al., 2017). It distinguishes itself by
modifying the multi-task objective function with
several regularization terms. These extra terms
encourage responses for the same context to be
placed nearby in latent space and aligning seman-
tically related responses along straight lines in la-
tent space. This induces a structure in the latent
space such that distance and direction from a pre-
dicted response vector roughly correspond to rele-
vance and diversity, respectively, as in Figure 2.

3.3 Knowledge grounding

A critical task in building intelligent conversa-
tional agents is grounding their responses in an
external knowledge base. This allows agents to



provide informed responses with context about the
real world, without needing comprehensive paired
conversational data to embody that information.
We provide an extension of stochastic answer net-
works (Liu et al., 2018), a machine reading com-
prehension system, that acts as a full knowledge-
grounded conversation model (Qin et al., 2019),
hybridizing machine reading comprehension with
a response generation model. At a high level, this
model consists of two deep biLSTMs in paral-
lel that encode conversational context and knowl-
edge, respectively. The information from these en-
coders is then combined using cross-attention, the
output of which forms the basis of a memory cell
that powers a response generator.

4 Decoding features

ICECAPS provides a custom beam search decoder
that extends TensorFlow’s native beam search de-
coder by introducing several useful features.

4.1 Diverse generation with MMI re-ranking

Generative language systems are notorious for
generating bland, uninteresting samples. Al-
though generated hypotheses generally have high
scores on metrics used to approximate context and
relevance of generated texts (e.g. perplexity and
BLEU), these metrics fail to measure diversity, a
highly desirable trait for responses generated by
conversational systems.

To alleviate this, we provide an implementation
of the maximum mutual information (MMI) scor-
ing function (Li et al., 2016a). We extend and
modify the TensorFlow TrainingHelper and Ba-
sicDecoder classes for our implementation. MMI
employs a separately trained model that learns to
predict queries from given responses: the inverse
map of the conversational model. Using the MMI
model, for a given set of hypotheses, we calcu-
late the log-probability of a given query per hy-
pothesis: P(query|hypothesis). This approxi-
mates response diversity, as frequent and repet-
itive hypotheses would be associated with many
possible queries, thus generating a lower probabil-
ity for any specific query. This score is weighted
and used to re-rank hypotheses, pushing blander
responses below context-unique responses.

4.2 Token filtering

Models trained on real-world data may utter un-
desirable words or phrases. Users may want the
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agent to avoid profanities or other offensive lan-
guage. Likewise, the system should avoid obvious
ungrammatical outputs, such as broken abbrevia-
tions or nonsensical punctuation marks.

ICECAPS supports several filters, including a
general censor-list and a start-token censor-list.
The general censor-list contains a list of tokens
to disable during response generation; probabili-
ties associated with these tokens are clamped to
zero. The start-token censor-list is similar, but
only masks the response’s first token. We also sup-
port infrequency filters; users may restrict the de-
coder from generating responses with rare words.

4.3 Modified beam search decoding

The standard beam-search implementation in Ten-
sorFlow works by iteratively generating tokens,
generating a constant number of hypotheses at the
end of the decoding phase. ICECAPS implements a
modified beam search decoder with a different cri-
terion for exploring complete hypotheses. Rather
than considering a completion of every hypothe-
sis, this decoder only considers a complete ver-
sion of a hypothesis if the EN D token is one of
the top k options for the next token. This version
of beam-search decoding may result more more or
less than k final hypotheses, depending on how of-
ten the decoder produced an EN D token.” This
form of decoding can sometimes produce cleaner
hypotheses than the standard beam-search imple-
mentation, perhaps because EN D is only allowed
when the model score is high. This helps increase
the quality of generated sequences, as they tend to
have improved grammatical coherence, though the
number of returned outputs is often less than k.

4.4 Repetition penalty

The ICECAPS custom decoder also includes a rep-
etition penalty, used in the scoring function em-
ployed during the beam search phase. This penalty
helps avoid the well-known problem of decoders
generating repetitive responses and getting stuck
in loops. The repetition penalty is calculated as:

g (min (1 ((uniQ(S) )

Axls|)]
for a given response s, where A is the repetition
allowance and uniq(s) is the number of unique
tokens in s.

)

2If no responses are generated by the last time-step, we
return all hypotheses generated in the last time-step, ensuring
that the decoder always produces at least one response.
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Figure 3: The five-phase pattern underlying ICECAPS
training configurations. Hyperparameters are extracted
into a dictionary from a file, which are used to initialize
the model architecture. Data files initialize DataSource
objects, which feed the training loop. The user can en-
gage with the system once trained.

5 Building systems

ICECAPS is designed to make building complex
dialogue systems intuitive for the end user.

5.1 Text data processing

TensorFlow estimators expect to read data from
TFRecord binary files for efficient processing. We
provide a script TEXT _DATA_PROCESSING.PY for
converting text data into TFRecords, equipped
with several useful preprocessing transformations.
Our script can sort data within local windows
so that batches fed during training have minimal
padding inefficiency. These batches can be shuf-
fled amongst each other to mitigate any biases in-
duced by sorting. We provide token preprocessing
through byte pair encoding (Sennrich et al., 2016),
which builds a token set at a level of abstraction
between characters and words. This often allows
for faster training and improved generalization.
Another feature focused on conversational scenar-
ios is fixed-length context extraction. Conversa-
tional data often contains large, potentially un-
wieldy multi-turn contexts; we can limit our data
samples to a desired context length. We also pro-
vide an option for annotating datasets with topic
grounding information, by analyzing the data for
unique tokens to use as topic markers.

5.2 Training configurations

ICECAPS training configurations follow a basic
five-phase pattern. We include example training
scripts that users may use as templates.
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Loading hyperparameters. We supply hyper-
parameters to the model architecture via .PARAMS
files. These files follow a simple, readable format:
each line pairs the name of a hyperparameter with
its supplied value, separated by a colon. Every
ICECAPS estimator is equipped with a set of ex-
pected hyperparameters, and their associated de-
fault values when those hyperparameters are not
provided. Users can view these hyperparameters
through a static API call. In systems with multiple
modules, users can add prefixes to hyperparame-
ters to properly assign them to the right modules.

Building model architecture. Architectures are
built by composing modules, chaining them and
placing them in EstimatorGroups as appropriate.
They are initialized with the loaded dictionaries of
hyperparameters.

Connecting data sources. We now connect
TFRecord files to our architecture via an in-
put pipeline. We provide a high-level wrap-
per around TensorFlow’s native Dataset-based
pipelining. Users initialize DataSource objects
with TFRecord files and produce input pipelines
from those files. Our DataSource class also
provides methods for combining multiple input
pipelines from DataSource objects, either by ran-
domly interleaving them or by combining them in
parallel to feed multi-task configurations.

Training the system. The system is now ready
to train: a single call to the training function with
the desired number of batches or epochs is suf-
ficient. However, users can construct more elab-
orate training schedules, consisting of sequences
of training function calls with different arguments.
This is particularly useful in multi-task scenarios,
where we may want to train the system with dif-
ferent balances across tasks in different steps. For
instance, one could first pre-train a single task,
then shift to multi-task learning evenly distributed
across two tasks.

The user can now engage with the trained sys-
tem. Users can run their system on an evaluation
set, collecting appropriate metrics and decoded re-
sponses. They can also interact with the system
directly. ICECAPS provides a command-line inter-
active session for users to have conversations with
their agents and directly observe their responses.
Response generation is powered by the custom de-
coder described in Section 4. While the command-
line session is useful for quick testing, for conve-



nience we also provide a simple GUI-based inter-
active session in which users can load their trained
models. The GUI makes it easy to view multiple
turns of conversation history alongside a top-k list
of generated responses with associated scores.

6 Pre-trained models

ICECAPS comes packaged with pre-trained sys-
tems for conversation modeling based on the fea-
tures described in Section 3. Users can either em-
ploy these systems to load conversational agents
for immediate use or to bootstrap the training pro-
cess for new configurations.

The largest-scale pre-trained system we cur-
rently offer is a deep Transformer-based architec-
ture trained on real-world conversational data. Our
model employs 12 layers with layer normalization,
a modified initialization scheme that accounts for
model depth, and byte pair encodings (Sennrich
et al., 2016) for the tokenizer. We trained this
system on a large corpus of conversations scraped
from Reddit. The data was extracted from Red-
dit comment chains spanning from 2005 till 2017.
The dataset consists of hundreds of millions of
paired instances of contexts and responses with
billions of tokens. Our model uses a vocabulary
size of 50,257, and was trained on eight Nvidia
V100 machines with NVLink.

We provide a set of trained personality embed-
dings for implementing diverse personality chat-
bots. These embeddings were learned through
multi-task learning between paired conversation
data and unpaired utterances categorized by
speaker. These embeddings define a personality
space; users may use the provided embeddings for
their applications or train new personality embed-
dings within this space.

We also provide a demo of a conversational
agent that combines a number of key features dis-
cussed in this paper. This agent is powered by an
LSTM-based seq2seq model built on the Space-
Fusion paradigm. Our agent demonstrates the
improvements to conversational response genera-
tion made possible by a combination of multi-task
learning and our improved beam search decoder.

7 Related toolkits

Several NLP-oriented toolkits have been open-
sourced. Tensor2Tensor (Vaswani et al., 2018),
maintained by Google Brain, extends TensorFlow
with an array of state-of-the-art baseline deep
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learning models. It places a strong emphasis on
sequence modeling baselines. AllenNLP (Gard-
ner et al., 2018) is a PyTorch library developed by
AI2 for natural language processing tasks, notable
for an open-source release of ELMo (Peters et al.,
2018). OpenNMT (Klein et al., 2017) is a pop-
ular neural machine translation toolkit originally
developed for LuaTorch that now has implemen-
tations in PyTorch and TensorFlow. MarianNMT
(Junczys-Dowmunt et al., 2018) is another frame-
work for neural machine translation developed be-
tween the Adam Mickiewicz University in Pozna
and the University of Edinburgh. It is built in C++
and designed for fast training in multi-GPU sys-
tems. Texar (Hu et al., 2018) is a text generation
toolkit affiliated with Carnegie Mellon University,
featuring a similar emphasis on modularity to ICE-
CAPS. It includes reinforcement learning capabil-
ities alongside its sequence modelling tools.

A few other toolkits have a dialog emphasis.
DeepPavlov (Burtsev et al., 2018) is a deep learn-
ing library with a focus on task-oriented dialogue.
It provides demos and pre-trained models for tasks
such as question answering and sentiment classi-
fication. Affiliated with DeepPavlov is the Con-
vAI2 challenge (Dinan et al., 2019), a general
dialogue competition featuring a synthetic per-
sonalized conversational dataset. ParlAI (Miller
et al., 2017) is a library centered around task-
oriented dialogue, compiling a number of popular
datasets for NLP tasks as well as pre-trained mod-
els for knowledge-grounded dialog agents trained
on crowd-sourced data.

8 Conclusion

Microsoft ICECAPS is a new open-source NLP li-
brary focused on building intelligent conversation
agents that can communicate naturally with hu-
mans. Our release contributes key conversation
modeling features to the open-source community,
including personalization, knowledge grounding,
diverse response modeling and generation, and
more generally a multi-task architecture for in-
ducing biases in conversational agents. Built for
modularity and ease of use, ICECAPS allows users
to extend our conversational technologies in novel
ways for their agents. We provide the community
with a number of pre-trained conversational sys-
tems trained on real-world data. Planned future
directions for ICECAPS include multi-modality
grounding and semantic parsing.
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