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Abstract

In this paper, we present ADVISER! - an open
source dialog system framework for education
and research purposes. This system supports
multi-domain task-oriented conversations in
two languages. It additionally provides a flex-
ible architecture in which modules can be ar-
bitrarily combined or exchanged - allowing for
easy switching between rules-based and neural
network based implementations. Furthermore,
ADVISER offers a transparent, user-friendly
framework designed for interdisciplinary col-
laboration: from a flexible back end, allowing
easy integration of new features, to an intu-
itive graphical user interface supporting non-
technical users.

1 Introduction

Dialog systems can be open-ended, e.g. small
talk systems (Weizenbaum, 1966), or designed for
a specific task, such as booking flights or find-
ing restaurants (Bobrow et al., 1977; Wen et al.,
2017). In this paper, we focus on task-oriented di-
alog systems, although our framework allows easy
integration of non-task dialog systems (Vinyals
and Le, 2015) and their combination (Yu et al.,
2017). Task-oriented dialog systems are gener-
ally comprised of sequential modules addressing
the varying subtasks required to facilitate a nat-
ural language dialog (Williams et al., 2016). A
standard architecture implements this with a natu-
ral language understanding (NLU) unit which is
responsible for parsing the user input (De Mori
et al., 2008), a belief state tracker (BST) mod-
ule (Mrksi¢ et al., 2017) that holds the state of
the dialog, a policy module (Williams and Young,
2007) which determines the system’s next action,
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and a natural language generation (NLG) mod-
ule which transforms the system act into natural
language. Recently, there has been increasing in-
terest in multi-domain, task-oriented dialog sys-
tems because of their ability to help users achieve
more complex goals, which may not be cleanly di-
vided into single-domain objectives (MrkSsi€ et al.,
2015; Ultes et al., 2017). This increased freedom
for users, however, requires increasingly sophis-
ticated system architectures to effectively handle
cross-domain actions or transitions between active
domains.

During the last years, several toolkits (Bo-
hus and Rudnicky, 2009; Skantze and Moubayed,
2012; Baumann and Schlangen, 2012; Lison and
Kennington, 2016; Ultes et al., 2017; Miller et al.,
2017) have been introduced to accelerate the de-
velopment and testing process of goal-oriented di-
alog systems, for both single-domain and multi-
domain systems. Almost all of them have been de-
veloped for fast prototyping, where new domains
can be developed by swapping in new implemen-
tations for each module following the toolkit’s ar-
chitecture. However, generating natural and effec-
tive dialogs requires linguistic knowledge to be in-
tegrated throughout the system design, and most
of these toolkits are primarily designed for techni-
cal users, which can limit the ease of collaboration
with linguists and may thus affect the quality of
the system’s output.

To address these shortcomings, we propose a
multilingual multi-domain dialog system with two
parallel goals: 1) to provide a highly flexible re-
search framework not only for technique oriented
developers but also for non-technical oriented de-
velopers such as linguists and 2) to provide an in-
terdisciplinary educational tool.
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2 Related Work

During the last decade, several toolkits have been
developed to facilitate the rapid implementation of
goal-oriented dialog systems. RavenClaw (Bohus
and Rudnicky, 2009) aimed to separate domain-
specific aspects from domain-independent conver-
sational skills, letting developers focus solely on
describing the dialog task control logic. However,
the most recent techniques like a statistical BST
or a reinforcement learning (RL)-based policy are
not compatible.

Our approach is inline with InproTK (Baumann
and Schlangen, 2012), where high-level modules
(such as NLU and dialog manager) communicate
by networks created via configuration files. In
ADVISER, there is no distinction between high or
low-level modules, but they are similarly designed
separately and our DialogSystem class defines the
pipeline interaction between them, allowing them
to easily be replaced with newer versions.

OpenDial (Lison and Kennington, 2016) relies
on probabilistic rules and easily integrates exter-
nal modules. We were inspired by this work to
make the rules-based dialog systems fully domain-
independent in ADVISER by storing the NLU
rules and NLG templates in external files.

PyDial (Ultes et al., 2017), a multi-domain dia-
log toolkit, follows the classic approach for modu-
lar dialog systems. Although PyDial offers rules-
based and statistical implementations for the mod-
ules, the overall structure is rather difficult to ma-
nipulate, if the pipeline needs to be modified.

3 Framework Design

Our goal with this system is to provide both a
highly modular research platform and an interdis-
ciplinary educational tool.

Use Cases To accomplish this, we address the
needs of the following three user groups: 1) tech-
nical users such as machine learning researchers
2) non-technical researchers such as linguists and
3) multidisciplinary students.

Design Criteria The main objectives of the
framework are threefold: 1) to maximise the ease
for technical developers when exploring new ar-
chitectures or extending system functionality with
new techniques, e.g. machine learning. 2) To
minimise the workload on code bases for non-
technical users (e.g. linguists) allowing them to
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focus on their main goals, e.g. exploring the dia-
log flow for new domains, or languages or inves-
tigating human language variations when interact-
ing with a dialog system. 3) To provide an en-
gaging way for multidisciplinary students to learn
how dialog systems work.

From this, our framework is designed to opti-
mise the following criteria:

Modularity: For each module in a classic dia-
log system pipeline (NLU, BST, dialog policy and
NLG), we provide a handcrafted baseline module,
additionally we provide a machine learning based
implementation for the BST and policy (see sec-
tion 4.2). These can be used to quickly assem-
ble a working dialog system or as implementation
guidelines for custom modules. Additionally, be-
cause all modules inherit from the same abstract
class, technical users can also easily write their
own implementations or combinations of modules.

Flexibility: In contrast to a more static dia-
log system pipeline, we propose a graph structure
where the user is in control of the modules and
their order. This level of control allows users to
realise anything from pipelines to end-to-end sys-
tems. Even branching scenarios are possible as
demonstrated by our meta policy which combines
multiple parallel subgraphs into a single dialog.

Transparency: Inputs to and outputs from each
module are captured by automatically generated
XML interface descriptions, providing a transpar-
ent view of data flow through the dialog system.

User-friendly at different levels: technical users
have the full flexibility to explore and extend the
back end; non-technical users can use our defined
modules for building systems; students from dif-
ferent disciplines could easily learn the concepts
and explore human machine interaction.

4 Modules

4.1 Graphical User Interface

Graphical user interfaces (GUIs) allow users to ac-
cess a system in an easy, clear and appealing fash-
ion. Thus, in addition to a console, ADVISER pro-
vides two separate graphical interfaces: a GUI to
chat with the dialog system and a gamelike inter-
face for study purposes.

Chat interface Our GUI is implemented as a
module, which is called by the dialog system once
at the beginning and once at the end of each turn.
In the first turn, the GUI is initialised and loaded.



At the beginning of each turn, it blocks the pro-
cessing pipeline until the user has entered a mes-
sage. The message is displayed inside the GUI and
then passed to succeeding modules, e.g. the NLU
module. At the end of the turn, the module takes
the output of the NLG and displays it inside the
GUIL

Gamelike interface for study purposes Hand-
crafted NLU modules are often based on regular
expressions (regexes), which aim to find patterns
inside a user utterance in order to identify pos-
sible user acts. The module’s developers try to
cover as many user act realisations (UARSs) as pos-
sible. However, due to the versatile nature of hu-
man language, many regexes are needed to yield a
high coverage. In ADVISER, we provide an inter-
face which supports collaboration between com-
puter scientists and linguists to yield a higher qual-
ity of the NLU module. To motivate both sides,
we frame this challenge as a game - the CrossTick
game - in which computer scientists try to achieve
high regex coverage and linguists try to write un-
covered UARs. First, the user has to select the
domain for which UARs are written and the NLU
module that should be evaluated. After a UAR is
created, it is analysed by the specified module and
the user is informed via a tick (v') or a cross (x)
whether the user acts were detected correctly. The
user can save and load files in JSON format.

4.2 Components of Dialog Systems

Input Up to now, only text is supported but our
tool could be easily extendable to other modalities
such as speech and vision. Currently text can ei-
ther be entered through the console or our GUL

NLU We implemented a domain-independent
rules-based NLU that loads regexes from a JSON
file. The regexes are split into three categories -
general acts (e.g. Hello, RequestAlternatives and
Affirm), domain-specific inform acts and domain-
specific request acts. We supported both, English
and German rules. The NLU module receives
the user input as string and checks it across all
regexes, creating a list of possible user acts. If no
act is found, then it is assumed that the NLU was
not capable of understanding and the user act is
interpreted as a BadAct. We additionally resolve
some ambiguities using the belief state, i.e. the
dialog history. If a non-contextualised Affirm or
Deny act is found, the system attempts to use the
dialog history to contextualise it.
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BST The belief state tracker maintains a repre-
sentation of the current dialog state. The rules-
based BST receives a list of user acts from the
NLU that are decoded and stored with probabili-
ties in the belief state. The BST also detects the
presence of discourse acts, e.g. Hello, Repeat, In-
form and Request. Moreover, it stores informa-
tion from the system history including the last re-
quested slot and last entity offered.

Our machine learning based belief state tracker
is trained to predict the belief state directly from
text without the need for an NLU. To track the
constraints and requests issued by the user, we
feed system actions and user input turn-wise into
a recurrent network and concatenate the resulting
hidden states of both inputs before predicting the
final belief state (Jagfeld and Vu, 2017).

Policy The rules-based policy aims to provide
users with a single entity matching the constraints
they have specified. After each turn, the policy
verifies that the user has not ended the dialog. It
then reads the current belief state and generates a
suitable query for the database. If there are multi-
ple results, the next system act will request more
information from the user to disambiguate. Other-
wise, the system is able to make an offer — directly
informing the user about a specific entity — or to
give more details about a current offer.

Our machine learning policy is trained using
deep RL. Similar to the Deep Q-learning algo-
rithm (Mnih et al., 2013), an action-value func-
tion is approximated by a neural network which
outputs a value for each possible system action
given the vectorised representation of a turn’s be-
lief state as input. The neural network is con-
structed following the duelling architecture (Wang
etal., 2016), consisting of two separate calculation
streams. Each stream has its own layers, where
one stream calculates the value function and the
other an advantage function so that their combina-
tion in a special final layer yields the action-value
function again. Additionally, an updated copy of
this network is used to evaluate the agent’s actions
while the original up-to-date network is accessed
to choose the agent’s greedy actions (Van Hasselt
et al., 2016). For the agent’s efficient off-policy
batch-training, we make use of prioritised experi-
ence replay (Schaul et al., 2015) by assigning ex-
perienced dialog turns a sampling probability pro-
portional to errors in the action-value estimates.



NLG In the natural language generation mod-
ule, the semantic representation of the system
act is transformed into natural language. In the
handcrafted NLG module, each possible system
act is mapped to exactly one utterance. To re-
duce the potentially large number of mappings,
templates are used which allow multiple map-
pings from system acts to their respective utter-
ance at once. By specifying placeholders for a
system acts slots and/or values, the utterance can
be formulated independent of the actual realisa-
tions (e.g. inform(name={x}, ects={Y}) — The
course {X} is worth {Y} ECTs.). During the
dialog, the system iterates through the templates
and chooses the first one for which the system act
fits the template’s signature. For each domain we
present here, we created both German and English
templates.

User Simulator To support automatic evalua-
tion and enable RL, we implemented a user sim-
ulator to provide user actions at the intention
level. For this purpose, we integrated the Agenda-
based (Schatzmann et al., 2007) user simulator
into our framework. The task of the system is to
fulfil the user’s goal within the course of the di-
alog. For this purpose, we populated our agendas
with actions requesting information and informing
about the constraints based on the specified goal.
For the design of a user simulator, we additionally
considered that its objective was not only to fulfil
the user’s goal but also to support the RL policy in
the learning process. Therefore, it was not suffi-
cient to answer the system’s request and fulfil the
user’s goal, but also to force the system to answer
with suitable actions. In the context of RL, we
achieved this by delaying a dialog turn if the sys-
tem’s answer was not an expected action or com-
pletely nonsense, because it reduces the reward the
policy receives for the ongoing dialog. In addition,
several parameters influence the user simulator’s
behaviour. Those are manually crafted and cho-
sen with a suitable probability wherever variation
to the user makes sense.

Meta Policy In a multi-domain dialog system,
intelligently switching between or combining in-
dividual domains is necessary to provide the user
a unified experience. However, the best way to ac-
complish this remains unclear. In our system, we
propose an architecture where all domains are al-
lowed to run in parallel and the resulting output
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is processed by a Meta Policy. The meta policy
is responsible for tracking which domains are ac-
tive and, if necessary, combining their output. In
the case where a user utterance cannot be directly
handled in the context of a single domain, the meta
policy is also responsible for rewriting it into one
or more single-domain utterances. If this happens,
rather than outputting something for that turn or
asking for user input, the system steps through an
additional turn, using the rewritten utterance as the
new user input. In this way the meta policy is able
to intelligently coordinate switching or combining
domains, preserving as much information as pos-
sible to make as informed of a decision as possible.
This architecture can be seen in figure 1.

Yes

NLU, BST,

b . Policy,

no

METAPOLICY rewrite? —— OUT

NLU, BST, Policy,

Figure 1: Multi-domain system architecture, showing
how information is passed between each module and
the final system output is coordinated by the meta pol-

icy.

5 Proof-of-Concept Showcases

In order to feedback on the quality, functionality,
and usefulness of the ADVISER system, we con-
ducted two experiments: we first investigated user
experiences with a student support dialog system
and second explored the effectiveness of using a
game within a multidisciplinary practical course.

5.1 Student Support Dialog System

Multilingual and multi-domain As a real-
world use case, we implemented a dialog system,
using our ADVISER framework, to help students
navigate through the course and module selection
at the Institute for Natural Language Processing
(IMS) at the University of Stuttgart. This task
consists of three domains for asking information
about lecturers, for locating courses, and for col-
lecting information about modules. Students can
freely switch between or combine the domains in
order to find the information they need. Addition-
ally because of the students’ backgrounds, our sys-
tem supports NLU and NLG in both, English and
German.



Evaluation and Results We evaluated our dia-
log policies automatically on two domains: the
new domain - IMS modules and the benchmark
domain - Cambridge restaurants (Ultes et al.,
2017). Table 1 shows the performance of the sup-
ported policies tested against the user simulator.
Each result was obtained by averaging across ten
different random seeds with 500 test dialogs each.

Agent | CamRestaurants | IMS modules

Suc.  Turns Suc. Turns
RL 97.5% 5.03 | 91.6%  5.25
HDC 100% 4.75 | 99.8% 7.0

Table 1: Percentage of successful dialogs and average
dialog length for Cambridge restaurants and IMS mod-
ules domains evaluated with a RL policy and a hand-
crafted policy (HDC).

To gain a better understanding of how AD-
VISER works under real-world conditions, we
asked 13 volunteers to conduct a series of five con-
versations with the system. Participants were re-
quired to chat with ADVISER via text input in
English to find modules offered by the IMS. For
each dialog, participants were given a list of goals,
detailing constraints to inform the system about
and to request from the system. These included
information such as responsible lecturer, the term
within which the module was offered, and whether
the module was related to a particular discipline,
e.g. linguistics and statistics.

After each dialog, participants were asked to
rate their chat with ADVISER, considering the
quality of the respective dialog in terms of natu-
ralness and coherence as well as how successful
ADVISER was in processing the information pro-
vided by the user and how comfortable it was to
use. Overall, participants rated the quality of dia-
log with the RL policy a 4.3 similar to the results
obtained from dialogs using the rules-based policy
(4.48 points on average) on a scale from 1 (very
bad) to 7 (very good), confirming the functionality
of the system. Considering the system’s success
in processing the user information correctly, on a
scale from 1 (very bad) to 5 (very good), partici-
pants again found ADVISER to be slightly above
average. This result applies to both dialogs which
were generated using the rules-based policy (3.52
on average) and those using the RL policy (3.52
point average). 61.5 % of the participants reported
that they would use ADVISER for their own pur-
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poses. Moreover, asking participants to rate the
comfort of using the system on a scale from 1
(very bad) to 5 (very good), an average comfort
level was 3.69, indicating that most users felt com-
fortable with the system.

5.2 Multidisciplinary Practical Course

To test ADVISER as a tool for study purposes, we
evaluated the CrossTick game, where linguistics
and computer science students work to develop
and gain a better understanding of the NLU in a
dialog system.

CrossTick game Given a user act, linguistics
students/researchers work to find as many UARs
as possible which are not recognised by the sys-
tem. On the other side, computer science stu-
dents/researchers minimise the system errors by
developing either new rules or machine learning
models to handle more natural language variations
of the user inputs.

Evaluation In order to test the efficiency and the
user’s opinion about the game, the same 13 par-
ticipants from the previous evaluation were given
10 tasks. Per task, users were asked to take the
linguist’s perspective, and given intent, slots, and
values to generate natural language for. In this
case intent corresponds to the type of sentence
(e.g. Inform/Request), slot to the type of informa-
tion a user is giving/requesting and value describes
the actual information given. If participants suc-
ceeded in creating natural language variations that
were not covered by the system’s NLU, they saw a
cross mark (x) next to their input, and points were
added to their score. Otherwise, they obtained a
check mark (v'), worth O points. Although users
could reach an infinite number of points per task,
they were encouraged to be more productive and
creative by telling them to beat the high score an-
other user previously scored.

During the survey, 84.6% of the participants
stated that the game was effective for educational
purposes. Further, on a scale from 1 (completely
useless) to 5 (very useful) the CrossTick Game
received on average 3.69 points, suggesting that
most users learned the NLU module’s functional-
ity. Overall, participants enjoyed using the game.
Some participants especially liked the challenge
to beat the high score, while others enjoyed that
they were rewarded with points for uncovered sen-
tences.



6 Conclusions

In this paper, we presented ADVISER - an open
source dialog system which supports multilingual,
multi-domain human-machine task-oriented con-
versations. It supports modules which can eas-
ily be interchanged between rules-based and ma-
chine learning implementations —including deep
learning and RL. Our preliminary human study
shows that with our toolkit one can easily build a
useful dialog system. Furthermore, the CrossTick
game offers an appealing interface for education
purposes for different study disciplines.
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