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Abstract

We present a modular framework for the rapid-
prototyping of linguistic, web-based, visual
analytics applications. Our framework gives
developers access to a rich set of machine
learning and natural language processing
steps, through encapsulating them into micro-
services and combining them into a compu-
tational pipeline. This processing pipeline is
auto-configured based on the requirements of
the visualization front-end, making the lin-
guistic processing and visualization design de-
tached, independent development tasks. This
paper describes the constellation and modality
of our framework, which continues to support
the efficient development of various human-
in-the-loop, linguistic visual analytics research
techniques and applications.

1 Introduction

Research at the intersection of computational lin-
guistics, visual analytics, and explainable machine
learning, is a vibrant, interesting field that broad-
ens the horizons of all disciplines involved. Over
the last years, a team of computer scientists, lin-
guists, as well as social scientists from differ-
ent areas, at the University of Konstanz, have
come together to push their disciplinary bound-
aries through collaborative research. This col-
laboration resulted in the development of several
mixed-initiative visual analyitcs approaches, rang-
ing from generating high-level corpus overviews
using Lexical Episode Plots (Gold et al., 2015) to
sophisticated human-in-the-loop topic refinement
techniques (El-Assady et al., 2018b, 2019).

This effort has helped establish the subarea
of Linguistic Visualization (short: LingVis) re-
search (Butt et al., 2019). Within this subarea,
application topics we worked on include content
analysis, e.g., NEREx (El-Assady et al., 2017b);
discourse analysis, e.g., ThreadReconstructor (El-

Assady et al., 2018a); language change, e.g.,
HistoBankVis (Schätzle et al., 2017) or COHA
Vis (Schneider et al., 2017); readability analysis,
e.g., literature fingerprinting (Oelke et al., 2012);
language modeling, e.g., LTMA (El-Assady et al.,
2018c); argumentation analysis, e.g., ConToVi (El-
Assady et al., 2016); explainable machine leran-
ing, e.g., verbalization and active learning (Sev-
astjanova et al., 2018a,b); interactive model re-
finement, e.g., SpecEx (Sperrle et al., 2018);
multi-corpora analysis, e.g., Alignment Vis (Jent-
ner et al., 2017); modeling of speech features, e.g.,
SOMFlow (Sacha et al., 2018).

To make our linguistic visualization techniques
accessible to a wider public, we strive to im-
plement them as web-based applications. How-
ever, this is only possible on a larger scale us-
ing a framework architecture that accommodates
the needs for rapid-prototyping, disguising the in-
volved engineering complexity for application de-
velopers. Hence, we established the lingvis.io
framework as a common platform, facilitating the
share and reuse of implementation components. A
prominent application powered by our framework
is VisArgue (El-Assady et al., 2017a), an approach
for multi-party discourse analysis.

In this paper, we report on our shared frame-
work and infrastructure that drives a multitude
of linguistic visualization projects, as depicted in
Figure 1. The core of our framework is a flexi-
ble pipeline with automatic dependency resolution
that enables application developers to request nat-
ural language processing (NLP) steps for their vi-
sualizations, which, in turn, are auto-configured
based on user-defined parameters. These are cho-
sen in a user interface that is designed to enable
experts and non-experts, alike, to adapt the NLP
processing to their tasks and data. The results
of this processing are closely intertwined with the
interactive visual analytics components, enabling,

https://lingvis.io/
http://lingvis.io/
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Figure 1: The lingvis.io framework driving various linguistic visualization projects based on rich NLP pipelines.

for instance, visual debugging for linguists, or in-
sights for domain experts, such as writers, political
scientists, etc. To address the trade-offs between
tailored and expressive interface design, rapid-
prototyping, and processing flexibility, our frame-
work architecture strictly separates and modular-
izes tasks into atomic components that are com-
partmentalized in subdomains (i.e., auto-scaling
cluster environments). Developers work on their
designated feature branches and efficiently test
their prototypes through continuous deployment.

Related Work – Other notable frameworks re-
lated to ours include Stanford CoreNLP1, GATE2

and Weblicht3. Facebook has recently released a
deep-learning based framework for various NLP
tasks, called pytext4. While they provide state-of-
the-art models, they are code-only platforms that
require developers to write processing pipelines
from scratch every time. More general (deep
learning) frameworks, including tensorflow5 and
pytorch6 can also be used for text processing
or to generate rich feature vectors like sentence-
or word-embeddings. KNIME7 and TABLEAU8

are platforms for intuitively creating data science
workflows with reusable components, but are not
tailored to NLP tasks specifically. While we
can communicate with those frameworks through
APIs to enrich our own NLP pipeline, these toolk-
its are solely tailored to linguistic analysis and of-
fer no, or very limited, visualizations possibilities.

1 stanfordnlp.github.io/CoreNLP
2 gate.ac.uk
3 weblicht.sfs.uni-tuebingen.de
4 github.com/facebookresearch/pytext
5 tensorflow.org
6 pytorch.org
7 knime.com
8 tableau.com

2 Auto-Configured Processing Pipeline

Our framework is based on the assumption that
the individual processing steps can and should be
atomic in their nature. Each step holds a well-
defined list of dependencies which the respec-
tive step requires to execute its task successfully.
This allows us to model a processing pipeline for
a given type of data input as an acyclic graph
which can be processed in parallel. For exam-
ple, as shown in Figure 2, to retrieve the result
of a topic model, the visualization requests one
or more models. Based on their dependencies to
other steps, a pipeline is generated (that takes into
account all user-defined parameters). Here, the
topic modeling is based on descriptor vectors ex-
tracted for each document in the corpus, as well as
word embedding results.

Figure 2: Dependency graph for topic model relations.

A successful implementation requires a consis-
tent, flexible, and well-defined data model such
that each step can use its transformation capabili-
ties to semantically enrich the data. We therefore
do not allow any step to modify or delete data but
each step can further add metadata. This section
describes the modeling of processing steps in our
pipeline, as well as the underlying data structure.

2.1 Processing Steps
Our framework allows for progressive steps where
intermediate results can be investigated and fur-

https://lingvis.io/
https://stanfordnlp.github.io/CoreNLP/
https://gate.ac.uk/
https://weblicht.sfs.uni-tuebingen.de/
https://github.com/facebookresearch/pytext
https://www.tensorflow.org/
https://pytorch.org/
https://www.knime.com/
https://www.tableau.com/
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ther steered by the user. As shown in Figure 3, in
the user interface (UI), users first upload and se-
lect the data they want to process. Based on their
intended tasks they then select suitable visualiza-
tion components. Internally every visualization
defines a list of atomic processing steps as depen-
dencies that need to run in order to generate the
desired information to visualize. In addition to a
list of dependencies, visualizations define one or
multiple controller endpoints. These serve as com-
munication medium between the processing steps
and the UI, and are characterized by the fact that
they do not further enrich the data and cannot be
defined as dependencies by any other processing
step. This implies that visualization steps termi-
nate the acyclic graph and, thus, the resulting pro-
cessing pipeline.

For the initial processing, a controller in the
streaming-control-layer handles the communica-
tion with every specific processing step and pro-
vides the parameter-configuration interface to the
UI. This enables users to parameterize the pro-
cessing for increasing flexibility. For example, a
POS tagger step can be parameterized with differ-
ent tagger models. Such a tagset does not need to
be static but can depend on a language or be based
on a user’s selection. It is only constrained by the
necessity of having a standardized tag set, as later
steps use these tags to further process the data.

The endpoints in the two control layers sepa-
rate static (default) from streaming controllers. In
the default case, controllers are used to commu-
nicate the results of a completed processing step
to the visualization. Streaming controllers, on the
other hand, intercept a processing step while it is
running to support direct user interactions. Here,
progressive visualizations are shown while the re-
spective processing step is running. The users can,
therefore, directly observe, adapt, and refine the
underlying machine learning models. This enables
the design of tightly-coupled, human-in-the-loop
interfaces for interactive model refinement and ex-
plainable machine learning.

2.2 Data Structure Modeling

We represent a corpus hierarchy as a recursively
stacked data structure consisting of, so-called,
‘document objects’. These are a modular abstrac-
tion of all levels of the hierarchy, including cor-
pora, documents, paragraphs, sentences, etc. The
highest level of our data structure consists of a

Figure 3: Schematic overview of the framework.

collection of document objects that typically rep-
resents all analyzed corpora, whereas the lowest
level are single word tokens. Hence, from an or-
dered list of all corpora, we can descend the data
structure to find a list of documents for each cor-
pus, all the way to sub-sentence structures, multi-
word objects, and finally words consisting of an
ordered list of tokens. This flexible data structure
allows us to model arbitrary complex object hier-
archies, with each object level containing an or-
dered list of the objects on the next level, while to-
kens define the terminal level.

Each processing step in the pipeline has access
to the full data hierarchy. Throughout the process-
ing, steps append additional data elements to the
hierarchy objects to enrich them with computa-
tional results and metadata, making their process-
ing results accessible to other steps downstream.
Hence, through defining the pipeline dependen-
cies, processing steps can request input data that is
provided by its previous steps through defined for-
mats, which ensures atomicity and encapsulation.
This appended data is independent of a step’s so-
phistication, which can range from simple wordlist
lookups to complex deep neural network models.
In the following, we describe the three data for-
mats that can be appended to document objects.

(1) Weighted Feature Vectors (FV) – One of
the key structures attached to document objects are
feature vectors. These represent the transforma-
tion of text from a semi-structured data source to
a high-dimensional feature space. Feature vectors
represent the discretized elements of the text, of-
ten weighted descriptors extracted from the under-
lying text. These vectors are defined by a global
signature vector that prescribes an ordered refer-
ence for the numerical weights contained in in-
dividual FVs for each document object. For ex-
ample, to build a frequency-based bag-of-words
model, we enable users to choose from a set of
token-classes including POS-tags, named entities,
lexical chains, n-grams, stop-words, etc. These are
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(a) Named Entity and Measure Settings UI (b) Topic Modeling Settings UI

Figure 4: UI components for parameterizing processing steps. Available settings depend on the underlying models.

scored based on several weighting schemes, such
as tf-idf, ttf-idf, log-likelihood ratio, and other
metrics, as described by El-Assady et al. (2018b).
Such weighted feature vectors can describe the im-
portance of keywords on a global level (e.g., for all
analyzed corpora) or on an individual object level
(e.g., for a single document). Other types of fea-
ture vectors include ones extracted using word- or
sentence-embeddings, as well as vectors based on
linguistic annotation pipelines.

(2) Attributes (A) – As opposed to numeric
feature vectors, attributes consist of labels or
pointers attached during processing. Both of these
attribute types can be used to aggregate feature
vectors or measures in the data hierarchy. For
example, for dynamically computing all measure
values related to a particular speaker and topic in
a conversation, these attributes are utilized.

Labels (L) can be single flags, such as POS tags,
or could consist of n-tuples, for example, to inform
the types of arguments contained in the underlying
text. To accommodate for labels that describe only
parts of a hierarchy, we also feature window la-
bels. These are stored in the hierarchy level above
the targeted level and contain a beginning and end-
ing indices of the children. For example, the sen-
tence hierarchy level may contain a label consen-
sus with a beginning index of 0 and ending index
of 6, pointing to a sub-sentence structure that en-
codes that the first six tokens of that sentence are
indicating a consensus.

Pointers (P), on the other hand, are attributes
that point to external structures, such as topics,
speakers, or other entities. Such structures are usu-
ally modeled by specific processing steps and con-
tain descriptive features of the elements they rep-
resent. For example, a topic might contain a list
of descriptive keywords, whereas a speaker object
would contain metadata and biography informa-
tion on a speaker.

(3) Measures (M) – As a pendant to nominal
attributes, measures are numeric or boolean values

attached to the document objects. These are used
to describe linguistic features of various types. As
with the labels, a measure consists of a class name
and a singular value. They are typically used to
qualify properties of objects and, thus, can be ag-
gregated through the data hierarchy. In addition,
measures can be normalized, for example, based
on the number of tokens in a document. We distin-
guish three types of measures: Boolean; numeric
continuous; and numeric bi-polar. Such measures
can be extracted through a variety of processing
steps, ranging from simple word-list-based tag-
gers, statistical analysis steps, rule-based annota-
tors, through sophisticated machine learning based
measure calculators. We use such measures to ex-
tract semantically relevant information or to moni-
tor the quality of document objects with respect to
selected criteria. Hence, such measures inform the
visual analytics methods and expand the dimen-
sionality of the underlying objects.

3 User Interface

“Simplicity comes at the cost of flexibility” (Jent-
ner et al., 2018). The dependency-based process-
ing model automatizes many decisions a user has
to take in other frameworks. However, in order to
allow domain-experts to use their knowledge and
influence the underlying models, parameterization
is necessary. We run a linearization of the acyclic
graph prior to executing the pipeline. This allows
us to display the steps and their parameters in the
order of the processing-flow to support the users
in their parameter estimation. To further support
users we deploy guidance in the form of informa-
tion pop-ups and built-in tutorials. This includes
explaining how a respective processing step trans-
forms the data and the value it adds to the task, but
furthermore involves descriptions of the parame-
ters and their estimated impact.

To exemplify this process, we describe a par-
tial pipeline that is commonly used in our frame-
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work to demonstrate its expressiveness and flex-
ibility. Let this partial pipeline be: (1) Named
Entity Recognizer (A-L) → (2) Document Feature
Extractor (FV) → (3) Topic Modeling (A-P) →
(4) Measure Calculator (M). The (1) NER step la-
bels (A-L) tokens with Named Entities. As shown
in Figure 4a, the user can define parameters such
as the minimum distance and similarity score. The
(2) DFE creates feature vectors (FV) on all data
hierarchies. Based on the data and task, the user
selects and weights the features and selects an ap-
propriate scoring scheme. In the (3) TM step,
the user selects one or multiple of the available
topic models (e.g., LDA, IHTM) and parameter-
izes them, for example, with the number of de-
sired topics (Figure 4b). Note that this step uses
only the feature vectors extracted in the previous
step. It assigns additional pointer attributes (A-P)
for each document reflecting their probability to
belong to a certain topic. The (4) MC then uses,
for example, the topic labels to calculate measures
(M) such as Topic Shift where the topic of discus-
sion is changed within a document, or Topic Per-
sistence where a given topic continues to be pur-
sued by the author or speaker.

Such a pipeline is part of multiple visualization
creation cycles. For example, we utilize the re-
sults of topic modeling to analyze the dynamics
of speakers in a conversation transcript in Con-
ToVi (El-Assady et al., 2016). Hence, to build such
visualization approaches, we rely on the auto-
configuration of the processing pipeline, as well
as the familiarity of users with their analyzed data
and tasks, enabling application developers to fo-
cus on their encapsulated implementation environ-
ment without worrying about the complexity of
the underlying linguisic processing.

4 Microservice Architecture

The modularity of our framework and atomicity of
the steps is further emphasized by the use of mi-
croservices (Figure 5, s1, s2, s3). A microservice
is a small, single-purpose service that exposes an
API. Because our microservices are dockerized,9

the microservice itself is independent of any pro-
gramming language and environment which pro-
vides us with great flexibility. Additionally, in-
dividual microservices are easier to maintain than
a large, monolithic framework. An example mi-
croservice from our framework returns POS tags

9 docker.com

Figure 5: Multiple environments (env1, env2) of the
lingvis.io framework are managed in a kubernetes clus-
ter. Microservices (s1, s2, s3) are tailored to a specific
task and resemble different steps of the pipeline. Any
microservice can be redefined in a specific environment
if variations of the functionality are needed.

for tokenized texts. Requests to that service con-
tain a list of tokens, and are parametrized with
the tagger model to use. The middleware handles
the user authentication, the (processed) data, the
pipeline steps, and the controllers (Figure 3). In
addition, it coordinates the microservices and han-
dles communication with their respective APIs to
obtain results to add to the data.

Our framework lives in a kubernetes clus-
ter10 which effectively manages and orchestrates
docker containers. This allows us to scale
microservices, running multiple instances and
balancing their load automatically—even across
physical servers (Figure 5, see s2). We are further
able to run multiple environments of the lingvis.io
framework (middleware & frontend) in our cluster
allowing our researchers to deploy a tailored ver-
sion, for example, for a user evaluation. Kuber-
netes in combination with the reverse proxy trae-
fik11 automatically assigns a URL to the frontend
and the middleware to make them accessible from
anywhere in the world.

5 Conclusion

A demo of our framework is available under
https://demo.lingvis.io/. Currently available visu-
alizations with attendant NLP microservices are
presented via the demo video or can be found un-
der the “Visualizations” button. To the best of our
knowledge, lingvis.io represents the first scaleable
and modular web-based framework that combines
NLP with visual analytics applications. Its unique
contribution lies in combining these applications
in a novel way on the one hand, but in separating
NLP processing and visualizations on the opera-
tional level through an auto-configured pipeline on

10 kubernetes.io
11 traefik.io

https://www.docker.com/
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the other hand. This enables developers to focus
on the individual task at hand, rather than being
distracted by needing to solve general NLP or vi-
sual analytics problems. As such, the framework
is ideal for rapid prototyping and should serve as
a productive base for more developments within
LingVis, the interdisciplinary combination of, lin-
guistics, NLP and visual analytics.
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