
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 351–356
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

351

Scheduled Sampling for Transformers

Tsvetomila Mihaylova
Instituto de Telecomunicações

Lisbon, Portugal
tsvetomila.mihaylova@lx.it.pt

André F. T. Martins
Instituto de Telecomunicações & Unbabel

Lisbon, Portugal
andre.martins@unbabel.com

Abstract
Scheduled sampling is a technique for avoid-
ing one of the known problems in sequence-
to-sequence generation: exposure bias. It con-
sists of feeding the model a mix of the teacher
forced embeddings and the model predictions
from the previous step in training time. The
technique has been used for improving the
model performance with recurrent neural net-
works (RNN). In the Transformer model, un-
like the RNN, the generation of a new word
attends to the full sentence generated so far,
not only to the last word, and it is not straight-
forward to apply the scheduled sampling tech-
nique. We propose some structural changes
to allow scheduled sampling to be applied to
Transformer architecture, via a two-pass de-
coding strategy. Experiments on two language
pairs achieve performance close to a teacher-
forcing baseline and show that this technique
is promising for further exploration.

1 Introduction

Recent work in Neural Machine Translation
(NMT) relies on a sequence-to-sequence model
with global attention (Sutskever et al., 2014; Bah-
danau et al., 2014), trained with maximum like-
lihood estimation (MLE). These models are typ-
ically trained by teacher forcing, in which the
model makes each decision conditioned on the
gold history of the target sequence. This tends to
lead to quick convergence but is dissimilar to the
procedure used at decoding time, when the gold
target sequence is not available and decisions are
conditioned on previous model predictions.

Ranzato et al. (2015) point out the problem that
using teacher forcing means the model has never
been trained on its own errors and may not be
robust to them—a phenomenon called exposure
bias. This has the potential to cause problems at
translation time, when the model is exposed to its
own (likely imperfect) predictions.

A common approach for addressing the prob-
lem with exposure bias is using a scheduled strat-
egy for deciding when to use teacher forcing and
when not to (Bengio et al., 2015). For a recur-
rent decoder, applying scheduled sampling is triv-
ial: for generation of each word, the model decides
whether to condition on the gold embedding from
the given target (teacher forcing) or the model pre-
diction from the previous step.

In the Transformer model (Vaswani et al.,
2017), the decoding is still autoregressive, but un-
like the RNN decoder, the generation of each word
conditions on the whole prefix sequence and not
only on the last word. This makes it non-trivial to
apply scheduled sampling directly for this model.
Since the Transformer achieves state-of-the-art re-
sults and has become a default choice for many
natural language processing problems, it is inter-
esting to adapt and explore the idea of scheduled
sampling for it, and, to our knowledge, no way of
doing this has been proposed so far.

Our contributions in this paper are:

• We propose a new strategy for using sched-
uled sampling in Transformer models by
making two passes through the decoder in
training time.

• We compare several approaches for condi-
tioning on the model predictions when they
are used instead of the gold target.

• We test the scheduled sampling with trans-
formers in a machine translation task on two
language pairs and achieve results close to
a teacher forcing baseline (with a slight im-
provement of up to 1 BLEU point for some
models).

2 Related Work

Bengio et al. (2015) proposed scheduled sampling

352

for sequence-to-sequence RNN models: a method
where the embedding used as the input to the de-
coder at time step t+1 is picked randomly between
the gold target and the argmax of the model’s
output probabilities at step t. The Bernoulli prob-
ability of picking one or the other changes over
training epochs according to a schedule that makes
the probability of choosing the gold target de-
crease across training steps. The authors propose
three different schedules: linear decay, exponen-
tial decay and inverse sigmoid decay.

Goyal et al. (2017) proposed an approach
based on scheduled sampling which backpropa-
gates through the model decisions. At each step,
when the model decides to use model predictions,
instead of the argmax, they use a weighted aver-
age of all word embeddings, weighted by the pre-
diction scores. They experimented with two op-
tions: a softmax with a temperature parameter, and
a stochastic variant using Gumbel Softmax (Jang
et al., 2016) with temperature. With this tech-
nique, they achieve better results than the standard
scheduled sampling. Our works extends Bengio
et al. (2015) and Goyal et al. (2017) by adapting
their frameworks to Transformer architectures.

Ranzato et al. (2015) took ideas from sched-
uled sampling and the REINFORCE algorithm
(Williams, 1992) and combine the teacher forcing
training with optimization of the sequence level
loss. In the first epochs, the model is trained with
teacher forcing and for the remaining epochs they
start with teacher forcing for the first t time steps
and use REINFORCE (sampling from the model)
until the end of the sequence. They decrease the
time for training with teacher forcing t as training
continues until the whole sequence is trained with
REINFORCE in the final epochs. In addition to
the work of Ranzato et al. (2015) other methods
that are also focused on sequence-level training
are using for example actor-critic (Bahdanau et al.,
2016) or beam search optimization (Wiseman and
Rush, 2016). These methods directly optimize the
metric used at test time (e.g. BLEU). Another pro-
posed approach to avoid exposure bias is SEARN
(Daumé et al., 2009). In SEARN, the model uses
its own predictions at training time to produce se-
quence of actions, then a search algorithm deter-
mines the optimal action at each step and a policy
is trained to predict that action. The main draw-
back of these approaches is that the training be-
comes much slower. By contrast, in this paper we

focus on methods which are comparable in train-
ing time with a force-decoding baseline.

3 Scheduled Sampling with
Transformers

In the case with recurrent neural networks (RNN)
in the training phase we generate one word at a
time step, and we condition the generation of this
word to the previous word from the gold target se-
quence. This sequential decoding makes it simple
to apply scheduled sampling - at each time step,
with some probability, instead of using the previ-
ous word in the gold sequence, we use the word
predicted from the model on the previous step.

The Transformer model (Vaswani et al., 2017),
which achieves state-of-the-art results for a lot of
natural language processing tasks, is also an au-
toregressive model. The generation of each word
conditions on all previous words in the sequence,
not only on the last generated word. The model
is based on several self-attention layers, which di-
rectly model relationships between all words in the
sentence, regardless of their respective position.
The order of the words is achieved by position em-
beddings which are summed with the correspond-
ing word embeddings. Using position masking in
the decoder ensures that the generation of each
word depends only on the previous words in the
sequence and not on the following ones. Because
generation of a word in the Transformer conditions
on all previous words in the sequence and not just
the last word, it is not trivial to apply scheduled
sampling to it, where, in training time, we need
to choose between using the gold target word or
the model prediction. In order to allow usage of
scheduled sampling with the Transformer model,
we needed to make some changes in the Trans-
former architecture.

3.1 Two-decoder Transformer

The model we propose for applying scheduled
sampling in transformers makes two passes on the
decoder. Its architecture is illustrated on Figure 1.
We make no changes in the encoder of the model.
The decoding of the scheduled transformer has the
following steps:

1. First pass on the decoder: get the model
predictions. On this step, the decoder condi-
tions on the gold target sequence and predicts
scores for each position as a standard trans-

353

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Output Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Input Embedding

Position Encoding

Output Embedding

Position Encoding

Inputs Outputs (Gold Target) Outputs (Gold Target) +
Model Predictions

Linear

Generator
Function

Output Probabilities

Linear

Softmax

Output Probabilities

Position Encoding

Add & Norm

Multi-Head
Attention

Figure 1: Transformer model adapted for use with scheduled sampling. The two decoders on the image share the
same parameters. The first pass on the decoder conditions on the gold target sequence and returns the model pre-
dictions. The second pass conditions on a mix of the target sequence and model predictions and returns the result.
The thicker lines show the path that is backpropagated in all experiments, i.e. we always make backpropagation
through the second decoder pass. The thin arrows are only backpropagated in a part of the experiments. (The
image is based on the transformer architecture from the paper of Vaswani et al. (2017).)

former model. Those scores are passed to the
next step.

2. Mix the gold target sequence with the pre-
dicted sequence. After obtaining a sequence
representing the prediction from the model
for each position, we imitate scheduled sam-
pling by mixing the target sequence with the
model predictions: For each position in the
sequence, we select with a given probability
whether to use the gold token or the predic-
tion from the model. The probability for us-
ing teacher forcing (i.e. the gold token) is
a function of the training step and is calcu-
lated with a selected schedule. We pass this
“new reference sequence” as the reference for
the second decoder. The vectors used from
the model predictions can be either the em-
bedding of the highest-scored word, or a mix
of the embeddings according to their scores.
Several variants of building the vector from
the model predictions for each position are
described below.

3. Second pass on the decoder: the final pre-
dictions. The second pass of the decoder
uses as output target the mix of words in
the gold sequence and the model predictions.

The outputs of this decoder pass are the ac-
tual result from the models.

It is important to mention that the two decoders
are identical and share the same parameters. We
are using the same decoder for the first pass, where
we condition on the gold sequence and the second
pass, where we condition on the mix between the
gold sequence and the model predictions.

3.2 Embedding Mix
For each position in the sequence, the first decoder
pass gives a score for each vocabulary word. We
explore several ways of using those scores when
the model predictions are used.

• The most obvious case is to not mix the em-
beddings at all and pass the argmax from the
model predictions, i.e. use the embedding of
the vocabulary word with the highest score
from the decoder.

• We also experiment with mixing the top-k
embeddings. In our experiments, we use the
weighted average of the embeddings of the
top-5 scored vocabulary words.

• Inspired by the work of Goyal et al. (2017),
we experiment with passing a mix of the em-
beddings with softmax with temperature.

354

Using a higher temperature parameter makes
a better approximation of the argmax.

ēi−1 =
∑
y

e(y)
exp(αsi−1(y))∑
y′ exp(αsi−1(y′))

where ēi−1 is the vector which will be used
at the current position, obtained by a sum
of the embeddings of all vocabulary words,
weighted by a softmax of the scores si−1.

• An alternative of using argmax is sampling
an embedding from the softmax distribu-
tion. Also based on the work of Goyal et al.
(2017), we use the Gumbel Softmax (Maddi-
son et al., 2016; Jang et al., 2016) approxima-
tion to sample the embedding:

ēi−1 =
∑
y

e(y)
exp(α(si−1(y)) +Gy)∑
y′ exp(α(si−1(y′) +Gy′))

where U ∼ Uniform(0, 1) and G =
− log(− logU).

• Finally, we experiment with passing a
sparsemax mix of the embeddings (Mar-
tins and Astudillo, 2016).

3.3 Weights update
We calculate Cross Entropy Loss based on the out-
puts from the second decoder pass. For the cases
where all vocabulary words are summed (Softmax,
Gumbel softmax, Sparsemax), we try two variants
of updating the model weights.

• Only backpropagate through the decoder
which makes the final predictions, based on
mix between the gold target and the model
predictions.

• Backpropagate through the second, as well as
through the first decoder pass which predicts
the model outputs. This setup resembles the
differentiable scheduled sampling proposed
by Goyal et al. (2017).

4 Experiments

We report experiments with scheduled sampling
for Transformers for the task of machine trans-
lation. We run the experiments on two language
pairs:

• IWSLT 2017 German−English (DE−EN,
Cettolo et al. (2017)).

Encoder model type Transformer
Decoder model type Transformer
Enc. & dec. layers 6
Heads 8
Hidden layer size 512
Word embedding size 512
Batch size 32
Optimizer Adam
Learning rate 1.0
Warmup steps 20,000
Maximum training steps 300,000
Validation steps 10,000
Position Encoding True
Share Embeddings True
Share Decoder Embeddings True
Dropout 0.2 (DE-EN)
Dropout 0.1 (JA-EN)

Table 1: Hyperparameters shared across models

• KFTT Japanese−English (JA−EN, Neubig
(2011)).

We use byte pair encoding (BPE; (Sennrich et al.,
2016)) with a joint segmentation with 32,000
merges for both language pairs.

Hyperparameters used across experiments are
shown in Table 1. All models were implemented
in a fork of OpenNMT-py (Klein et al., 2017). We
compare our model to a teacher forcing baseline,
i.e. a standard transformer model, without sched-
uled sampling, with the hyperparameters given in
Table 1. We did hyperparameter tuning by trying
several different values for dropout and warmup
steps, and choosing the best BLEU score on the
validation set for the baseline model.

With the scheduled sampling method, the
teacher forcing probability continuously decreases
over the course of training according to a prede-
fined function of the training steps. Among the
decay strategies proposed for scheduled sampling,
we found that linear decay is the one that works
best for our data:

t(i) = max{ε, k − ci}, (1)

where 0 ≤ ε < 1 is the minimum teacher forc-
ing probability to be used in the model and k and
c provide the offset and slope of the decay. This
function determines the teacher forcing ratio t for
training step i, that is, the probability of doing
teacher forcing at each position in the sequence.

355

Experiment DE−EN JA−EN
Dev Test Dev Test

Teacher Forcing Baseline 35.05 29.62 18.00 19.46
No backprop
Argmax 23.99 20.57 12.88 15.13
Top-k mix 35.19 29.42 18.46 20.24
Softmax mix α = 1 35.07 29.32 17.98 20.03
Softmax mix α = 10 35.30 29.25 17.79 19.67
Gumbel Softmax mix α = 1 35.36 29.48 18.31 20.21
Gumbel Softmax mix α = 10 35.32 29.58 17.94 20.87
Sparsemax mix 35.22 29.28 18.14 20.15
Backprop through model decisions
Softmax mix α = 1 33.25 27.60 15.67 17.93
Softmax mix α = 10 27.06 23.29 13.49 16.02
Gumbel Softmax mix α = 1 30.57 25.71 15.86 18.76
Gumbel Softmax mix α = 10 12.79 10.62 13.98 17.09
Sparsemax mix 24.65 20.15 12.44 16.23

Table 2: Experiments with scheduled sampling for Transformer. The table shows BLEU score for the best check-
point on BLEU, measured on the validation set. The first group of experiments do not have a backpropagation
pass through the first decoder. The results from the second group are from model runs with backpropagation pass
through the second as well as through the first decoder.

The results from our experiments are shown In
Table 2. The scheduled sampling which uses only
the highest-scored word predicted by the model
does not have a very good performance. The
models which use mixed embeddings (the top-k,
softmax, Gumbel softmax or sparsemax) and only
backpropagate through the second decoder pass,
perform slightly better than the baseline on the val-
idation set, and one of them is also slightly better
on the test set. The differentiable scheduled sam-
pling (when the model backpropagates through the
first decoder) have much lower results. The perfor-
mance of these models starts degrading too early,
so we expect that using more training steps with
teacher forcing at the beginning of the training
would lead to better performance, so this setup still
needs to be examined more carefully.

5 Discussion and Future Work

In this paper, we presented our approach to ap-
plying the scheduled sampling technique to Trans-
formers. Because of the specifics of the decoding,
applying scheduled sampling is not straightfor-
ward as it is for RNN and required some changes
in the way the Transformer model is trained, by
using a two-step decoding. We experimented with
several schedules and mixing of the embeddings
in the case where the model predictions were

used. We tested the models for machine trans-
lation on two language pairs. The experimental
results showed that our scheduled sampling strat-
egy gave better results on the validation set for
both language pairs compared to a teacher forcing
baseline and, in one of the tested language pairs
(JA−EN), there were slightly better results on the
test set.

One possible direction for future work is exper-
imenting with more schedules. We noticed that
when the schedule starts falling too fast, for exam-
ple, with the exponential or inverse sigmoid de-
cay, the performance of the model degrades too
fast. Therefore, we think it is worth exploring
more schedules where the training does more pure
teacher forcing at the beginning of the training
and then decays more slowly, for example, inverse
sigmoid decay which starts decreasing after more
epochs. We will also try the experiments on more
language pairs.

Finally, we need to explore the poor perfor-
mance on the differential scheduled sampling
setup (with backpropagating through the two de-
coders). In this case, the performance of the model
starts decreasing earlier and the reason for this
needs to be examined carefully. We expect this
setup to give better results after adjusting the de-
cay schedule to allow more teacher forcing train-
ing before starting to use model predictions.

356

Acknowledgments

This work was supported by the European Re-
search Council (ERC StG DeepSPIN 758969),
and by the Fundação para a Ciência e Tecnolo-
gia through contracts UID/EEA/50008/2019 and
CMUPERI/TIC/0046/2014 (GoLocal). We would
like to thank Gonçalo Correia and Ben Peters
for their involvement on an earlier stage of this
project.

References
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,

Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2016. An actor-critic
algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation, pages 2–14.

Hal Daumé, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing, 75(3):297–325.

Kartik Goyal, Chris Dyer, and Taylor Berg-
Kirkpatrick. 2017. Differentiable scheduled
sampling for credit assignment. arXiv preprint
arXiv:1704.06970.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv
preprint arXiv:1611.00712.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning, pages 1614–1623.

Graham Neubig. 2011. The kyoto free translation task.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1296–1306.

http://arxiv.org/abs/1701.02810
http://arxiv.org/abs/1701.02810

