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Abstract

Entity Disambiguation (ED) is the task of link-
ing an ambiguous entity mention to a corre-
sponding entry in a knowledge base. Cur-
rent methods have mostly focused on unstruc-
tured text data to learn representations of en-
tities, however, there is structured information
in the knowledge base itself that should be use-
ful to disambiguate entities. In this work, we
propose a method that uses graph embeddings
for integrating structured information from the
knowledge base with unstructured information
from text-based representations. Our experi-
ments confirm that graph embeddings trained
on a graph of hyperlinks between Wikipedia
articles improve the performances of simple
feed-forward neural ED model and a state-of-
the-art neural ED system.

1 Introduction

The inherent and omnipresent ambiguity of lan-
guage at the lexical level results in ambigu-
ity of words, named entities, and other lexical
units. Word Sense Disambiguation (WSD) (Nav-
igli, 2009) deals with individual ambiguous words
such as nouns, verbs, and adjectives. The task of
Entity Linking (EL) (Shen et al., 2015) is devoted
to the disambiguation of mentions of named enti-
ties such as persons, locations, and organizations.
Basically, EL aims to resolve such ambiguity by
creating an automatic reference between an am-
biguous entity mention/span in a context and an
entity in a knowledge base. These entities can be
Wikipedia articles and/or DBpedia (Mendes et al.,
2011)/Freebase (Bollacker et al., 2008) entries.
EL can be divided into two subtasks: (i) Men-
tion Detection (MD) or Name Entity Recognition
(NER) (Nadeau and Sekine, 2007) finds entity ref-
erences from a given raw text; (ii) and Entity Dis-
ambiguation (ED) assigns entity references for a
given mention in context. This work deals with

the entity disambiguation task.
The goal of an ED system is resolving the am-

biguity of entity mentions, such as Mars, Galaxy,
and Bounty are all delicious. It is hard for an al-
gorithm to identify whether the entity is an astro-
nomical structure1 or a brand of milk chocolate2.

Current neural approaches to EL/ED attempt to
use context and word embeddings (and sometimes
entity embeddings on mentions in text) (Kolitsas
et al., 2018; Sun et al., 2015). Whereas these and
most other previous approaches employ embed-
dings trained from text, we aim to create entity
embeddings based on structured data (i.e. hyper-
links) using graph embeddings and integrate them
into the ED models.

Graph embeddings aim at representing nodes in
a graph, or subgraph structure, by finding a map-
ping between a graph structure and the points in
a low-dimensional vector space (Hamilton et al.,
2017). The goal is to preserve the features of the
graph structure and map these features to the ge-
ometric relationships, such as distances between
different nodes, in the embedding space. Using
fixed-length dense vector embeddings as opposed
to operating on the knowledge bases’ graph struc-
ture allows the access of the information encoded
in the graph structure in an efficient and straight-
forward manner in modern neural architectures.

Our claim is that including graph structure fea-
tures of the knowledge base has a great potential
to make an impact on ED. In our first experiment,
we present a method based on a simple neural
network with the inputs of a context, entity men-
tion/span, explanation of a candidate entity, and
a candidate entity. Each entity is represented by
graph embeddings, which are created using the
knowledge base, DBpedia (Mendes et al., 2011)

1http://dbpedia.org/resource/Galaxy
2http://dbpedia.org/resource/Galaxy_

(chocolate)

mailto:panchenko@informatik.uni-hamburg.de
http://dbpedia.org/resource/Galaxy
http://dbpedia.org/resource/Galaxy_(chocolate)
http://dbpedia.org/resource/Galaxy_(chocolate)
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containing hyperlinks between entities. We per-
form ablation tests on the types of inputs, which
allows us to judge the impact of the single inputs
as well as their interplay. In a second experiment,
we enhance a state-of-the-art neural entity disam-
biguation system called end2end (Kolitsas et al.,
2018) with our graph embeddings: The original
system relies on character, word and entity embed-
dings; we replace respectively complement these
with our graph embeddings. Both experiments
confirm the hypothesis that structured information
in the form of graph embeddings are an efficient
and effective way of improving ED.

Our main contribution is a creation of a simple
technique for integration of structured information
into an ED system with graph embeddings. There
is no obvious way to use large structured knowl-
edge bases directly in a neural ED system. We
provide a simple solution based on graph embed-
dings and confirm experimentally its effectiveness.

2 Related Work

Entity Linking Traditional approaches to EL
focus on defining the similarity measurement be-
tween a mention and a candidate entity (Mihal-
cea and Csomai, 2007; Strube and Ponzetto, 2006;
Bunescu and Paşca, 2006). Similarly, Milne and
Witten (2008) define a measurement of entity-
entity relatedness. Current state-of-the-art ap-
proaches are based on neural networks (Huang
et al., 2015; Ganea and Hofmann, 2017; Kolitsas
et al., 2018; Sun et al., 2015), where are based on
character, word and/or entity embeddings created
by a neural network with a motivation of their ca-
pability to automatically induce features, as op-
posed to hand-crafting them. Then, they all use
these embeddings in neural EL/ED.

Yamada et al. (2016) and Fang et al. (2016) uti-
lize structured data modelling entities and words
in the same space and mapping spans to entities
based on the similarity in this space. They ex-
pand the objective function of word2vec (Mikolov
et al., 2013a,b) and use both text and structured in-
formation. Radhakrishnan et al. (2018) extend the
work of Yamada et al. (2016) by creating their own
graph based on co-occurrences statistics instead of
using the knowledge graph directly. Contrary to
them, our model learns a mapping of spans and
entities, which reside in different spaces and use
graph embeddings trained on the knowledge graph
for representing structured information.

Kolitsas et al. (2018) address both MD and ED
in their end2end system. They build a context-
aware neural network based on character, word,
and entity embeddings coupled with attention and
global voting mechanisms. Their entity embed-
dings, proposed by Ganea and Hofmann (2017),
are computed by the empirical conditional word-
entity distribution based on the co-occurrence
counts on Wikipedia pages and hyperlinks.

Graph Embeddings There are various meth-
ods to create graph embedding, which can be
grouped into the methods based on matrix factor-
ization, random walks, and deep learning (Goyal
and Ferrara, 2018). Factorization-based models
depend on the node adjacency matrix and dimen-
sionality reduction method (Belkin and Niyogi,
2001; Roweis and Saul, 2000; Tang et al., 2015).
Random-walk-based methods aim to preserve
many properties of graph (Perozzi et al., 2014;
Grover and Leskovec, 2016). Deep-learning-
based ones reduce dimensionality automatically
and model non-linearity (Wang et al., 2016; Kipf
and Welling, 2017). In our case, efficiency is cru-
cial and time complexity of factorization-based
models is high. The disadvantage of the deep-
learning-based models is that they require exten-
sive hyperparameter optimization. To keep it sim-
ple, efficient, and to minimize the numbers of hy-
perparameters to tune, yet still effective, we select
random-walk-based methods, where two promi-
nent representatives are DeepWalk (Perozzi et al.,
2014) and node2vec (Grover and Leskovec, 2016).

3 Learning Graph-based Entity Vectors

In order to make information from a semantic
graph available for an entity linking system, we
make use of graph embeddings. We use DeepWalk
(Perozzi et al., 2014) to create the representation
of entities in the DBPedia. DeepWalk is scalable,
which makes it applicable on a large graph. It uses
random walks to learn latent representations and
provides a representation of each node on the ba-
sis of the graph structure.

First, we created a graph whose nodes are
unique entities; attributes are explanations of en-
tities, i.e. long abstracts; edges are the page links
between entities with the information from DB-
pedia. Second, a vector representation per en-
tity is generated by training DeepWalk on the
edges of this graph. For this, we used all de-
fault hyper-parameters of DeepWalk, e.g. number-
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Entity Most similar 3 entities

Michael Jordan (basketball)
Charles Barkley,
Scottie Pippen,

Larry Bird

Michael I. Jordan
David Blei,

Machine learning ,
Supervised learning

Michael Jordan (footballer)
Dagenham & Redbridge F.C.,

Stevenage F.C.,
Yeovil Town F.C.

Table 1: Graph entity embeddings: Top three most
similar entities for the name “Michael Jordan” based
on our 400-dimensional DeepWalk embeddings.

walks is 10, walk-length is 40, and window-size is
5. To exemplify the result, the most similar 3 enti-
ties of disambiguated versions of Michael Jordan,
in the trained model with 400-dimension vec-
tors are shown in Table 1. The first entity,
Michael Jordan (basketball), is a well-known basket-
ball player, and his all most similar entities are
all basketball players and of similar age. The
second entity, Michael I. Jordan is a scientist, and
again the most similar entities are either scientists
in the same field or the topics of his study field.
The last entity, Michael Jordan (footballer), is a foot-
ball player whose most similar entities are football
clubs. This suggests that our graph entity embed-
dings can differentiate different entities with the
same name.

4 Experiment 1: Entity Disambiguation
with Text and Graph Embeddings

In our first experiment, we build a simple neural
ED system based on a feed-forward network and
test the utility of the graph embeddings as com-
pared to text-based embeddings.

4.1 Description of the Neural ED Model
The inputs of an ED task are a context and a pos-
sibly ambiguous entity span, and the output is a
knowledge base entry. For example, Desire con-
tains a duet with Harris in the song Joey and De-
sire given as an input and the output is Bob Dylan’s
album entity3.

Our model in this experiment is a feed-forward
neural network. Its input is a concatenation of
document vectors of a context, a span, and an
explanation of the candidate entity, i.e. long ab-
stract, and graph embedding of a candidate entity

3http://dbpedia.org/page/Desire_(Bob_
Dylan_album)

as in Figure 1, and output is a prediction value de-
noting whether the candidate entity is correct in
this context. For learning representations, we em-
ploy doc2vec (Le and Mikolov, 2014) for text and
DeepWalk (Perozzi et al., 2014) for graphs, both
methods have shown good performance on other
tasks. We will describe the input components in
more detail in the following.

Creating Negative Samples: It is not computa-
tionally efficient to use all entities in our graph as
a candidate for every context-span as negative ex-
amples for training because of the high number of
entities (about 5 million). Thus, we need to filter
some possible entities for each context-span in or-
der to generate negative samples. We use spans to
find out possible entities. If any lemma in the span
is contained in an entity’s name, the entity is added
to the candidates for this mention. For example, if
the span is undergraduates, the entity Undergradu-
ate degree is added to the candidates.

For training, we generate negative samples by
filtering this candidate list and limited the num-
ber of candidates per positive sample. We em-
ploy two techniques to filter the candidate list.
First, we shuffle the candidate list and randomly
select n candidates. The other is to select the
closest candidates by the following score for-
mula: score = # of intersection×page rank

length , where
# of intersection means the number of the com-
mon words between span/entity mention and can-
didate entity, page rank is the page rank value
(Page et al., 1999) on the entire graph for the can-
didate entity, and length is the number of tokens
in the entity’s name/title, e.g. the length of the en-
tity Undergraduate degree is 2. Before taking can-
didates with highest n scores, we have pruned the
most similar candidates to the correct entity on the
basis of the cosine between their respective graph
embeddings. The reason for pruning is to assure
that the entities are distinctive enough from each
other so that a classifier can learn the distinction.

Word and Context Vectors: Document embed-
ding techniques like doc2vec (Le and Mikolov,
2014) assign each document a single vector, which
gets adjusted with respect to all words in the doc-
ument and all document vectors in the dataset.
Additionally, doc2vec provides the infer vector
method, which takes a word sequence and returns
its representation. We employ this function for
representing contexts (including the entity span),

http://dbpedia.org/page/Desire_(Bob_Dylan_album)
http://dbpedia.org/page/Desire_(Bob_Dylan_album)
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Creates context 
vector from 

doc2vec
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Gets word vector from doc2vec

Gets graph vector 
from DeepWalk

Concatenates 
vectors

Feed-Forward 
Neural 

Network 
0 - 1

Candidate 
matches 
the context

Desire

http://dbpedia.org/page/Desire
_(Bob_Dylan_album) 

Desire is the seventeenth 
studio album by American 

singer-songwriter Bob Dylan,...

Context

Target 
Span

Candidate 
entity’s URL

Desire contains a duet 
with Harris in the song 

Joey

Candidate 
entity’s long 

abstract

Figure 1: Architecture of our feed-forward neural ED system: using Wikipedia hyperlink graph embeddings as
an additional input representation of entity candidates.

entity explanations (long abstracts), and multi-
word spans.

4.2 Experimental Setup
Datasets: An English Wikipedia 2017 dump has
been used to train doc2vec, using the gensim im-
plementation (Řehůřek and Sojka, 2010). There
are about 5 million entities (nodes), and 112 mil-
lion page links (edges), in our graph.

DBpedia Spotlight (Mendes et al., 2011) (331
entities), KORE50 (Hoffart et al., 2012) (144 en-
tities), and Reuters-128 (Röder et al., 2014) (881
entities) datasets as described in (Rosales-Méndez
et al., 2018) are used to train and test our architec-
ture. We have used 80% of these data for training,
10% for development, and the remaining for test-
ing.

Implementation Details: We fixed context,
span, and long abstract embedding dimensionality
to 100, the default parameter defined in the imple-
mentation of gensim (Řehůřek and Sojka, 2010).
The size of the graph embeddings is 400. We opti-
mize the graph embedding size based on the devel-
opment set with the range 100 − 400. The over-
all input size is 700 when concatenating context,
span, long abstract, and graph entity embeddings.

The number of negative samples per positive
sample is 10. We have 3 hidden layers with equal
sizes of 100. In the last layer, we have applied
the tanh activation function. We have used Adam
(Kingma and Ba, 2014) optimizer with a learn-
ing rate of 0.005 and 15000 epochs. All hyper-
parameters are determined by preliminary experi-
ments.

4.3 Evaluation
The evaluation shows the impact of graph embed-
dings in a rather simple learning architecture.

In this experiment, an ablation test is performed
to analyze the effect of graph embeddings. We
have two types of training sets, where the creation
of negative samples differs (in one of them, we
have filtered negative samples randomly, whereas,
in the other, we filtered them by selecting the clos-
est ones, as explained in Section 4.1). In Fig-
ure 2, the upper part shows the Accuracy, Pre-
cision, Recall, and F1 values of the training set
filtered randomly while the lower part results re-
fer to the training set filtered by selecting clos-
est neighbors. The first bar in the charts contains
the result of the input, which concatenates context
and long abstract embeddings (in this condition
the input size becomes 200), here entity informa-
tion only comes from its long abstract. The second
bar presents the results of the input combination,
context, word/span, and long abstract embeddings
(the size of the input is 300). In the third bar, the
input is the concatenation of context, long abstract,
and graph embeddings (the input size is 600). Fi-
nally, the last bar indicates results for the concate-
nation of all types of inputs, for an input size of
700. For each configuration, we run the model 5
times and get the mean and standard deviation val-
ues. In Figure 2, charts show the mean values and
the lines on the charts indicate standard deviation.

Comparing the first and third bars (or the sec-
ond and last bars) in Figure 2, we can clearly see
the results are increased when the input includes
the graph embeddings for both variants of negative
sampling. Comparing the third and last bars (or
the first and second bars), we observe that includ-
ing the span representation slightly decreases re-
sults for both sampling variants. We attribute this
to the presence of the context embedding, which
already includes the span, thus this increases the
number of parameters of the network without sub-
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Figure 2: Entity disambiguation performance: various representations of our neural feed-forward ED system
(cf. Figure 1). Reported are scores on the positive class filtered randomly and closest neighbors: 0 context+long
abstract, 0 context+long abstract+span, 0 context+long abstract+graph, 0 context+long abstract+span+graph.

stantially adding new information. Appending
the graph embeddings improves the results about
0.09−0.17 in F1, 0.13−0.2 in recall, 0.07−0.12
in precision and 0.01−0.02 in accuracy scores. In
general, the randomly sampled dataset is easier as
it contains less related candidates.

5 Experiment 2: Integrating Graph
Embeddings in the end2end ED System

5.1 Description of the Neural ED Model

For the second experiment, we have used the
end2end state-of-the-art system for EL/ED (Kolit-
sas et al., 2018) and expanded it with our graph
embeddings. In this neural end-to-end entity dis-
ambiguation system, standard text-based entity
embeddings are used. In the experiment described
in this section, we replace or combine them (keep-
ing the remaining architecture unchanged) with
our graph embeddings build as described in Sec-
tion 3.

We replaced end2end’s entity vector with our
graph embeddings and the concatenation of their
entity vector and our graph embeddings. We use
the GERBIL (Usbeck et al., 2015) benchmark
platform for an evaluation.

5.2 Experimental Setup

Datasets: We train the neural end2end system
in its default configuration with the combina-
tion of MSNBC (Cucerzan, 2007) (747 entities),
ACE2004 (Ratinov et al., 2011) (306 entities),
AQUAINT (Ratinov et al., 2011) (727 entities),
ClueWeb, and Wikipedia datasets. We test the sys-
tem on the GERBIL (Usbeck et al., 2015) platform
using DBpedia Spotlight (Mendes et al., 2011)

(331 entities) and Reuters-128 (Röder et al., 2014)
(881 entities) datasets.

Implementation Details: We have not changed
hyper-parameters for training the end2end system4

(We used their base model + global for ED set-
ting). We create graph embeddings with the same
technique used before, however, to keep every-
thing the same, we decided to also use 300 dimen-
sions for the graph embeddings in this experiment
to match the dimensionality of end2end’s space.

We create the embeddings file with the same
format they used. They give an id for each en-
tity and call it “wiki id”. First, we generate a map
between this wiki id and our graph id (id of our
entity). Then, we replace each entity vector cor-
responding to the wiki id with our graph embed-
dings, which refers to the entity. Sometimes there
is no corresponding graph entity for the entity in
the end2end system, in this case, we supply a zero
vector.

They have a stopping condition, which applies
after 6 consecutive evaluations with no significant
improvement in the Macro F1 score. We have
changed this hyperparameter to 10, accounting for
our observation that the training converges slower
when operating on graph embeddings.

5.3 Evaluation
Table 2 reports ED performance evaluated on DB-
pedia Spotlight and Reuters-128 datasets. There
are three models, end2end trained using their text
entity vectors, our graph embeddings and the com-
bination of them. Training datasets and implemen-
tation details are the same for all models. We train

4https://github.com/dalab/end2end_
neural_el

https://github.com/dalab/end2end_neural_el
https://github.com/dalab/end2end_neural_el
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DBpedia Spotlight dataset

Model
Macro

F1
Macro

Precision
Macro
Recall

Micro
F1

Micro
Precision

Micro
Recall

text embeddings 0.762 0.790 0.742 0.781 0.815 0.750
graph embeddings 0.796 0.860 0.758 0.783 0.847 0.730
text and graph embeddings 0.798 0.835 0.775 0.797 0.835 0.763

Reuters-128 dataset

Model
Macro

F1
Macro

Precision
Macro
Recall

Micro
F1

Micro
Precision

Micro
Recall

text embeddings 0.593 0.654 0.575 0.634 0.687 0.589
graph embeddings 0.607 0.694 0.574 0.660 0.747 0.592
text and graph embeddings 0.614 0.687 0.590 0.650 0.707 0.602

Table 2: Entity disambiguation performance: The end2end (Kolitsas et al., 2018) system based on the original
text-based embeddings, our graph embeddings and a combination of both evaluated using the GERBIL platform
on DBpedia Spotlight and Reuters-128 datasets.

the models for 10 times and removed the mod-
els that did not converge (1 non-converging run
for each single type of embedding and 2 for the
combination). Table 2 shows the mean values.
The standard deviations of the models are between
0.02 − 0.05 in the DBpedia Spotlight dataset and
0.01 − 0.03 in the Reuters-128 dataset over all
scores. Scores are produced using the GERBIL
platform; these are Micro-averaged over the set
of annotations in the dataset and Macro-averaged
over the average performance per document. The
results are improved by including graph embed-
dings. When we compare two models, trained
by graph embeddings and trained by entity vec-
tors, the results are improved up to 0.03 in Macro
F1 scores and Micro Precision, and up to 0.07 in
Macro Precision. However, the improvement of
the combination model is higher in Macro F1 and
Recall. Micro-averaged results follow a similar
trend. When we look at the scores of Reuters-
128 (Röder et al., 2014) dataset, the combination
model improves Macro F1 and Recall and Micro
Recall up to 0.02, 0.015, and 0.013 respectively.
In the Micro-averaged evaluation, the combination
model scores slightly below the model using graph
embeddings alone.

To summarize the evaluation, our graph embed-
dings alone already lead to improvements over the
original text-based embeddings, and their combi-
nation is even more beneficial. This suggests that
test-based and graph-based representations in fact
encode somewhat complementary information.

6 Conclusion and Future Work

We have shown how to integrate structured infor-
mation into the neural ED task using two differ-

ent experiments. In the first experiment, we use
a simple neural network to gauge the impact of
different text-based and graph-based embeddings.
In the second experiment, we replace respectively
complemented the representation of candidate en-
tities in the ED component of a state-of-the-art EL
system. In both setups, we demonstrate that graph
embeddings lead to en par or better performance.
This confirms our research hypothesis that it is
possible to use structured resources for modeling
entities in ED tasks and the information is comple-
mentary to a text-based representation alone. Our
code and datasets are available online5.

For future work, we plan to examine graph em-
beddings on other relationships, e.g. taxonomic
or otherwise typed relations such as works-for,
married-with, and so on, generalizing the notion
to arbitrary structured resources. It might make
a training step on the distance measure depend-
ing on the relation necessary. On the disambigua-
tion architecture, modeling such direct links could
give rise to improvements stemming from the mu-
tual disambiguation of entities as e.g. done in
(Ponzetto and Navigli, 2010). We will explore
ways to map them into the same space to reduce
the number of parameters. In another direction,
we will train task-specific sentence embeddings.
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Michael Röder, Ricardo Usbeck, Sebastian Hellmann,
Daniel Gerber, and Andreas Both. 2014. N3 - A col-
lection of datasets for named entity recognition and
disambiguation in the NLP interchange format. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 3529–3533, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Henry Rosales-Méndez, Aidan Hogan, and Barbara
Poblete. 2018. VoxEL: A benchmark dataset for
multilingual entity linking. In International Seman-
tic Web Conference (2), volume 11137 of Lecture
Notes in Computer Science, pages 170–186, Mon-
terey, CA, USA. Springer.

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlin-
ear dimensionality reduction by locally linear em-
bedding. Science, 290:2323–2326.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Trans. Knowl. Data
Eng., 27(2):443–460.

Michael Strube and Simone P. Ponzetto. 2006.
WikiRelate! Computing semantic relatedness us-
ing Wikipedia. In Proceedings of the 21st Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’06, pages 1419–1424, Boston, MA, USA.
AAAI Press.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling
mention, context and entity with neural networks
for entity disambiguation. In Proceedings of the
24th International Conference on Artificial Intelli-
gence, IJCAI’15, pages 1333–1339, Buenos Aires,
Argentina. AAAI Press.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. LINE: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web, WWW ’15, pages 1067–1077, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Ricardo Usbeck, Michael Röder, Axel-Cyrille
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