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Abstract

Fallacies like the personal attack—also known
as the ad hominem attack—are introduced in
debates as an easy win, even though they pro-
vide no rhetorical contribution. Although their
importance in argumentation mining is ac-
knowledged, automated mining and analysis is
still lacking. We show TF-IDF approaches are
insufficient to detect the ad hominem attack.
Therefore we present a machine learning ap-
proach for information extraction, which has a
recall of 80% for a social media data source.
We also demonstrate our approach with an ap-
plication that uses online learning.

1 Introduction

Debates are shaping our world, with them happen-
ing online more than ever. But for these debates—
and their offline variants as well—to be valuable,
their argumentation needs to be solid. As Stede
and Schneider (2018, Sec. 1.3) recognize, study-
ing fallacies is crucial for the understanding of ar-
guments and their validity. The ad hominem fal-
lacy, the personal attack, is one of the more preva-
lent fallacies. Despite its common occurrence, a
personal attack can be quite effective and might
shape the course of debates.

In online discussion fora, these attacks are often
unwanted for their low rhetorical quality. These
debates are watched by dedicated members of
those fora, so-called moderators. They follow
entire discussion threads and flag any unwanted
posts; which can take up a lot of their time and the
discussion might have already panned out. Au-
tomated flagging could significantly improve the
quality of debates and save moderators a lot of
time.

When developing such an automated system,
the variety and ambiguity of ad hominem attacks
can be difficult to cope with. These attacks range
from simple name calling (i.e. “You’re stupid”),
abusive attacks (i.e. “He’s dishonest”) to more

complex circumstantial attacks (i.e. “You smoke
yourself!”) (Walton, 1998). Detecting all these va-
rieties is quite challenging, since there can even be
discussion about some of those labels amongst hu-
mans.

We hereby focus in this paper on detecting
mainly two variants of the ad hominem fallacy:
name calling and abusive attacks. To realize this
automated system, we present a recurrent neural
model to detect ad hominem attack in a paragraph,
and we experiment with various other models to
compare them. Finally, we look into the issues re-
lated to crowd sourcing of additional labeled para-
graphs through an application as a web demo.

This article is structured as follows: Section 2
covers related work on ad hominem fallacies, de-
tecting those fallacies, and crowd sourcing data
sets. Section 3 will then review the components
used in our approach, which is then further dis-
cussed in Section 4. Section 5 outlines the used
data set, the training setup, and baseline mod-
els; afterwards the results are discussed in Sub-
section 5.3. Finally, Section 6 concludes this work
and discusses future improvements.

2 Related work

The study of argumentations has a long history,
with Rethoric by Aristotle being one of the more
traditional works. In the second book, he dis-
cussed the concept of Logos, the argument or rea-
soning pattern in a debate. More recently, reason-
ing and argumentations are studied in the field of
natural language processing (NLP). The subfield
of argumentation mining focusses on extracting
arguments and their relations (i.e. graphs) from
texts (Stede and Schneider, 2018).

Ad hominem attacks The work of Walton
(1998) describes at the structure of ad hominem
attacks in great depth, from a non-computational
view. In addition to this, the work also analyzes
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different subtypes of ad hominem attacks. The
simplest form is the direct ad hominem, and an
example of a more complex attack is guilt by as-
sociation. Similarly, programmer and venture cap-
italist Paul Graham introduces a hierarchical view
of discussions, with name-calling and ad hominem
attacks as the lowest layers (Graham, 2008). Al-
though both discussions of ad hominem fallacies
and debating in general are an important aspect to
keep in mind, neither of them discuss automated
detection of ad hominem fallacies.

Mining ad hominem fallacies Habernal et al.
(2018) discusses methods to detect name calling,
a subset of ad hominem attacks. Their work is
focussed on how and where these fallacies oc-
cur in so-called discussion trees, of which online
fora and social media are examples. But they also
look into two models for identifying these falla-
cies: firstly, a two-stacked bi-directional LSTM
network, and secondly, a convolutional neural net-
work. Their analysis on the occurrence of those
fallacies is an important contribution, and their
brief attempt at classifying the fallacies is an im-
portant baseline for our work.

Sourcing data Sourcing data from public fora,
such as Reddit, is used by other works in the field
of NLP, like for hateful speech detection (Saleem
et al., 2017) or agreement amongst participants
in a discussion on a community on Reddit called
ChangeMyView (Musi, 2018). Habernal et al.
(2018) also collect their data from this community,
since each post is expected to be relevant to the
discussion. Moderators dedicate their time to flag
and remove those posts. One of those flags is that
a post attacks another person, which is included in
the data set assembled by Habernal et al. (2018).

Crowdsourcing the labeling is another option;
either by paying the participants (Hube and Fe-
tahu, 2018) or by providing a service in return, like
a game (Habernal et al., 2017).

3 Components of the classifier

This section will review current techniques for
sentence representation in Subsection 3.1. Recur-
rent neural networks, which are used for the clas-
sifier in this paper, are covered in Subsection 3.2.

3.1 Sentence representation

Word2vec Word2Vec (Mikolov et al., 2013;
Goldberg and Levy, 2014) offers a way to vector-

ize words whilst also encoding meaning into the
vectors. The vector representation of the word
“cats” would be similar—measured for example
by the cosine similarity—to the vector represen-
tation of the word “dogs” but different than the
vector representation of the word “knowledge”.
This also allows arithmetic operations to take
place (Mikolov et al., 2013). For example:

~w (“king”)− ~w (“man”)

+ ~w (“woman”) ≈ ~w (“queen”)

(1)

The vectors are obtained by maximizing the
likelihood of predicting a determined word (or
term), given other surrounding ones. Thus, a vec-
torized paragraph yields a matrix of l × w, where
l is the length of each vector for a particular word
(arbitrarily chosen) and w are the number of words
for that paragraph. The first input of our model is
a vectorized version of each paragraph from our
dataset, where every element of the vector repre-
sents each word on that paragraph. This vector
is mapped to a pre-trained Word2Vec model from
GoogleNews, which has vector representations of
300 values for 3 million words, names, slang and
bi-grams. Even though the paragraphs do not have
the same length, the amount of words is equal for
all of them and the empty values of shorter para-
graphs are masked.

Par2vec Doc2vec or par2vec is extremely sim-
ilar to Word2Vec. The difference is that a sen-
tence or paragraph is represented as a vector, in-
stead of a single word. The vector values are
adjusted by maximizing the likelihood of a word
(or term), given the surrounding words (or terms)
with an adjustment for the discrepancy between
the likelihood and actual value. Doc2Vec gener-
ates a vector of size l, which can be arbitrarily
chosen. The second input of our model generates
a vector representation of the paragraph itself (Le
and Mikolov, 2014)

POS tagging Part-Of-Speech (POS) tagging ap-
plies a tag to each word in a particular sentence.
For example, words can be tagged as “noun”, “ad-
jective”, or “verb”. For verbs, the tags can also
encode the tense, and further information can be
contained. These labels have been used success-
fully in NLP tasks (Hube and Fetahu, 2018). In
this work, the POS tagging is done by the Python
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Figure 1: Graph of the combined neural network which
gave the best results.

library NLTK (Bird et al., 2009), which uses the
Penn Treebank tagset.

3.2 RNN sentence encoding

Recurrent neural networks (RNNs) have suc-
cessfully been used in sequence learning prob-
lems (Lipton et al., 2015), for example machine
translation (Sutskever et al., 2014; Luong et al.,
2015), and language modeling (Kim et al., 2015).
RNNs extend feedforward neural networks by in-
troducing a connection to adjacent time steps. So
recurrent nodes are not only dependent on the cur-
rent input x(t), but also on the previous hidden
states h(t−1) at a time t.

h(t) = σ
(
Wx(t) +W ′h(t−1) + b

)
(2)

Some applications, for instance sentence mod-
eling, can benefit not only from past, but from fu-
ture input as well. For this reason, bidirectional
recurrent neural networks were developed (Schus-
ter and Paliwal, 1997).

The recurrent nodes can also be adapted by
introducing memory cells. This forms the
foundation for long short-term memory (LSTM)
nodes (Hochreiter and Schmidhuber, 1997). By
leaving out the memory cell, but maintaining the
introduced gating mechanism, a gated recurrent
unit (GRU) is created.

4 Model architecture

In this section, our approach will be discussed in
detail. Subsection 4.1 will go in depth about our
approach and its architecture. Finally, Subsec-
tion 4.2 illustrates how the classifier can be used
in a web demo with online training.

Figure 2: Screenshot of the web app with some exam-
ple sentences.

4.1 Approach
Our approach is based on an RNN, as is illus-
trated in Figure 1. The Word2Vec vectorization
is sent into a Bidirectional GRU. The POS tag-
ging vectorization is also sent into a Bidirectional
GRU. Both GRU layers consist of 100 recurrent
cells each, with a ReLU activation. Lastly, the
Doc2Vec vectorization output is already a vector,
so we don’t need to manipulate it to concatenate
it with the other 2 vectors. Consequently, we con-
catenate the 3 previously mentioned output vectors
in one single vector.

This vector is fed into 2 consecutive fully con-
nected layers with a ReLU activation function.
The last layer is also a fully connected layer but
with a sigmoid activation that represents the prob-
ability that the input paragraph includes an ad
hominem attack.

Even though the network uses masking on the
inputs, an upper word limit L is introduced. Para-
graphs with more words are restrained to the this
limit L. The following section will also analyze
how different limits affect the performance. These
networks are then trained with the AdaDelta opti-
mizer (Zeiler, 2012) with the default learning rate
lr = 1.0 and binary cross entropy as the loss func-
tion. Each of them was trained on a NVIDIA K80
GPU in one hour. In addition, class weights were
used to tackle the imbalanced data.

4.2 Web demo
To demonstrate the classifier, a web application is
built. It uses the same implementation of the clas-
sifier in Keras (Chollet and others, 2015), which
is made available through a REST API with Flask.
The front end is a Vue.js application.
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Table 1: Illustration of how fallacies in the middle of a paragraph are contributing less to the overall output of the
model, even though the attack itself is the same.

Sentence Confidence

Augmented recurrent neural networks, and the underlying technique of attention, are in-
credibly exciting. You’re so wrong and a f*cking idiot! We look forward to seeing what
happens next.

0.39

You’re so wrong and a f*cking idiot! Augmented recurrent neural networks, and the un-
derlying technique of attention, are incredibly exciting. We look forward to seeing what
happens next.

0.79

The web application also supports online learn-
ing and labeling of paragraphs. Each queried para-
graph has two buttons to label the input, after
which the backend saves the feedback and option-
ally retrains the network. However, as will be dis-
cussed in Section 5.3, this approach can actually
worsen the accuracy of the classifier.

5 Evaluation

To correctly compare different models, the data
set is split into a training and test set. All mod-
els are evaluated on a withheld test set (Flach,
2012). In this case, the test set contains over 8k
labeled paragraphs. In two instances, memory is-
sues forced us to train and evaluate on a smaller
data set. These issues can be mitigated by stream-
ing smaller batches of data, but this was made less
of a priority since the provisional results were in
favor of the RNN network. A further breakdown
of the data collection and processing is discussed
in Subsection 5.1.

Our model is compared to different baselines,
which are reviewed in Subsection 5.2.

5.1 Data set

Our models were trained on a data set that was ini-
tially collected by Habernal et al. (2018). This data
set is in essence a database dump of a Reddit com-
munity called Change My View, which focusses
on online debating. In this context, ad hominem
attacks are unwelcome and thus removed by mod-
erators. The data set contains these labels amongst
other things. The authors analyzed this data set
extensively to make sure the labels were correct,
in part by relabeling a subset by crowd-sourced
workers.

However, our goal is different than that
of Habernal et al. (2018): we classify each post
individually, without taking any context about the

discussion into account. Habernal et al. (2018) fo-
cusses on what this context—which they call a dis-
cussion tree—means for the occurrence of an at-
tack. For this reason, we decided to not use the
filtered dataset with only discussing trees that end
up in ad hominem attacks. Instead we used the
database dump and applied our own data cleaning.

Reddit allows the use of text formatting with
Markdown (i.e. *bold* or italics ). These were
filtered, and more complex tags like links were re-
moved, while still preserving the text associated
with the link. Finally, the Markdown format also
allows citations, which were commonly used to
quote sentences of other posts. Since these cita-
tions could contain ad hominem attacks, they are
removed as well.

5.2 Baselines
We compare our approach to multiple baselines.
One of them is a CNN approach by Habernal et al.
(2018), whilst the others are baselines we consider
without recurrent layers.

1. SVMa: our first model is based on a TF-
IDF vectorizer and an SVM classifier (Flach,
2012). The TF-IDF vectorizer uses the top
3000 words from the test set. The SVM clas-
sifier is a linear SVM.

2. SVMb: this model also uses a linear clas-
sifier, but the features are based on word
representations. Instead of the TF-IDF vec-
tors for a paragraph, the 300 most occurring
words from the training set are used. For
each of these 300 words, the TF-IDF value
is replaced by a weighted word embedding.
So for words that don’t occur in a sentence
or paragraph, all elements of this vector are
zero. Otherwise the word representation is
scaled by the TF-IDF value of that word. In
total, this yields an array of 300 words by 300
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Figure 3: ROC curve of the best performing model,
based on the test set.

vector values. This approach is an extension
of Kenter et al. (2016), which used a bag-of-
words approach.

Other approaches—like as averaging all
vectors—don’t perform as well (Le and
Mikolov, 2014).

3. NN: the NN approach continues with the
above described vectorizing and uses a neu-
ral network for classification instead of an
SVM. The output is formed by two sigmoid-
activated neurons after one fully connected
layer.

5.3 Results
Table 2 compares the models discussed in Sec-
tion 3. The models are compared based on several
metrics on a test set of 8531 paragraphs with 726
ad homimems. (Haghighi et al., 2018). Figure 3
show the ROC curve for the RNN model.

The best performing model is the RNN with
word2vec, doc2vec, and POS tag features. This
model scored best on recall R, the Gini coefficient
GI , and the F1 score. The accuracy is slightly
higher for the SVM model with word2vec fea-
tures, due to the class imbalance.

These results—and in particular the difference
between the our RNN model and both SVMa and
SVMb—show that a TF-IDF approach is insuffi-
cient to distinguish most ad hominems from neu-
tral comments, as the Gini coefficients indicate.
The recurrent neural network incorporates sequen-
tial information, which has a positive effect on all
metrics. Using longer input lengths L might al-
low to classify longer paragraphs at once, but this
has a negative impact on the classification results.
A possible reason of this is discussed in Subse-
cion 5.4.
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Figure 4: Influence of online training on three metrics.
The dashed line is the best performing model before
any additional online learning.

5.4 Limitations
An issue is that the output of the model, which can
be interpreted as a confidence scale between 0 and
1, is strongly influenced by the position of an ad
hominem attack. This is illustrated in Table 1.

The web demo features a feedback button to la-
bel the input, and also allows to train the model
directly with this new input. Since only the input
sentence is used, this can cause an issue, namely
catastrophic forgetting (McCloskey and Cohen,
1989). In this case, the model forgets all previ-
ously learned weights and instead of the intended
increase in accuracy, it decreases.

Figure 4 illustrates how the online training of 10
paragraphs affects three metrics. This experiment
is executed on the same test set and the baseline—
the original model—is indicated as well. This
clearly illustrates that when all parameters are
taken into account, the model slowly degenerates,
so it clearly highlights an issue with online learn-
ing.

6 Conclusion and further work

In this paper, we presented a machine learning
approach to classify ad hominem fallacies. This
model is based on two sequence models: a bidirec-
tional GRU neural network for a sequence of word
representations and another similar network for
POS tags. The outputs of these two networks are
combined with an additional feature, a paragraph
representation, and fed into a fully connected neu-
ral network. This approach yields better results
than a TF-IDF approach, which doesn’t take any
sequence information into account.

During the writing of this paper, a novel
representation model based on transformers is
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Table 2: Comparison of different models. All models are trained on 70% of the dataset and evaluated on the
remaining 30%, unless annotated with an asterisk (*). In this case, 3k paragraphs of the dataset were used.

Model L ACC R GI F1

CNN (Habernal et al., 2018) 0.810
SVMa 0.88819 0.29967 0.28208 0.42519
SVMb 0.90044 0.34519 0.29812 0.37455
NN (word2vec)* 0.81667 0.52066 0.38331 0.43299
NN (word2vec and doc2vec)* 0.71222 0.69421 0.40923 0.39344

RNN (word2vec, doc2vec, POS tags)

150 0.83523 0.72853 0.57371 0.43006
200 0.85647 0.80256 0.66406 0.48854
300 0.81755 0.74614 0.57034 0.41049
400 0.84480 0.69284 0.55177 0.35214

published (Devlin et al., 2018). This multi-
lingual model could be used as an alternative for
Word2vec, which has been critiqued for gender
bias (Bolukbasi et al., 2016). Another posibility is
ELMo (Peters et al., 2018), which takes the entire
sentence into account before assigning an embed-
ding to each word.

Finally we also discussed the issue of how the
position of an attack changes the output. A possi-
ble solution would be to add attention to the RNN
layer. This attention mechanism grants the net-
work access to historical hidden states, so not all
information has to be encoded in a single fixed-
length vector (Bahdanau et al., 2014; Hermann
et al., 2015). Continuing in this direction, it would
also be possible to use hierarchical attention on
both the word and sentence level (Yang et al.,
2016).
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