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Abstract

Named entity recognition (NER) and entity
linking (EL) are two fundamentally related
tasks, since in order to perform EL, first the
mentions to entities have to be detected. How-
ever, most entity linking approaches disre-
gard the mention detection part, assuming that
the correct mentions have been previously de-
tected. In this paper, we perform joint learn-
ing of NER and EL to leverage their related-
ness and obtain a more robust and generalis-
able system. For that, we introduce a model
inspired by the Stack-LSTM approach (Dyer
et al., 2015). We observe that, in fact, doing
multi-task learning of NER and EL improves
the performance in both tasks when compar-
ing with models trained with individual objec-
tives. Furthermore, we achieve results com-
petitive with the state-of-the-art in both NER
and EL.

1 Introduction

In order to build high quality systems for com-
plex natural language processing (NLP) tasks, it
is useful to leverage the output information of
lower level tasks, such as named entity recognition
(NER) and entity linking (EL). Therefore NER
and EL are two fundamental NLP tasks.

NER corresponds to the process of detecting
mentions of named entities in a text and classify-
ing them with predefined types such as person, lo-
cation and organisation. However, the majority of
the detected mentions can refer to different entities
as in the example of Table 1, in which the mention
“Leeds” can refer to “Leeds”, the city, and “Leeds
United A.F.C.”, the football club. To solve this am-
biguity EL is performed. It consists in determin-
ing to which entity a particular mention refers to,
by assigning a knowledge base entity id.

In this example, the knowledge base id of the
entity “Leeds United A.F.C.” should be selected.

Leeds’ Bowyer fined for part in fast-food fracas.

NER EL

Separate Leeds-ORG Leeds

Joint Leeds-ORG Leeds United A.F.C.

Table 1: Example showing benefits of doing joint learn-
ing. Wrong entity in red and correct in green.

In real world applications, EL systems have to
perform two tasks: mention detection or NER and
entity disambiguation. However, most approaches
have only focused on the latter, being the mentions
that have to be disambiguated given.

In this work we do joint learning of NER and
EL in order to leverage the information of both
tasks at every decision. Furthermore, by having
a flow of information between the computation of
the representations used for NER and EL we are
able to improve the model.

One example of the advantage of doing joint
learning is showed in Table 1, in which the joint
model is able to predict the correct entity, by
knowing that the type predicted by NER is Organ-
isation.

This paper introduces two main contributions:

• A system that jointly performs NER and EL,
with competitive results in both tasks.

• A empirical qualitative analysis of the advan-
tage of doing joint learning vs using separate
models and of the influence of the different
components to the result obtained.

2 Related work

The majority of NER systems treat the task has
sequence labelling and model it using conditional
random fields (CRFs) on top of hand-engineered
features (Finkel et al., 2005) or bi-directional Long
Short Term Memory Networks (LSTMs) (Lample
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Action Buffer Stack Output Entity
[Obama, met, Donald, Trump] [] []

Shift [met, Donald, Trump] [Obama] []
Reduce-PER [met, Donald, Trump] [] [(Obama)-PER] Barack Obama
Out [Donald, Trump] [] [(Obama)-PER, met] Barack Obama
Shift [Trump] [Donald] [(Obama)-PER, met] Barack Obama
Shift [] [Donald, Trump] [(Obama)-PER, met] Barack Obama
Reduce-PER [] [] [(Obama)-PER, met, Barack Obama,

(Donald Trump)-PER] Donald Trump

Table 2: Actions and stack states when processing sentence “Obama met Donald Trump”. The predicted types and
detected mentions are contained in the Output and the entities the mentions refer to in the Entity.

et al., 2016; Chiu and Nichols, 2016). Recently,
NER systems have been achieving state-of-the-art
results by using word contextual embeddings, ob-
tained with language models (Peters et al., 2018;
Devlin et al., 2018; Akbik et al., 2018).

Most EL systems discard mention detection,
performing only entity disambiguation of previ-
ously detected mentions. Thus, in these cases the
dependency between the two tasks is ignored. EL
state-of-the-art methods often correspond to local
methods which use as main features a candidate
entity representation, a mention representation,
and a representation of the mention’s context (Sun
et al., 2015; Yamada et al., 2016, 2017; Ganea and
Hofmann, 2017). Recently, there has also been
an increasing interest in attempting to improve EL
performance by leveraging knowledge base infor-
mation (Radhakrishnan et al., 2018) or by allying
local and global features, using information about
the neighbouring mentions and respective entities
(Le and Titov, 2018; Cao et al., 2018; Yang et al.,
2018). However, these approaches involve know-
ing the surrounding mentions which can be im-
practical in a real case because we might not have
information about the following sentences. It also
adds extraneous complexity that might implicate a
longer time to process.

Some works, as in this paper, perform end-
to-end EL trying to leverage the relatedness of
mention detection or NER and EL, and obtained
promising results. Kolitsas et al. (2018) proposed
a model that performs mention detection instead of
NER, not identifying the type of the detected men-
tions, as in our approach. Sil and Yates (2013),
Luo et al. (2015), and Nguyen et al. (2016) in-
troduced models that do joint learning of NER
and EL using hand-engineered features. (Durrett
and Klein, 2014) performed joint learning of en-

tity typing, EL, and coreference using a structured
CRF, also with hand-engineered features. In con-
trast, in our model we perform multi-task learning
(Caruana, 1997; Evgeniou and Pontil, 2004), us-
ing learned features.

3 Model Description

In this section firstly, we briefly explain the Stack-
LSTM (Dyer et al., 2015; Lample et al., 2016),
model that inspired our system. Then we will give
a detailed explanation of our modifications and of
how we extended it to also perform EL, as showed
in the diagram of Figure 1. An example of how
the model processes a sentence can be viewed in
Table 2.

3.1 Stack-LSTM

The Stack-LSTM corresponds to an action-based
system which is composed by LSTMs augmented
with a stack pointer. In contrast to the most com-
mon approaches which detect the entity mentions
for a whole sequence, with Stack-LSTMs the en-
tity mentions are detected and classified on the fly.
This is a fundamental property to our model, since
we perform EL when a mention is detected.

This model is composed by four stacks: the
Stack, that contains the words that are being pro-
cessed, the Output, that is filled with the com-
pleted chunks, the Action stack, which contains
the previous actions performed during the process-
ing of the current document, and the Buffer, that
contains the words to be processed.

For NER, in the Stack-LSTM there are three
possible types of actions:

• Shift, that pops a word off the Buffer and
pushes it into the Stack. It means that the last
word of the Buffer is part of a named entity.
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Figure 1: Simplified diagram of our model. The dashed arrows only occur when the action is Reduce. The blocks in
blue correspond to our extensions to the Stack-LSTM and the green blocks correspond to the model’s predictions.
The grey blocks correspond to the stack-LSTM, the blue blocks to our extensions, and the green ones to the outputs.

• Out, that pops a word off the buffer and in-
serts it into the Output. It means that the last
word of the Buffer is not part of a named en-
tity.

• Reduce, that pops all the words in the Stack
and pushes them into the Output. There
is one action Reduce for each possible type
of named entities, e.g. Reduce-PER and
Reduce-LOC.

Moreover, the actions that can be performed at
each step are controlled: the action Out can only
occur if the stack is empty and the actions Reduce
are only available when the Stack is not empty.

3.2 Our model
NER. To better capture the context, we comple-
ment the Stack-LSTM with a representation vt of
the sentence being processed, for each action step
t. For that the sentence x1, . . . ,x|w| is passed
through a bi-directional LSTM, being h1

w the hid-
den state of its 1st layer (bi-LSTM1 in Figure 1),
that corresponds to the word with index w:

{h1
1, . . . ,h

1
|w|} = BiLSTM1(x1, . . . ,x|w|).

We compute a representation of the words con-
tained in the Stack, qt, by doing the mean of the
hidden states of the 1st layer of the bi-LSTM that
correspond to the words contained in the stack at
action step t, set St,:

qt =

∑
k∈St

h1
k

|St|
.

This is used to compute the attention scores αt:

ztw = u>(W 1h
1
w +W 2 qt)

αt = softmax(zt),

where W 1, W 2, and u are trainable parameters.
The representation vt is then obtained by doing
the weighted average of the bi-LSTM 1st layer’s
hidden states:

vt =

|w|∑
w=1

h1
w αtw.

To predict the action to be performed, we imple-
ment an affine transformation (affineNER in Fig-
ure 1) whose input is the concatenation of the last
hidden states of the Buffer LSTM bt, Stack LSTM
st, Action LSTM at, and Output LSTM ot, as well
as the sentence representation vt.

dt = [bt; st; at; ot; vt]

Then, for each step t, we use these representations
to compute the probability distribution pt over the
set of possible actions A, and select the action
ŷtNER

with the highest probability:

pt = softmax(affine(dt))

ŷtNER
= arg max

a ∈ A
(pt(a)).
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The NER loss function is the cross entropy, with
the gold action for step t being represented by the
one-hot vector ytNER

:

LNER = −
T∑
t=1

y>tNER
log(pt).

where T is the total number of action steps for the
current document.

EL. When the action predicted is Reduce, a
mention is detected and classified. This mention is
then disambiguated by selecting its respective en-
tity knowledge base id. The disambiguation step
is performed by ranking the mention’s candidate
entities.

The candidate entities c ∈ C for the present
mention are represented by their entity embedding
ce and their prior probability cp. The prior prob-
abilities were previously computed based on the
co-occurrences between mentions and candidates
in Wikipedia.

To represent the mention detected the 2nd layer
of the sentence bi-LSTM (bi-LSTM2 in Figure 1),
is used, being the representation m obtained by
averaging the hidden states h2

w that correspond to
the words contained in the mention, setM:

{h2
1, . . . ,h

2
|w|} = BiLSTM2(h1

1, . . . ,h
1
|w|)

m =

∑
w∈M h2

w

|M|
.

These features are concatenated with the represen-
tation of the sentence vt, and the last hidden state
of the Action stack-LSTM at:

ci = [cei; cpi; m; vt; at].

We compute a score for each candidate with affine
transformations (affineEL in Figure 1) that have c
as input, and select the candidate entity with the
highest score, ŷtEL

:

lt = affine(tanh(affine(ci, . . . , cn)))

rt = softmax(lt)

ŷtEL
= arg max

c ∈ C
(rt(c)).

The EL loss function is the cross entropy, with the
gold entity for step t being represented by the one-
hot vector ytEL

:

LEL = −
T∑
t=1

y>tEL
log(rt)).

where T is the total number of mention that corre-
spond to entities in the knowledge base.

Due to the fact that not every mention detected
has a corresponding entity in the knowledge base,
we first classify whether this mention contains an
entry in the knowledge base using an affine trans-
formation followed by a sigmoid. The affine’s in-
put is the stack LSTM last hidden state st:

d = sigmoid(affine(st)).

The NIL loss function, binary cross-entropy, is
given by:

LNIL =−(yNIL log(d)+(1− yNIL) log(1− d)),

where yNIL corresponds to the gold label, 1 if
mention should be linked and 0 otherwise.

During training we perform teacher forcing, i.e.
we use the gold labels for NER and the NIL classi-
fication, only performing EL when the gold action
is Reduce and the mention has a corresponding id
in the knowledge base. The multi-task learning
loss is then obtained by summing the individual
losses:

L = LNER + LEL + LNIL.

4 Experiments

4.1 Datasets and metrics
We trained and evaluated our model on the biggest
NER-EL English dataset, the AIDA/CoNLL
dataset (Hoffart et al., 2011). It is a collection of
news wire articles from Reuters, composed by a
training set of 18,448 linked mentions in 946 doc-
uments, a validation set of 4,791 mentions in 216
documents, and a test set of 4,485 mentions in 231
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documents. In this dataset, the entity mentions
are classified as person, location, organisation and
miscellaneous. It also contains the knowledge
base id of the respective entities in Wikipedia.

For the NER experiments we report the F1 score
while for the EL we report the micro and macro
F1 scores. The EL scores were obtained with the
Gerbil benchmarking platform, which offers a re-
liable evaluation and comparison with the state-
of-the-art models (Röder et al.). The results were
obtained using strong matching settings, which re-
quires exactly predicting the gold mention bound-
aries and their corresponding entity.

4.2 Training details and settings

In our work, we used 100 dimensional word em-
beddings pre-trained with structured skip-gram on
the Gigaword corpus (Ling et al., 2015). These
were concatenated with 50 dimensional charac-
ter embeddings obtained using a bi-LSTM over
the sentences. In addition, we use contextual em-
beddings obtained using a character bi-LSTM lan-
guage model by Akbik et al. (2018). The entity
embeddings are 300 dimensional and were trained
by Yamada et al. (2017) on Wikipedia. To get the
set of candidate entities to be ranked for each men-
tion, we use a pre-built dictionary (Pershina et al.,
2015).

The LSTM used to extract the sentence and
mention representations, vt and m is composed
by 2 hidden layers with a size of 100 and the ones
used in the Stack-LSTM have 1 hidden layer of
size 100. The feedforward layer used to determine
the entity id has a size of 5000. The affine layer
used to predict whether the mention is NIL has
a size of 100. A dropout ratio of 0.3 was used
throughout the model.

The model was trained using the ADAM opti-
miser (Kingma and Ba, 2014) with a decreasing
learning rate of 0.001 and a decay of 0.8 and 0.999
for the first and second momentum, respectively.

4.3 Results

Comparison with state of the art models. We
compared the results obtained using our joint
learning approach with state-of-the-art NER mod-
els, in Table 3, and state-of-the-art end-to-end EL
models, in Table 4. In the comparisons, it can be
observed that our model scores are competitive in
both tasks.

System Test F1
Flair (Akbik et al., 2018) 93.09
BERT Large (Devlin et al., 2018) 92.80
CVT + Multi (Clark et al., 2018) 92.60
BERT Base (Devlin et al., 2018) 92.40
BiLSTM-CRF+ELMo (Peters et al., 2018) 92.22
Our model 92.43

Table 3: NER results in CoNLL 2003 test set.

System Validation F1 Test F1
Macro Micro Macro Micro

Kolitsas et al. (2018) 86.6 89.4 82.6 82.4
Cao et al. (2018) 77.0 79.0 80.0 80.0
Nguyen et al. (2016) - - - 78.7
Our model 82.8 85.2 81.2 81.9

Table 4: End-to-end EL results on validation and test
sets in AIDA/CoNLL.

Comparison with individual models. To un-
derstand whether the multi-task learning approach
is advantageous for NER and EL we compare the
results obtained when using a multi-task learning
objective with the results obtained by the same
models when training with separate objectives. In
the EL case, in order to perform a fair compari-
son, the mentions that are linked by the individ-
ual system correspond to the ones detected by the
multi-task approach NER.

These comparisons results can be found in Ta-
bles 5 and 6, for NER and EL, respectively. They
show that, as expected, doing joint learning im-
proves both NER and EL results consistently. This
indicates that by leveraging the relatedness of the
tasks, we can achieve better models.

System Validation F1 Test F1
Only NER 95.46 92.34
NER + EL 95.72 92.52

Table 5: Comparison of Named Entity Recognition
multi-task results with single model results.

System Validation F1 Test F1
Macro Micro Macro Micro

Only EL 81.3 83.5 79.9 80.2
NER + EL 82.6 85.2 81.1 81.8

Table 6: Comparison of Entity Linking results multi-
task results with single model results.

Ablation tests. In order to comprehend which
components had the greatest contribution to the
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obtained scores, we performed an ablation test for
each task, which can be seen in Tables 7 and 8,
for NER and EL, respectively. These experiments
show that the use of contextual embeddings (Flair)
is responsible for a big boost in the NER perfor-
mance and, consequently, in EL due to the bet-
ter detection of mentions. We can also see that
the addition of the sentence representation (sent
rep vt) improves the NER performance slightly.
Interestingly, the use of a mention representation
(ment rep m) for EL that is computed by the sen-
tence LSTM, not only yields a big improvement
on the EL task but also contributes to the improve-
ment of the NER scores. The results also indi-
cate that having a simple affine transformation se-
lecting whether the mention should be linked, im-
proves the EL results.

System Validation F1 Test F1
Stack-LSTM 93.54 90.47
+ Flair 95.40 92.16
+ sent rep 95.55 92.22
+ ment rep 95.72 92.52
+ NIL 95.68 92.43

Table 7: Ablation test for Named Entity Recognition.

System Validation F1 Test F1
Macro Micro Macro Micro

Stack-LSTM 81.95 84.76 80.37 80.12
+ Flair 82.59 85.75 80.86 81.05
+ sent rep 82.31 85.43 80.49 80.62
+ ment rep 82.64 85.17 81.07 81.76
+ NIL 82.78 85.23 81.19 81.94

Table 8: Ablation test for Entity Linking.

5 Conclusions and Future Work

We proposed doing joint learning of NER and EL,
in order to improve their performance. Results
show that our model achieves results competitive
with the state-of-the-art. Moreover, we verified
that the models trained with the multi-task ob-
jective have a better performance than individual
ones. There is, however, further work that can be
done to improve our system, such as training en-
tity contextual embeddings and extending it to be
cross-lingual.
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