
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 149–154
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

149

Controlling Grammatical Error Correction Using Word Edit Rate

Kengo Hotate, Masahiro Kaneko, Satoru Katsumata and Mamoru Komachi
Tokyo Metropolitan University

{hotate-kengo, kaneko-masahiro, satoru-katsumata}@ed.tmu.ac.jp
komachi@tmu.ac.jp

Abstract

When professional English teachers correct
grammatically erroneous sentences written by
English learners, they use various methods.
The correction method depends on how much
corrections a learner requires. In this paper,
we propose a method for neural grammar er-
ror correction (GEC) that can control the de-
gree of correction. We show that it is possi-
ble to actually control the degree of GEC by
using new training data annotated with word
edit rate. Thereby, diverse corrected sentences
is obtained from a single erroneous sentence.
Moreover, compared to a GEC model that does
not use information on the degree of correc-
tion, the proposed method improves correction
accuracy.

1 Introduction

The number and types of corrections in a sen-
tence containing grammatical errors written by an
English learner vary from annotator to annotator
(Bryant and Ng, 2015). For example, it is known
that the JFLEG dataset (Napoles et al., 2017) has
a higher degree of correction in terms of the
amount of corrections per sentence than that in the
CoNLL-2014 dataset (Ng et al., 2014). This is be-
cause CoNLL-2014 contains only minimal edits,
whereas JFLEG contains corrections with fluency
edits (Napoles et al., 2017). Similarly, the degree
of correction depends on the learners because it
should be personalized to the level of learners. In
this study, we used word edit rate (WER) as an in-
dex of the degree of correction. As WER is an
index that shows the number of rewritten words
in sentences, the WER between an erroneous sen-
tence and a corrected sentence can represent the
degree of correction of the sentence. Figure 1
shows that the WER of the JFLEG test set is higher
than that of the CoNLL-2014 test set; thus, the
WER shows the degree of correction.

Figure 1: Histogram of the WER in one sentence.

However, existing GEC models consider
only the single degree of correction suited for
training corpus. Recently, neural network-based
models have been actively studied for use
in grammatical error correction (GEC) tasks
(Chollampatt and Ng, 2018). These models
outperform conventional models using phrase-
based statistical machine translation (SMT)
(Junczys-Dowmunt and Grundkiewicz, 2016).
Nonetheless, controlling the amount of correction
required to obtain an error-free sentence is not
possible.

Therefore, we propose a method for neural GEC
that can control the degree of correction. In the
training data, in which grammatical errors are cor-
rected, we add information about the degree of
correction to erroneous sentences as WER tokens
to create new training data. Then, we train the neu-
ral network model using the new training data an-
notated with the degree of correction. At the time
of inference, this model can control the degree of
correction by adding a WER token to the input. In
addition, we propose a method to select and es-
timate the degree of correction required for each
input sequence.
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Corpus Sent.

Lang-8 1.3M
NUCLE 16K
Extra Data (NYT 2007) 0.4M

Table 1: Summary of training data.1

In the experiments, we controlled the degree of
correction of the model for the CoNLL and JF-
LEG. As a result, we confirmed that the degree of
correction of the model can actually be controlled,
and consequently diverse corrected sentences can
be generated. Moreover, we calculated the cor-
rection accuracies of both the CoNLL-2014 test
set and JFLEG test set and demonstrated that the
proposed method improved the scores of both F0.5

using the softmax score and GLEU using the lan-
guage model (LM) score more than the baseline
model.

The main contributions of this work are summa-
rized as follows:

• The degree of correction of the neural GEC
model can be controlled using the WER.

• The proposed method increases correction
accuracy and produces diverse corrected sen-
tences to further improve GEC.

2 Controlling the degree of correction by
using WER

We propose a method to control the degree of cor-
rection of the GEC model by adding tokens based
on the WER, which is calculated for all sentences
in the training data. The method of calculating
WER and adding WER tokens is described as fol-
lows.

First, the Levenshtein distance is calculated
from the erroneous sentence and the correspond-
ing corrected sentence in the training data. Then,
WER is calculated by normalizing this distance
with respect to the source length.

Second, appropriate cutoffs are selected to di-
vide the sentences into five equal-sized subsets.
Different WER tokens are defined for each sub-
set and added to the beginning of the source sen-
tences.

Finally, the following parallel corpus is ob-
tained: error-containing sentences annotated with
the WER token representing the correction degree

1Only sentences with corrections are used, and the sen-
tence length limit is 80 words.

WER Token Min Max Sent.

⟨1⟩ 0.01 0.12 350K
⟨2⟩ 0.12 0.20 350K
⟨3⟩ 0.20 0.31 350K
⟨4⟩ 0.31 0.53 350K
⟨5⟩ 0.53 38.00 2 350K

Table 2: Thresholds of WER and number of sentences
corresponding to WER tokens in the training data.

at the beginning of sentences and the correspond-
ing sentences in which errors are corrected. The
GEC model is trained using this newly created
training data.

At the time of inference, five kinds of output
sentences are obtained for each input sentence
through the WER token. Therefore, we propose
two simple ranking methods to automatically de-
cide the optimal degree of correction for each in-
put sentence.

Softmax. Ranking the 5 single best candidates
Y using the sum of log probabilities of soft-
max score normalized by the hypothesis sentence
length |y|. The softmax score shows whether the
hypothesis sentence y is appropriate for source
sentence x.

ŷ = argmax
y∈Y

1

|y|

|y|∑
i=1

logP (yi|y1, · · · , yi−1,x)

Language model (LM). Ranking the 5 single
best candidates Y using the score of an n-gram
LM. This score is normalized by the sentence
length of the GEC model, and shows the fluency
of hypothesis sentence y.

ŷ = argmax
y∈Y

1

|y|

|y|∑
i=1

logP (yi|yi−(n−1), · · · , yi−1)

3 Experiments

3.1 Datasets
Table 1 summarizes the training data. We
used Lang-8 (Mizumoto et al., 2012) and NUCLE
(Dahlmeier et al., 2013) as the training data. The
accuracy of the GEC task is known to be im-
proved by increasing the amount of the training
data (Xie et al., 2018). Therefore, we added more

2WER may exceed the one in which the Levenshtein dis-
tance is larger than the number of words in the target sen-
tence.
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Model CoNLL-2013 (Dev) CoNLL-2014 (Test) JFLEG (Dev) JFLEG (Test)

P R F0.5 P R F0.5 GLEU WER

Baseline 42.19 15.28 31.20 53.20 25.18 43.52 47.92 51.77 0.10

WER Token
⟨1⟩ 52.45 13.60 33.39 60.07 23.52 *45.83 44.85 *48.45 0.06
⟨2⟩ 47.55 17.94 35.75 54.64 28.41 *46.12 47.96 *52.01 0.09
⟨3⟩ 43.38 20.05 35.19 50.48 31.45 *45.03 49.45 *53.59 0.12
⟨4⟩ 40.91 21.32 34.56 47.43 32.68 43.50 49.16 *53.47 0.17
⟨5⟩ 29.48 13.98 24.13 33.77 22.95 *30.86 37.52 *42.21 0.43

Table 3: Results of GEC experiments with controlled degree of correction.

Method CoNLL-2014 (Test) JFLEG (Test)

P R F0.5 GLEU

Softmax 60.15 24.03 ∗46.25 49.07
LM 44.34 20.20 35.79 ∗53.87

Oracle WER 72.57 34.40 59.39 58.49

Gold WER 55.25 28.38 46.45 54.48

Table 4: Results of GEC experiments with ranking of
the 5 single best candidates. The oracle WER shows
the scores when selecting a corrected sentence for each
erroneous sentence that maximizes the F0.5 on CoNLL-
2014 test set and GLEU on JFLEG test set. The gold
WER shows the scores when using the WER token cal-
culated from the reference in evaluation datasets.

data by introducing synthetic grammatical errors
to the 2007 New York Times Annotated Corpus
(LDC2008T19)3 to the original training data in the
same manner as the random noising method done
by Xie et al. (2018). We used the CoNLL-2014
test set and JFLEG test set as the test sets and
CoNLL-2013 dataset (Ng et al., 2013) and JFLEG
dev set as the development sets, respectively.

3.2 Model
We used a multilayer convolutional encoder-
decoder neural network without pre-trained
word embeddings and re-scoring using the
edit operation and language model features
(Chollampatt and Ng, 2018) as the GEC model
with the same hyperparameters. We conducted
the following two experiments. First, we trained
the GEC model (baseline) by using the training
data as is. Second, we created new training data
by adding WER tokens defined by WER to the
beginning of sentences in the original training
data, and used it to train a GEC model. We added
five types of WER tokens to the training data,

3https://catalog.ldc.upenn.edu/LDC2008T19

as shown in Table 2, defined according to the
WER score: ⟨1⟩ (the sentence set with the highest
WER), ⟨2⟩, ⟨3⟩, ⟨4⟩, and ⟨5⟩ (the sentence set
with the lowest WER).

In the ranking experiment, we used
a 5-gram KenLM (Heafield, 2011)
with Kneser-Ney smoothing trained on
the web-scale Common Crawl corpus
(Junczys-Dowmunt and Grundkiewicz, 2016).

As an evaluation method, we computed the
F0.5 score by using the MaxMatch (M2) scorer
(Dahlmeier and Ng, 2012) for the CoNLL-2013
dataset and CoNLL-2014 test set and computed
the GLEU score for the JFLEG dev and test sets.
In addition, we calculated the average WER of the
JFLEG test set.

3.3 Controlling experiment
Table 3 shows the experimental result of control-
ling the degree of correction using WER. The
“WER Token” models are all the same model ex-
cept for each WER token added to the beginning
of the all of input sentences at the time of infer-
ence.

The WER in Table 3 show that the average
WER is proportional to the WER tokens added to
the input sentences. Hence, the WER of the GEC
model can be controlled by the WER tokens de-
fined by WER.

The precision is the highest for the WER token
⟨1⟩ and the recall is low. In contrast, the preci-
sion is the lowest for the WER token ⟨4⟩, while
the recall is the highest. Therefore, the recall is
in proportional to the WER, while the precision is
inversely proportion to the WER.

However, even with the WER of model ⟨5⟩ be-
ing the highest, both its precision and recall are
low. In addition, the GLEU and F0.5 scores of

∗A statistically significant difference can be observed
from the baseline (p < 0.05).
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Source Disadvantage is parking their car is very difficult . WER

Reference The disadvantage is that parking their car is very difficult . 0.33

Baseline Disadvantage is parking their car is very difficult . 0.00

WER Token
⟨1⟩ Disadvantage is parking ; their car is very difficult . 0.11
⟨2⟩ Disadvantages are parking their car is very difficult . 0.22
⟨3⟩ The disadvantage is parking their car is very difficult . 0.22
⟨4⟩ The disadvantage is that parking their car is very difficult . 0.33
⟨5⟩ The disadvantage is that their car parking lot is very difficult . 0.56

Table 5: Example of outputs on the JFLEG test set.

model ⟨5⟩ are the lowest. Table 2 shows the WER
of the training data with WER token ⟨5⟩ is more
than 0.5. The manual inspection of this training
data revealed that it includes noisy data, for exam-
ple, very short source sentences or very long target
sentences with inserted comments not related to
corrections. Consequently, the score is considered
to decrease because the training fails.

The degree of correction differs between the
CoNLL and JFLEG sets, as described in Section
1. In this result, the WER token with the high-
est score differs in CoNLL and JFLEG. Moreover,
these scores are higher than the baseline scores.

The correction accuracies of both the CoNLL
and JFLEG differ for each WER token. Hence,
the proposed model can generate diverse corrected
sentences by using the WER token.

3.4 Ranking experiment

In the controlling experiment, we obtained the 5
single best candidates with different degrees of
correction. Table 4 shows the experimental results
of GEC with the ranking of the 5 single best can-
didates. As shown, these simple ranking methods
can decide the best WER token.

The row of softmax in Table 4 shows the result
of the ranking of the 5 single best using the soft-
max score for each sentence. The result shows that
the F0.5 score of CoNLL-2014 test set is higher
than the scores of the baseline. In contrast, the
GLEU score of JFLEG test set is low. The WER
in Table 3 shows that the GEC model does not cor-
rect much. Hence, the softmax score of the GEC
model tends to be high when there are few correc-
tions.

The result of ranking the 5 single best sentences
using the LM score is shown in the LM row of
Table 4. The GLEU score of JFLEG contain-
ing fluency corrections is higher than the scores
of the baseline model; however, the F0.5 score of

CoNLL-2014 test set containing minimal correc-
tions is low. This outcome is plausible because
LM prefers fluency in a sentence regardless of the
input.

Table 4 shows the scores of “Oracle WER”
when selecting the corrected sentence, which has
a higher evaluation score than any other corrected
sentences for each input sentence. As a result, F0.5

achieves a score of 59.39 on the CoNLL-2014 test
set and GLEU achieves a score of 58.49 on the
JFLEG test set. These scores significantly outper-
form the baseline scores. This could be because
the proposed model can generate diverse sentences
by controlling the degree of correction. These re-
sults imply that the proposed model can be im-
proved by selecting the best corrected sentences.

3.5 Example

Table 5 illustrates outputs of the GEC model with
the addition of different WER tokens to the input
sentences. This example is obtained from the out-
puts on the JFLEG test set for each WER token.
The bold words represent the parts changed from
the source sentence.

This example shows several gold edits to correct
grammatical errors in the source sentence. Model
⟨3⟩ corrects only two of these errors, whereas
model ⟨4⟩ covers all the parts to be corrected.
Model ⟨5⟩ makes further changes although these
edits are termed as erroneous corrections. This ex-
ample confirms that the proposed method corrects
errors with different degrees of correction. Al-
though the output of the baseline is not corrected,
the proposed method could be used to correct all
the errors by performing substantial corrections by
using the WER token.

3.6 Analysis

Effect of the WER token. We confirmed how
accurately the WER token could control the de-
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Figure 2: Comparison of the recall of each WER token
per error type breakdown , which occurs more than 100
times in the CoNLL-2013 dataset.

gree of correction of model. Therefore, we de-
termined the gold WER tokens for each sentence
from the WERs calculated from erroneous and
corrected sentences in the CoNLL-2014 test set
and JFLEG test set, as shown in Table 2. Then,
we calculated the average of the M2 score, GLEU,
and the controlling accuracy because the CoNLL-
2014 test set and JFLEG test set have multiple ref-
erences. The controlling accuracy is the concor-
dance rate of the gold and system WER tokens de-
termined from system output sentences using the
gold WER token and erroneous sentences of the
CoNLL-2014 test set and JFLEG test set.

The scores of F0.5 and GLEU shown in the
“Gold WER” row in Table 4 are higher than the
baseline scores. However, the scores of F0.5 and
GLEU are not higher than the oracle WER. More-
over, the controlling accuracy is 62.16 for the
CoNLL-2014 test set and 53.18 for the JFLEG test
set. This could be because the proposed model
corrects less than the degree of correction corre-
sponding to the gold WER token. Specifically, the
average number of output sentences below the de-
gree of the correction of the gold WER token is
459.5 within 1,312 sentences in the CoNLL-2014
test set and 64 within 747 sentences in the JFLEG
test set. This result shows that it is difficult to
estimate of the WER from erroneous sentences.
In other words, to improve the correction accu-
racy, considering GEC methods without relying on
WER is necessary.

Error types. We calculated recall to analyze
whether the degree of correction can be controlled
in more detail for each error type by using ER-
RANT4 (Bryant et al., 2017) on the CoNLL-2013
dataset. Figure 2 shows the result of compari-

4https://github.com/chrisjbryant/errant

son of each WER token and each error type. As
the WER increases, the recall increases for al-
most all error types except for model ⟨5⟩. Among
them, the recall of DET and NOUN:NUM espe-
cially increases compared to the recall of VERB
and VERB:FORM. This result also shows that the
degree of correction can be controlled by using the
WER.

4 Related work

Junczys-Dowmunt and Grundkiewicz (2016) used
an SMT model with task-specific features, which
outperformed previously published results. How-
ever, the SMT model can only correct few words
or phrases based on a local context, resulting in
unnatural sentences. Therefore, several meth-
ods using a neural network were proposed to en-
sure fluent corrections, considering the context
and meaning between words. Among them, the
method by Chollampatt and Ng (2018) uses a mul-
tilayer convolutional encoder-decoder neural net-
work (Gehring et al., 2017). This model is one of
the state-of-the-art models in GEC, and its imple-
mentation is currently being published5. However,
these models cannot be controlled in terms of the
degree of correction.

Kikuchi et al. (2016) proposed to control the
output length by hinting about the output length to
the encoder-decoder model in the text summariza-
tion task. Sennrich et al. (2016) controlled the po-
liteness of output sentences by adding politeness
information to the training data as WER tokens
in machine translation. In this research, similar
to Sennrich et al. (2016), we added WER indicat-
ing the degree of correction as WER tokens to the
training data to control the degree of correction for
the input sentences.

Similar to our method, Junczys-Dowmunt et al.
(2018) and Schmaltz et al. (2017) trained a GEC
model with corrective edits information to control
the tendency of generating corrections.

5 Conclusion

This study showed that it is possible to control the
degree of correction of a neural GEC model by
creating training data with WER tokens based on
the WER to train a GEC model. Therefore, di-
verse corrected sentences can be generated from
one erroneous sentence. We also showed that the
proposed method improved correction accuracy.

5https://github.com/nusnlp/mlconvgec2018
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In the future, we would like to work on selecting
the best sentence from a wide variety of corrected
sentences generated by a model varying the degree
of correction.
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