Improving Mongolian-Chinese Neural Machine Translation with
Morphological Noise

Yatu JI*# Hongxu HOU*!

Jiyatu0@l26.com cshhx@imu.edu.cn wunier04@126.conchenjj@imau.edu.cn

Nier WU* Junjie CHEN*

*Computer Science dept, Inner Mongolia University / Hohhot, China

Abstract

For the translation of agglutinative language
such as typical Mongolian, unknown (UN-
K) words not only come from the quite
restricted vocabulary, but also mostly from
misunderstanding of the translation model
to the morphological changes. In this s-
tudy, we introduce a new adversarial train-
ing model to alleviate the UNK problem
in Mongolian—Chinese machine translation.
The training process can be described as
three adversarial sub models (generator, val-
ue screener and discriminator), playing a
win—win game. In this game, the added
screener plays the role of emphasizing that
the discriminator pays attention to the added
Mongolian morphological noise' in the form
of pseudo-data and improving the training effi-
ciency. The experimental results show that the
newly emerged Mongolian—Chinese task is
state-of-the-art. Under this premise, the train-
ing time is greatly shortened.

1 Introduction

The dominant neural machine translation (NMT)
(Sutskever et al., 2014) models are based on recur-
rent (RNN, (Mikolov et al., 2011)), convolution-
al neural networks (CNN, (Gehring et al., 2017))
or entirely eliminates recurrent connections and
relies instead on a repeated attention mechanism
(Transformer, (Vaswani et al., 2017)) which are
achieved by an attention mechanism (Bahdanau
et al., 2014). A considerable weakness in these
NMT systems is their inability to correctly trans-
late very rare words: end-to-end NMTs tend to
have relatively small vocabularies with a single
< unk > symbol that represents every possible

!These morphological noises exist in most agglutinative
languages in the form of appended stem, which are used to
determine the presentation or tense of words. Some typical
noises, such as suffixes and cases in Mongolian, Korean and
Japanese.

123

out-of-vocabulary (OOV) word. The problem is
more prominent in agglutinative language tasks,
because the varied morphology brings great confu-
sion to model decoding. The change of suffix and
component case’ in Mongolian largely deceives
the translation model directly resulting in a large
amount of OOV during decoding. This OOV is
then crudely considered the same as an < unk >
symbol.

Generally, there are three ways to solve this
problem. A usual practice is to speed up training
(Morin and Bengio, 2005; Jean et al., 2015; Mnih
et al., 2013), these approaches can maintain a very
large vocabulary. However, it works well when
there are only a few unknown words in the target
sentence. These approaches have been observed
that the translation performance degrades rapidly
as the number of unknown words increases. An-
other aspect is the information in context (Luong
et al., 2015; Hermann et al., 2015; Gulcehre et al.,
2016), they motivate their work from a psycholog-
ical evidence that humans naturally have a tenden-
cy to point towards objects in the context. The last
aspect is the input/output change, these approach-
es change to a smaller resolution, such as char-
acters (Graves, 2013a) and bytecodes (Sennrich
et al., 2016). However, it is worth thinking that
the training process usually becomes much hard-
er because of the length of sequences considerable
increases.

For NLP tasks, generative adversarial network
(GAN) is immature. Some studies, such as (Chen
et al., 2016; Zhang et al., 2017), used GAN for
semantic analysis and domain adaptation. (Yu
et al., 2016; Zhen et al., 2018; Wu et al., 2018)
successfully applied GAN to sequence generation
tasks. (Zhang Y, 2017) propose matching the
high-dimensional latent feature distributions of re-

*Mongolian-case is a special suffix used to determine its
relationship to other words in a sentence.

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 123-129

Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics

al and synthetic sentences, via a kernelized dis-
crepancy metric. This eases adversarial training
by alleviating the mode-collapsing problem.

In the present study, GAN is used for UNK
problem. The motivation for this is GAN's advan-
tage in approaching real data effectively based on
noise in a game training. To obtain generalizable
adversarial training, we propose a noise-added s-
trategy to add noise samples into the training set
in the form of pseudo data. The noise is the main
cause of UNK, such as the segmentation of suffix-
es and the handling of case components in Mongo-
lian. A representative example is used to illustrate
the decoding search process of Mongolian sen-
tences in adversarial training (Fig. 1). During de-
coding, decoder usually can not solve the problem
of morphological variability of words (caused by
morphological noise) through vocabulary, which
leads to OOV. Therefore, we introduce GAN mod-

1
O
Mangolian [==
ortyren e o
" Mongolia anguage
decoding p—
oxont O W(jbw) 9 leaming oy
Cunk] learn ~ng N
decoding
. vl tid ol Yoot
Sentence: [Object case | (unk]
B Foxtrmd (W osomd a lot of books
word 9 oy 1,:6\.,(s ¥
v e O=--on
1,‘7‘0 ol W read WEGJ \[decoding
(I read a lot of books when I rea
was learning Mongolian) O Cunk]
Adversarial process «e=«Q) Stem-suffix —=—Mongolian case unk

Figure 1: Given a sentence, Mongolian words face dif-
ferent suffix and case noises in each decoding process
of the adversarial training, which are the main reason-
s for < unk >. For instance, the verb ‘(learn)’ and
‘(read)’ need to add the verb-suffixes and tense-cases
in order to associate with nouns in Mongolian. Con-
versely, (“learning”) and (read+* ’), which are con-
fused by suffixes and cases, do not appear in the vocab-
ulary. This will directly cause <unk> appear in the de-
coding process. The proposed model aims to improve
the generalization ability of noise through adversarial
training.

el with a value screener (VS-GAN), a generaliza-
tion of GAN, which makes the adversarial train-
ing specific to the noise. The model also improves
the efficiency of GAN training by value iteration
network (VIN) (Tamar et al., 2016) and address-
es the problem of optimal parameter updating in
Reinforcement Learning(RL) training. These are
our two contributions. The third contribution is
a thorough empirical evaluation on four differen-

124

t noises. We compare several strong baselines,
including MIXER (Ranzato et al., 2015), Trans-
former (Vaswani et al., 2017), and BR-CSGAN
(Zhen et al., 2018). The experimental results show
that VS-GAN achieves much better time efficien-
cy and the newly emerged state-of-the-art result on
Mongolian-Chinese MT.

2 GAN with the Value Screener

In this section, we describe the architecture of VS-
GAN in detail. VS-GAN consists of the follow-
ing components: generator (7, value screener, and
discriminator D. Given the source language se-
quence {x1,...,zy, } with length N, G aims to

generate sentences {yll, ,y}vy} which are in-
distinguishable by D. D attempts to discrimi-
nate between {yll, cee y}vy} and human translated

ones {yl, ...,yNy}. The value screener uses the
reward information generated by G to convert the
decoding cost into a simple value, and determines
whether the predictions of current state need to be
passed to D.

2.1 Generator G

The selection of G is individualized and targeted.
In this work, we focus on long short term memory
(LSTM(Graves, 2013b)) with attention mechanis-
m and Transformer (Vaswani et al., 2017). The
temporal structure of LSTM enables it to capture
dependency semantics in agglutinative language.
Transformer has refreshed state-of-the-art perfor-
mance on several languages pairs. For the nec-
essary policy optimization in GAN training, we
focus our problem on the RL framework (Mnih
et al., 2013). The approach can solve the long-
term reward problem because a standard model
for sequential decision making and planning is the
markov decision process (MDP) (Dayan and Ab-
bott, 2003) in RL training. G can be viewed as
an agent which interacts with the external envi-
ronment (the words and the context vector at every
timestep). The parameters of agent define a policy
0, whose execution results in the agent is selecting
an action aeA. In NMT, an action represents the
prediction of the next word y£ in the sequence at ¢-
th timestep. After taking an action, the agent will
update its internal state seS (i.e., the hidden unit-
s). RL will observe a reward R(s, a) once the end
of a sequence (or the maximum sequence length)
is reached. We can choose any reward function,

and in this case, we choose BLEU because it is the
metric we used at the test time.

2.2 Value Screener

So far, the constructed G is still confused by noise
because the effect of noise has not been fully u-
tilized due to the lack of attention from D. To
solve this problem, we add a VIN implemented
value screener between GG and D to enhance the
generalization ability of G to the noise. In VIN,
the < unk > symbol corresponds to a low train-
ing reward, whereas the low training reward cor-
responds to a low value. This is what the screener
wants to emphasize.

To achieve VIN, we introduce an interpretation
of an approximate VI algorithm as a particular for-
m of a standard CNN. Specifically, VI in this form,
which makes learning the MDP (R., 1957; Bert-
sekas., 2012) parameters and reward function nat-
ural by backpropagation through the network. We
can train the entire policy end-to-end on the ba-
sis of its simplification by backpropagation. For
the training process, each iteration of VI algorithm
can be seen as passing the previous value of V;_;
and reward R by a convolution layer and max-
pooling layer. In this analogy, the active function
in the convolution layer corresponds to the () func-
tion. We can formulate the value iteration as:

ye = maz,Q(s,a)

ol (1)

=maz |R(s,a) + Z P(s|s¢g—1,a)Vi_q
t=1

where Q(s,a) indicates the value of action a under
state s at ¢-th timestep, the reward R(s, a) and dis-
counted transition probabilities P(s|s;—1,a) are
obtained from G which mentioned in Section 2.1.
N denotes the length of the sequence. Thus,
the value of sequence V,, will be produced by
applying the convolution layer recurrently sev-
eral times according to the length of the sen-
tence, and for a batch, n is valued between 1
and batchsize of training. The optimal value
Vupdate = Average(Vi, ..., Vpatchsize) 18 the av-
erage long-term return possible from a state. The
value of current predictions represents the cost of
decoding at current state. We select the value of
optimal pre-training model as the initial V*and
compare it with Vy4.¢e. Subsequently, we ob-
serve the decoding effect of the current batch;
thus, we can decide the necessity of taking the neg-
ative example as an input of D. The conditions of

125

direct input to D
screening and V* =

screening are as follows:
{ Zf Vupdate <V
Zf Vupdate >V*
2
Since VIN is simply a form of CNN, once a VIN
design is selected, implementing the screener is s-
traightforward. The networks in the experiments
all require only several lines of Tensor code.

update

2.3 Discriminator D

We implement D on the basis of CNN. The reason
for this is that CNN has advantages in dealing with
variable length sequences. The CNN padding is
used to transform the sentences to sequences with
fixed length. A source matrix X;.n and a target
matrix Y7,y are created to represent {x1, ..., Tn, }

/ ’
and {yl, ...,yNy}
mensional word embedding into the final matrix
x1.n and yq.y respectively. A kernel wjeRR; .y, ap-
plies a convolutional operation to a window size
of [words to produce a series of feature maps:

cji = a(w; ® Xjpi—1 +0), 3)
where b is a bias term and @ is the summation of
element production. We use Relu as the function
to implement the nonlinear activation function a.

Then a max-pooling operation is leveraged over
the feature maps:

We concatenate every k di-

“)

For different window sizes, we set the corre-
sponding kernel to extract the valid features, and
then we concatenate them to form the source sen-
tence representation c, for D. And the target sen-
tence representation ¢, can be extracted from the
target matrix Y7.y. Then given the source sen-
tence, the probability that the target sentence is be-
ing real can be computed as:

Cj~maz = mal’(le, 3% CjN—lJrl)'

(&)

where 7' is the transform matrix which transforms
the concatenation of ¢, and ¢, into a 2-dimension
embedding. We can get the final probability if we
use the matrix of 2-dimensional mapping as the
input of the sigmoid function.

pD = szngZd(T[C:m Cy])’

2.4 Training Process

We present a standard VS-GAN training process
in the form of data flow directions (Fig. 2):

e Pre-training G with RL algorithm. Note that
we pre-train GG to ensure that an optimal parame-
ter is directly involved in training, and provides a

good search space for beam search.

e Observe the reinforcement reward. Once the
end of sentence (or the maximum sequence length)
is reached, a cumulative reward matrix R is gener-
ated. The observed reward can measure the cumu-
lative value of agent () in the prediction process
(action) of a set of sequences.

o Value screening. The reward R is fed into a
convolutional layer and a linear activation func-
tion. This layer corresponds to a particular action
Q. The next-iteration value is then stacked with
the reward and fed back into the convolutional lay-
er N times, where N depends on the length of the
sequence. Subsequently, along-term value V,,pdqte
is generated by decoding a sentence. The batch is
screened by the set conditions, as shown in Eq.(2).

e Stay awake. D is dedicated to differentiat-
ing the screened negative result with the human-
translated sentences, which provide the probabili-
ty pp.

e Adversarial game. When a win-win situation
is achieved, adversarial training will converge to
an optimal state. That is, G can generate confusing
negative samples, and D has an efficient discrimi-
nation ability for negative and human translations.
Thus, the training objective is as follows:

We use log(1 — pp(z,y) as a Monte-Carlo es-
timation of the signals. By simple derivation, we
can get the corresponding gradient of 6:

logG(y'|z)],
(8)

where %logG (3'|x) represents the gradients
specified with parameters of the translation mod-
el based on RL. Therefore, the gradient update of
parameters can be described as:

8Loss
g~

/ 0
- Ey, [lOg(l _pD(xa Yy))a@NG

0
QNG — HNG + l7’ (9)
e

where [is the learning rate, and we back propagate
the gradient along negative direction. Note that we
have not observed a high variance is accompanied
by such a computation.

T

|
e o 0 o © e o
|
Groundtruth —H- @ @ 0 Value © o e
° .i ° o Screener e o
I} o
Original " Noise NJ
| H
e ojo0 o o e o ;
> o |0 O © o e
genera!éﬁ,’. e el o o o d
|

(Error signals from D

(state) (next action)

Monte Carlo search and reward from G)

Figure 2: Presentation of VS-GAN model, in which

Jo = E(gyllogpp(z,y)] TE 4 [log(1—pp(z, y))] different colors represent each component in VS-GAN.

(6)
where (x,y) is the ground truth sentence pair,
(z,7) is the sampled translation pair, as positive
and negative training data respectively. pp(.,.)
represents a probability which mentioned in D
about the similarity. Jy can be regard as a game
process between maximum and minimum expec-
tations. That is, the maximum expectation for the
generation GG, and the minimum expectation for
D.

A common shortcoming of adversarial training
in NLP applications is that it is non-trivial to de-
sign the training process, i.e., texts (Huszr, 2015).
Given that the discretely sampled y makes it dif-
ficult to back-propagate the error signals from D
to G directly, making Jy nondifferentiable w.r.t.
G’ s model parameters 6. To solve this problem,
the Monte Carlo search under the policy of G is
applied to sample the unknown tokens for the es-
timation of the signals. The objective of training
(G can be described as minimizing the following
loss:

Loss = E(W/)[log(l - pD(as,y/))]. (7

126

3 Experiment and Analysis

3.1 Dataset and Noise Addition

We verify the effectiveness of our model on a lan-
guage pair where one of the languages involved is
agglutinative: Mongolian-Chinese(M-C). We use
the data from CLDC and CWMT2017 evaluation
campaign. To avoid allocating excessive training
time on long sentences, all sentence pairs longer
than 50 words either on the source or target side
are discarded. Finally, by adding noise, we di-
vide the training data of Mongolian into five cat-
egories®:{Original, BPE*, Original&Suffixes, O-
riginal&Case, Original&Suffixes&Case}. For the
target Chinese besides BPE processing, we adopt
character granularity to provide a smaller unit cor-
responding to the morphological noise. Some ef-
fective work on morphological segmentation (Ata-
man D, 2017; ThuyLinh Nguyen, 2010) can be ap-

3(Original&*) represents a mixed sample of the original
data and the * segmentation of the original data.

“Note that BPE can only represent an open vocabulary
through the variable-length character sequence, it is insensi-
tive to morphological noise.

plied to agglutinative language. However, in or-
der to be more specific and accurately, we perfor-
m independent-developed Mongolian segmenter.
The final training corpus consists of about 230K
original sentences (including 1000 validation and
1000 test) and corresponding pseudo-data sen-
tences. We tried several num-operands of BPE?
on the data set, and the final selection is: Mongo-
lian: 35,000, Chinese: 15,000.

3.2 Experimental Setup

We select three strong baselines. Transformer
presents an outstanding approach to most MT
tasks. MIXER addresses exposure bias problem
in traditional NMT well through RL, and BR-
CSGAN is among the best endeavors to introduce
the generative adversarial training into NMT.

The screening conditions mentioned in Section
2 enable the model to be trained efficiently. One
problem is that under such conditions, V will grad-
ually increase. Therefore, in the screening pro-
cess, one situation should be considered, e.g., in
batchy {Vi =1,...,V;, = 10}, Vipdate = 5.5, in
batChQ {Vl = 4, ceey Vn = 6}, Vupdate = 5. We
have observed that batch; has worse sentences
worth noting by D. However, because of the high-
er average value, the batch; will be screened out.
In fact, we insist that such an operation is still rea-
sonable, because the higher value batches occur
only at the end of the training, and the n-gram nat-
ural of BLEU calculation indicates that the batchs
needs more attention.

For the LSTM and MIXER, we set the dimen-
sion of word embedding as 512 and dropout rate
as 0.1/0.1/0.3. We use a beam search with a
beam size of 4 and length penalty of 0.6. For the
Transformer, the Transformer_base configuration
in (Vaswani et al., 2017) is an effective experience
setting for our experiments. We set the GG to gen-
erate 500 negative examples per iteration, and the
number for Monte Carlo search is set as 20.

3.3 Main Results and Analysis

We mainly analyze the experimental results in
three aspects: BLEU evaluation, the number of
< unk > symbols in the translations, and the time
efficiency of model training.

e BLEU We use BLEU (Papineni et al., 2002)
score as an evaluation metric to measure the sim-

Shttps://github.com/rsennrich/
subword-nmt

127

ilarity degree between the generation and the hu-
man translation.

For GG, we select the model with 50 epochs of
pre-training as the initial state, and 80 adversarial
training epochs is used to joint train G and D. The
results (Table 1) show that the GAN-based mod-
el is obviously superior to baseline systems in any
kind of noisy corpus, and VS-GAN performs bet-
ter than each baseline with average 2-3 BLEU. For
the same model, the added noise provides the ex-
cellent generalization ability in testing, a notable
result shows that VS-GAN improves 3.8 BLEU on
the basis of the original corpus by adding both t-
wo kinds of noise. We notice that in the training
of adding case noise only, the effect of VS-GAN
is not outstanding. The reason for this is that the
individual Mongolian-case is not obviously "help-
ful’ to the production of < unk > symbol in Mon-
golian, so the screener is insensitive to it.

o UNK We count the number of < unk > sym-
bols in each system with 50 epochs of training to

1000

—o— Transformer(BPE)

900
#— MIXER

800

—A— BR-CSGAN(LSTM)

700

600

500

UNK

400

300

200

100

0

10 20 30

EPOCHS

Figure 3: Number of < unk > symbols in the transla-
tions of different models in each epoch.

translate the source sentences (Fig. 3). For BR-
CSGAN and VS-GAN, we directly count the num-
ber of < unk > symbols in the negative example.

In comparison with Transformer, MIXER opti-
mizes BLEU through RL training, which can di-
rectly enhance the BLEU score of the translation.
However, in terms of UNK, it is inefficient. The
optimal initial state cannot be effectively main-
tained in the rest of the training (orange lines). We
can see that the change of BLEU coincides with
the change of UNK number in combination with
Table 1 and Fig. 3. Furthermore, we note that UN-
K not only affects the accuracy of source word de-
coding, but also affects the semantic prediction of

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt

Table 1: Training time consuming and BLEU score of systems under different noise modes. We stop the pre-
training of G (including Transformer and LSTM) until the validation accuracy achieves at 6 which is set to 0.6 in
BR-CSGAN and VS-GAN. For the pre-training of D, we consider the threshold of classification accuracy and set

itto 0.7.
Original BPE Original&suffixes Original&Case Original&Suffixes&Case
MIXER(Ranzato et al., 2015) 29.7 26 30.4 28.6 31.3
BR-CSGAN
(G:LSTM)(Zhen et al. 2018) 29.9|(15+17)h 30.8|21430)h 31.7(22+25)h 31.1|(15+19)h 32.3|(27432)h
VS-GAN 20.6/(15+1D)h 31.5/Q21+18)h 32.5/(22+19h 30.8|(15+15)h *35.4|27+21)h
(G:LSTM)
Transformer(Vaswani et al., 2017) 30.5 315 30.2 29.8 30.5
BR-CSGAN
(G:Transformen)(Zhen et al. 2018) 274/(22429)h 2827434k 289|(23+25)h 28.1|(22+30)h 32.1|(38+36)h
VS-GAN
28.8/(22+18)h 31.1JQ27+200h 32|(23+18)h 29.4/(22+18)h 33.2|(38+22)h
(G:Transformer)

the entire sentence in translation.

e Training Efficiency In terms of training ef-
ficiency, we compared the two GAN-based mod-
els by counting the time of pre-training and ad-
versarial training(italics in Table 1), (e.g., 15 + 17
indicates 15 h of pre-training and 17 h of adver-
sarial training). Reinforcement pre-training is the
same for BR-CSGAN and VS-GAN. In adversar-
ial training, VS-GAN has a remarkable time re-
duction in each noise training strategy. This result
depends on the screener for negative generations,
so that D can regulate GG, following UNK directly.
Such combination of structures can converge to an
optimal state rapidly. From the results in Tablel,
in the case of the two GANSs the training time for
the LSTM is shorter than for the Transformer. We
attribute this to two reasons: i) the time consumed
by LSTM is mainly used to explore long-distance
dependencies in sequences. However, most of our
corpus consists of short sentences (<50 words),
which bridges the gap between LSTM and Trans-
former and even exceeds Transformer (when it
achieves the same accuracy of validation set). i-
i) in fact, according to our extensive experimen-
tal results on Mongolian-based NMT(including
Mongolian-Chinese and Mongolian-Cyrillic Mon-
golian), Transformer usually converges slower
than LSTM when the corpus size exceeds 0.2M.

4 Conclusion

We propose a GAN model with an additional VIN
approximation of value screener to solve the UN-
K problem in Mongolian—Chinese MT, which is
caused by the change of suffixes or component
cases in Mongolian and the limited vocabulary. In
our experiment, we adopt the pretreatment method

128

on the basis of noise addition to enhance the gen-
eralization ability of the model for UNK prob-
lem. Experimental results show that our approach
surpasses the state-of-the-art results in a variety
of noise-based training strategies and significant-
ly saves training time. In future research, we will
focus more on the combination of GAN and lan-
guage features to enhance other agglutinative lan-
guage NMT tasks, such as the guidance of syntax
tree for GAN training. On the contrary, it is also
a worthwhile attempt to modify the grammar tree
constructed by adversarial training.

5 Acknowledgments

This study is supported by the Natu-
ral Science Foundation of Inner Mongolia
(No.2018MS06005), and Mongolian Language
Information Special Support Project of Inner
Mongolia (No.MW-2018-MGYWXXH-302).

References

Turchi M et al. Ataman D, Negri M. 2017. Lin-
guistically motivated vocabulary reduction for neu-
ral machine translation from turkish to english.
The Prague Bulletin of Mathematical Linguistics,
108(1):331-342.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv, 1409(0473).

D Bertsekas. 2012. Dynamic programming and opti-
mal control. Athena Scientific, (04).

Xilun Chen, Yu Sun, and et al. 2016. Adversarial deep
averaging networks for cross-lingual sentiment clas-
sification. In Association for Computational Lin-
guistics (ACL), pages 557-570.

P. Dayan and L F Abbott. 2003. Theoretical neu-
roscience: Computational and mathematical mod-
elling of neural systems. Journal of Cognitive Neu-
roscience, 15(1):154-155.

Jonas Gehring, Michael Auli, David Grangier, and
et al. 2017. Convolutional sequence to sequence
learning. In International conference on machine
learning(ICML), pages 1243-1252.

Alex Graves. 2013a. Generating sequences with re-
current neural networks. arXiv preprint arXiv,
1308(0850).

Alex Graves. 2013b. Generating sequences with re-

current neural networks. arXiv preprint arXiv,
1308(0850).

Caglar Gulcehre, Sungjin Ahn, and et al. 2016. Point-
ing the unknown words. In Association for compu-
tational linguistics (ACL), pages 140-149.

Karl Moritz Hermann, Tom Kocisk, and et al. 2015.
Teaching machines to read and comprehend. In

Neural Information Processing Systems (NIPS),
pages 1693-1701.

Ferenc Huszr. 2015. How (not) to train your generative
model: Scheduled sampling, likelihood, adversary?
Computer Science, 1511(05101).

Sbastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
International joint conference on natural language
processing (IJCNLP), pages 1-10.

Minh-Thang Luong, Ilya Sutskever, and et al. 2015.
Addressing the rare word problem in neural machine
translation. In International joint conference on nat-
ural language processing (IJCNLP), pages 11-19.

Tom Mikolov, Stefan Kombrink, Luk Burget, and et al.
2011. Extensions of recurrent neural network lan-
guage model. In International conference on acous-
tics, speech, and signal processing, pages 5528—
5531.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
and et al. 2013. Playing atari with deep reinforce-
ment learning. arXiv, 1312(5602).

Frederic Morin and Yoshua Bengio. 2005. Hierarchical
probabilistic neural network language model. In In-
ternational conference on artificial intelligence and
statistics (Aistats), volume 5, pages 246-252.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic e-
valuation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics(ACL), pages 311-318.

Bellman R. 1957. Terminal control, time lags, and dy-
namic programming. National Academy of Sciences
of the United States of America, 43(10):927-930.

129

Marc’ Aurelio Ranzato, Sumit Chopra, and et al. 2015.
Sequence level training with recurrent neural net-
works. arXiv, 1511(06732).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Association for computational lin-
guistics (ACL), pages 1715-1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural network-
s. In Conference and Workshop on Neural Informa-
tion Processing Systems (NIPS), pages 3104-3112.

A Tamar, Y Wu, G Thomas, and et al. 2016. Value it-
eration networks. In Neural Information Processing
Systems (NIPS), pages 2154-2162.

Noah A.Smith. ThuyLinh Nguyen, Stephan Vogel.
2010. Nonparametric word segmentation for ma-
chine translation. In Proceedings of the Internation-
al Conference on Computational Linguistics, (COL-
ING10), pages 815-823.

Ashish Vaswani, Noam Shazeer, and et al. 2017. Atten-
tion is all you need. In Conference and Workshop

on Neural Information Processing Systems (NIPS),
pages 5998-6008.

L Wu, Y Xia, L Zhao, and et al. 2018. Adversarial
neural machine translation. In Asian Conference on
Machine Learning (ACML), pages 374-385.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2016. Seqgan: Sequence generative adversarial net-
s with policy gradient. In The Association for the
Advancement of Artificial Intelligence (AAAI), pages
2852-2858.

Yuan Zhang, Regina Barzilay, and Tommi Jaakkola.
2017. Aspect-augmented adversarial networks for
domain adaptation. Transactions of the Association
for Computational Linguistics, 5(1):515-528.

Fan K et al. Zhang Y, Gan Z. 2017. Adversarial fea-
ture matching for text generation. In Proceedings of
the International conference on machine learning,
(ICML17), pages 4006—4015.

Yang Zhen, Chen Wei, Wang Feng, and Xu Bo. 2018.
Improving neural machine translation with condi-
tional sequence generative adversarial nets. In
The North American Chapter of the Association for
Computational Linguistics (NAACL), pages 1346—
1355.

