Long-Distance Dependencies don’t have to be Long:
Simplifying through Provably (Approximately) Optimal Permutations

Rishi Bommasani
Department of Computer Science
Cornell University
rb724@cornell.edu

Abstract

Neural models at the sentence level often op-
erate on the constituent words/tokens in a way
that encodes the inductive bias of processing
the input in a similar fashion to how humans
do. However, there is no guarantee that the
standard ordering of words is computationally
efficient or optimal. To help mitigate this, we
consider a dependency parse as a proxy for
the inter-word dependencies in a sentence and
simplify the sentence with respect to combi-
natorial objectives imposed on the sentence-
parse pair. The associated optimization re-
sults in permuted sentences that are provably
(approximately) optimal with respect to min-
imizing dependency parse lengths and that
are demonstrably simpler. We evaluate our
general-purpose permutations within a fine-
tuning schema for the downstream task of sub-
jectivity analysis. Our fine-tuned baselines re-
flect a new state of the art for the SUBJ dataset
and the permutations we introduce lead to fur-
ther improvements with a 2.0% increase in
classification accuracy (absolute) and a 45%
reduction in classification error (relative) over
the previous state of the art.

1 Introduction

Natural language processing systems that operate
at the sentence level often need to model the in-
teraction between different words in a sentence.
This kind of modelling has been shown to be nec-
essary not only in explicit settings where we con-
sider the relationships between words (GuoDong
et al., 2005; Fundel et al., 2006) but also in opinion
mining (Joshi and Penstein-Rosé, 2009), question
answering (Cui et al., 2005), and semantic role la-
belling (Hacioglu, 2004). A standard roadblock
in this process has been trying to model long-
distance dependencies between words. Neural
models for sentence-level tasks, for example, have
leveraged recurrent neural networks (Sutskever

&9

et al., 2014) and attention mechanisms (Bahdanau
et al., 2015; Luong et al., 2015) as improvements
in addressing this challenge. LSTMs (Hochreiter
and Schmidhuber, 1997) in particular have been
touted as being well-suited for capturing these
kinds of dependencies but recent work suggests
that the modelling may be insufficient to vari-
ous extents (Linzen et al., 2016; Liu et al., 2018;
Dangovski et al., 2019). Fundamentally, these
neural components do not restructure the chal-
lenge of learning long-distance dependencies but
instead introduce computational expressiveness as
a means to represent and retain inter-word rela-
tionships efficiently (Kuncoro et al., 2018).
Models that operate at the sentence level in nat-
ural language processing generally process sen-
tences word-by-word in a left-to-right fashion.
Some models, especially recurrent models, con-
sider the right-to-left traversal (Sutskever et al.,
2014) or a bidirectional traversal that combines
both the left-to-right and right-to-left traversals
(Schuster and Paliwal, 1997). Other models
weaken the requirement of sequential processing
by incorporating position embeddings to retain the
sequential nature of the data and then use self-
attentive mechanisms that don’t explicitly model
the sequential nature of the input (Vaswani et al.,
2017). All such approaches encode the prior that
computational processing of sentences should ap-
peal to a cognitively plausible ordering of words.
Nevertheless in machine translation, re-
orderings of both the input and output sequences
have been considered for the purpose of im-
proving alignment between the source and target
languages. Specifically, preorders, or permuting
the input sequence, and postorders, or permuting
the output sequence, have been well-studied in
statistical machine translation (Xia and McCord,
2004; Goto et al., 2012) and have been recently in-
tegrated towards fully neural machine translation

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 89-99

Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics

(De Gispert et al., 2015; Kawara et al., 2018). In
general, these re-ordering methods assume some
degree of supervision (Neubig et al., 2012) and
have tried to implicitly maintain the original struc-
ture of the considered sequence despite modifying
it to improve alignment. Similar approaches have
also been considered for cross-lingual transfer
in dependency parsing (Wang and Eisner, 2018)
based on the same underlying idea of improving
alignment.

In this work, we propose a general approach for
permuting the words in an input sentence based
on the notion of simplification, i.e. reducing the
length of inter-word dependencies in the input. In
particular, we appeal to graph-based combinato-
rial optimization as an unsupervised approach for
producing permutations that are provably optimal,
or provably approximately optimal, in minimizing
inter-word dependency parse lengths.

Ultimately, = we hypothesize that our
simplification-based permutations over input
sentences can be incorporated as a lightweight,
drop-in preprocessing step for neural models to
improve performance for a number of standard
sentence-level NLP problems. As an initial case
study, we consider the task of sentence-level
subjectivity classification and using the SUBJ
dataset (Pang and Lee, 2004), we first introduce
baselines that achieve a state of the art 95.8%
accuracy and further improve on these baselines
with our permutations to a new state of the art of
97.5% accuracy.

2 Limitations

This work considers simplifying inter-word de-
pendencies for neural models. However, we mea-
sure inter-word dependencies using dependency
parses and therefore rely on an incomplete de-
scription of inter-word dependencies in general.
Further, we assume the existence of a strong
dependency parser, which is reasonably well-
founded for English which is the language stud-
ied in this work. This assumption is required for
providing theoretical guarantees regarding the op-
timality of sentence permutations with respect to
the gold-standard dependency parse.! In spite of
these assumptions, it is still possible for the subse-
quent neural models to recover from errors in the

!The generated permutations are always (approximately)
optimal with respect to the system-generated dependency
parse.

90

initial sentence permutations.

Beyond this, we consider dependency parses
which graph theoretically are edge-labelled di-
rected trees. However, in constructing optimal
sentence permutations, we simplify the graph
structure by neglecting edge labels and edge di-
rections. Both of these are crucial aspects of a de-
pendency parse tree and in §6 we discuss possible
future directions to help address these challenges.

Most concerningly, this approach alters the or-
der of words in a sentence for the purpose of sim-
plifying one class of dependencies — binary inter-
word dependencies marked by dependency parses.
However, in doing so, it is likely that other crucial
aspects of the syntax and semantics of a sentence
that are a function of word order are obscured.
We believe the mechanism proposed in §3.3 helps
to alleviate this by making use of powerful ini-
tial word representations that are made available
through recent advances in pretrained contextual
representations and transfer learning (Peters et al.,
2018; Devlin et al., 2018; Liu et al., 2019).

3 Model

Our goal is to take a dependency parse of a sen-
tence and use it is as scaffold for permuting the
words in a sentence. We begin by describing two
combinatorial measures on graphs that we can use
to rank permutations of the words in a sentence
by, and therefore optimize with respect to, in or-
der to find the optimal permutation for each mea-
sure. Given the permutation, we then train a model
end-to-end on a downstream task and exploit pre-
trained contextual word embeddings to initialize
the word representations for our model.

3.1 Input Structure

Given a sentence as an input for some down-
stream task, we begin by computing a depen-
dency parse for the sentence using an off-the-
shelf dependency parser. This endows the sen-
tence with a graph structure corresponding to an
edge-labelled directed tree G* = (V*,£*) where
the vertices correspond to tokens in the sentence
V* = {wi,wy,...,w,}) and the edges corre-
spond to dependency arcs. We then consider the
undirected tree G = (V,€) where V = V* and
& = &* without the edge labels and edge direc-
tions.

3.2 Combinatorial Objectives

We begin by defining a linear layout on G to be a
bijective, i.e. one-to-one, ordering on the vertices
m:V — {1,2,...,n}. For a graph associated
with a sentence, we consider the identity linear
layout my to be given by 77(w;) = i: the linear
layout of vertices is based on the word order in the
input sentence. For any given linear layout m we
can further associate each edge (u,v) € £ with an
edge distance d,, , = |w(u) — 7 (v)].2

By considering the modified dependency parse
G alongside the sentence, we recognize that a
computational model of the sentence may need
to model any given dependency arc (w;,w;) €
E. As a result, for a model that processes sen-
tences word-by-word, information regarding this
arc must be stored for a number of time-steps
given by du,; = |m1(w;) — 7r(wy)] = |j — il.
This implies that a model may need to store a
dependency for a large number of time-steps (a
long-distance dependency) and we instead con-
sider finding an optimal linear layout 7* (that is
likely not to be the identity) to minimize these
edge distances with respect to two well-studied
objectives on linear layouts.

Bandwidth Problem The bandwidth problem
on graphs corresponds to finding an optimal lin-
ear layout 7* under the objective:

argmin max dy, , (1)
rell (u,w)eE

The bandwidth problem is a well known prob-
lem dealing with linear layouts with applications
in sparse matrix computation (Gibbs et al., 1976)
and information retrieval (Botafogo, 1993) and has
been posed in equivalent ways for graphs and ma-
trices (Chinn et al., 1982). For dependency parses,
it corresponds to finding a linear layout that min-
imizes the length of the longest dependency. Pa-
padimitriou (1976) proved the problem was NP-
hard and the problem was further shown to re-
main NP-hard for trees and even restricted classes
of trees (Unger, 1998; Garey et al., 1978). In
this work, we use the better linear layout of those
produced by the guaranteed O(logn) approxima-
tion of Haralambides and Makedon (1997) and the
heuristic of Cuthill and McKee (1969) and refer to
the resulting linear layout as 7.

Refer to Diaz et al. (2002) for a survey of linear layouts,
related problems, and their applications.

91

Minimum Linear Arrangement Problem
Similar to the bandwidth problem, the minimum
linear arrangement (minLA) problem considers
finding a linear layout given by:

argmin Z dyv

mell (u,v)€€

While less studied than the bandwidth problem,
the minimum linear arrangement problem con-
siders minimizing the sum of the edge lengths
of the dependency arcs which may more closely
resemble how models need to not only handle
the longest dependency well, as in the bandwidth
problem, but also need to handle the other de-
pendencies. Although the problem is NP-hard for
general graphs (Garey et al., 1974), it admits poly-
nomial time exact solutions for trees (Shiloach,
1979). We use the algorithm of Chung (1984),
which runs in O(n!-%%), to find the optimal lay-
out 7.

2

3.3 Downstream Integration

Given a linear layout 7, we can define the associ-
ated permuted sentence s’ of the original sentence
s = wy wy ... w, where the position of w; in
s’ is given by 7(w;). We can then train models
end-to-end taking the permuted sentences as di-
rect replacements for the original input sentences.
However, this approach suffers from the facts that
(a) the resulting sentences may have lost syntac-
tic/semantic qualities of the original sentences due
to the permutations and (b) existing pretrained
embedding methods would need to be re-trained
with these new word orders, which is computa-
tionally expensive, and pretraining objectives like
language modelling may be less sensible given the
problems noted in (a). To reconcile this, we lever-
age a recent three-step pattern for many NLP tasks
(Peters et al., 2019):

1. Pretrained Word Representations: Repre-
sent each word in the sentence using a pre-
trained contextualizer (Peters et al., 2018;
Devlin et al., 2018).

. Fine-tuned Sentence Representation:
Learn a task-specific encoding of the sen-
tence using a task-specific encoder as a
fine-tuning step on top of the pretrained word
representations.

. Task Predictions: Generate a prediction for
the task using the fine-tuned representation.

As a result, we can introduce the permutation be-
tween steps 1 and 2. What this means is the initial
pretrained representations model the sentence us-
ing the standard ordering of words and therefore
have access to the unchanged syntactic/semantic
properties. These properties are diffused into the
word-level representations and therefore the fine-
tuning encoder may retrieve them even if they are
not observable after the permutation. This allows
the focus of the task-specific encoder to shift to-
wards modelling useful dependencies specific to
the task.

4 Experiments

Using our approach, we begin by studying how
optimizing for these combinatorial objectives af-
fects the complexity of the input sentence as mea-
sured using these objective functions. We then
evaluate performance on the downstream task of
subjectivity analysis and find our baseline model
achieves a new state of the art for the dataset which
is improved further by the permutations we intro-
duce.

For all experiments, we use the spaCy depen-
dency parser (Honnibal and Montani, 2017) to
find the dependency parse. In studying properties
of the bandwidth optimal permutation 7, and the
minLA optimal permutation 7,, we compare to
baselines where the sentence is not permuted/the
identity permutation 7 as well as where the words
in the sentence are ordered using a random permu-
tation mr. A complete description of experimen-
tal and implementation details is provided in Ap-
pendix A.

Our permutations do not introduce or change
the size or runtime of existing models while pro-
viding models with dependency parse information
implicitly. The entire preprocessing process, in-
cluding the computation of permutations for both
objectives, takes 21 minutes in aggregate for the
10000 examples in the SUBJ dataset. A complete
description of changes in model size, runtime, and
convergence speed is provided in Appendix B.

Data and Evaluation To evaluate the direct
effects of our permutations on input sentence
simplification, we use 100000 sentences from
Wikipedia; to evaluate the downstream impacts we
consider the SUBJ dataset (Pang and Lee, 2004)
for subjectivity analysis. The subjectivity anal-
ysis task requires deciding whether a given sen-
tence is subjective or objective and the dataset is

92

the reject , unlike the highly celebrated actor , won
— J

highly celebrated the , actor won unlike , reject the
- 7

—~

the , reject unlike the actor celebrated highly won ,
\ / \;/ N—— \—/\—/ N—

Figure 1: Example of the sentence permutation along
with overlayed dependency parses. Blue indicates the
standard ordering, green indicates the bandwidth opti-
mal ordering, and red indicates the minL A optimal or-
dering. Black indicates the longest dependency arc in
the original ordering.

balanced with 5000 subjective and 5000 objective
examples. We consider this task as a starting point
as it is well-studied and dependency features have
been shown to be useful for similar opinion min-
ing problems (Wu et al., 2009).

Examples In Figure 1, we present an example
sentence and its permutations under 7,7, and
m.. Under the standard ordering, the sentence has
bandwidth 8 and minLA score 22 and this is re-
duced by both the bandwidth optimal permutation
to 3 and 17 respectively and similarly the minL A
permutation also improves on both objectives with
scores of 6 and 16 respectively. A model process-
ing the sequence word-by-word may have strug-
gled to retain the long dependency arc linking ‘re-
ject’ and ‘won’ and therefore incorrectly deemed
that ‘actor’ was the subject of the verb ‘won’ as
it is the only other viable candidate and is closer
to the verb. If this had occured, it would lead an
incorrect interpretation (here the opposite mean-
ing). While both of the introduced permutations
still have ‘actor’ closer to the verb, the distance
between ‘reject’ and ‘won’ shrinks (denoted by the
black arcs) and similarly the distance between ‘un-
like” and ‘actor’ shrinks. These combined effects
map help to mitigate this issue and allow for im-
proved modelling. Across the Wikipedia data, we
see a similar pattern for the minLLA optimal per-
mutations in that they yield improvements on both
objectives but we find the bandwidth optimal per-
mutations on average increase the minLLA score
as is shown in Table 1. We believe this is nat-
ural given the relationship of the objectives; the
longest arc is accounted for in the minLLA objec-
tive whereas the other arcs don’t contribute to the

Bandwidth minLA
7 (Standard) 17.64 82.39
7r (Random) 20.94 294.43
7, (Bandwidth) 6.75 101.23
7, (minLA) 9.43 54.57

Table 1: Bandwidth and minimum linear arrange-
ment scores for the specified permutation type averaged
across 100000 Wikipedia sentences.

Accuracy
71 (Standard) 95.8
7r (Random) 94.8
m, (Bandwidth) 96.2
). (minLA) 97.5
AdaSent (Zhao et al., 2015)7 95.5
CNN+MCFA (Amplayo et al., 2018)f 94.8

Table 2: Accuracy on the SUBJ dataset using the spec-
ified ordering of pretrained representations for the fine-
tuning LSTM. indicates prior models that were evalu-
ated using 10-fold cross validation instead of a held-out
test set.

bandwidth cost. We also find the comparison of
the standard and random orderings to be evidence
that human orderings of words to form sentences
(at least in English) are correlated with these ob-
jectives, as they are significantly better with re-
spect to these objectives as compared to random
orderings. Refer to Figure 3 for a larger example.

Downstream Performance In Table 2, we
present the results on the downstream task. De-
spite the fact that the random permutation LSTM
encoder cannot learn from the word order and im-
plicitly is restrained to permutation-invariant fea-
tures, the associated model performs comparably
with previous state of the art systems, indicating
the potency of current pretrained embeddings and
specifically ELMo. When there is a deterministic
ordering, we find that the standard ordering is the
least helpful of the three orderings considered. We
see a particularly significant spike in performance
when using permutations that are minLA optimal
and we conjecture that this may be because minLA
permutations improve on both objectives on aver-
age and empirically we observe they better main-
tain the order of the original sentence (as can be
seen in Figure 1).

93

5 Related Work

This work draws upon inspiration from the liter-
ature on psycholinguistics and cognitive science.
Specifically, dependency lengths and the existing
minimization in natural language has been studied
under the dependency length minimization (DLM)
hypothesis (Liu, 2008) which posits a bias in hu-
man languages towards constructions with shorter
dependency lengths.?

In particular, the relationship described between
random and natural language orderings of words
to form sentences as in Table 1 has been stud-
ied more broadly across 37 natural languages in
Futrell et al. (2015). This work, alongside Gildea
and Temperley (2010); Liu et al. (2017); Futrell
et al. (2017) helps to validate the extent and per-
vasiveness of DLM in natural languages. More
generally, this literature body has proposed a num-
ber of reasons for this behavior, many of which
center around the related notions of efficiency
(Gibson et al., 2019) and memory constraints
(Gulordava et al., 2015) for humans. Recent
research at the intersection of psycholinguistics
and NLP that has tried to probe for dependency-
oriented understanding in neural networks (pri-
marily RNNs) does indicate relationships with
specific dependency-types and RNN understand-
ing. This includes research considering specific
dependency types (Wilcox et al., 2018, 2019a),
word-order effects (Futrell and Levy, 2019), and
structural supervision (Wilcox et al., 2019b).

Prompted by this, the permutations considered
in this work can alternatively be seen as lin-
earizations (Langkilde and Knight, 1998; Filip-
pova and Strube, 2009; Futrell and Gibson, 2015;
Puzikov and Gurevych, 2018) of a dependency
parse in a minimal fashion which is closely related
to Gildea and Temperley (2007); Temperley and
Gildea (2018). While such linearizations have not
been well-studied for downstream impacts, the us-
age of dependency lengths as a constraint has been
studied for dependency parsing itself. Towards
this end, Eisner and Smith (2010) showed that us-
ing dependency length can be a powerful heuristic
tool in dependency parsing (by either enforcing a
strict preference or favoring a soft preference for
shorter dependencies).

3In this work, we partially deviate from this linguistic ter-
minology, which primarily deals with the measure defined
in Equation 2, and prefer algorithmic terminology to accom-
modate the measure defined in Equation 1 and disambiguate
these related measures more clearly.

6 Future Directions

Graph Structure Motivated by recent work on
graph convolutional networks that began with
undirected unlabelled graphs (Kipf and Welling,
2016; Zhang et al., 2018) that was extended to
include edge direction and edge labels (Marcheg-
giani and Titov, 2017), we consider whether these
features of a dependency parse can also lever-
aged in computing an optimal permutation. We
argue that bidirectionally traversing the permuted
sequence may be sufficient to address edge direc-
tion. A natural approach to encode edge labels
would be to define a mapping (either learned on an
auxiliary objective or tuned as a hyperparameter)
from categorical edge labels to numericals edge
weights and then consider the weighted analogues
of the objectives in Equation 1 and Equation 2.

Improved Objective The objectives introduced
in Equation 1 and Equation 2 can be unified by
considering the family of cost functions:
fm =Y Ir(w) = n(@)”
(u,v)e€
Here, minLLA correspond to p = 1 and the band-
width problem corresponds to p = oco. We can
then propose a generalized objective that is the
convex combination of the individual objectives,
i.e. finding a permutation that minimizes:

floo(m) = afi(m) + (1 — @) foo(m) (4)
Setting o to 0 or 1 reduces to the original objec-
tives. This form of the new objective is reminis-
cent of Elastic Net regularization in statistical op-
timization (Zou and Hastie, 2005). Inspired by
this parallel, a Lagrangian relaxation of one of the
objectives as a constraint may be an approach to-
wards (approximate) optimization.

3)

Task-specific Permutations The permutations
produced by these models are invariant with re-
spect to the downstream task. However, differ-
ent tasks may benefit from different sentence or-
ders that go beyond task-agnostic simplification.
A natural way to model this in neural models is
to learn the permutation in a differentiable fashion
and train the permutation model end-to-end within
the overarching model for the task. Refer to Ap-
pendix C for further discussion.

7 Conclusion

In this work, we propose approaches that permute
the words in a sentence to provably minimize com-

94

binatorial objectives related to the length of depen-
dency arcs. We find that this is a lightweight pro-
cedure that helps to simplify input sentences for
downstream models and that it leads to improved
performance and state of the art results (97.5%
classification accuracy) for subjectivity analysis
using the SUBJ dataset.

Acknowledgements

I thank Bobby Kleinberg for his tremendous in-
sight into the present and future algorithmic chal-
lenges of layout-based optimization problems,
Tianze Shi for his pointers towards the depen-
dency length minimization literature in psycholin-
guistics and cognitive science, and Arzoo Katiyar
for her advice on comparing against random se-
quence orderings and considering future work to-
wards soft/differentiable analogues. I also thank
the anonymous reviewers for their perceptive and
constructive feedback. Finally, I thank Claire
Cardie for her articulate concerns and actionable
suggestions with regards to this work and, more
broadly, for her overarching guidance and warm
mentoring as an adviser.

References

Reinald Kim Amplayo, Kyungjae Lee, Jinyoung Yeo,
and Seung won Hwang. 2018. Translations as addi-
tional contexts for sentence classification. In IJCAI

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Rodrigo A Botafogo. 1993. Cluster analysis for hyper-
text systems. In Proceedings of the 16th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 116—
125. ACM.

. Z. Chinn, J. Chvtalov, A. K. Dewdney, and N. E.
Gibbs. 1982. The bandwidth problem for graphs
and matricesa survey. Journal of Graph Theory,
6(3):223-254.

FRK Chung. 1984. On optimal linear arrangements of
trees. Computers & mathematics with applications,
10(1):43-60.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-
Seng Chua. 2005. Question answering passage re-
trieval using dependency relations. In Proceedings
of the 28th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 400-407. ACM.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1002/jgt.3190060302

E. Cuthill and J. McKee. 1969. Reducing the band-
width of sparse symmetric matrices. In Proceedings
of the 1969 24th National Conference, ACM ’69,
pages 157-172, New York, NY, USA. ACM.

Rumen Dangovski, Li Jing, Preslav Nakov, Mico Tat-
alovic, and Marin Soljacic. 2019. Rotational unit of
memory: A novel representation unit for rnns with
scalable applications. Transactions of the Associa-
tion for Computational Linguistics, 7:121-138.

Adria De Gispert, Gonzalo Iglesias, and Bill Byrne.
2015. Fast and accurate preordering for smt using
neural networks. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1012-1017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Josep Diaz, Jordi Petit, and Maria Serna. 2002. A sur-
vey of graph layout problems. ACM Computing Sur-
veys (CSUR), 34(3):313-356.

Jason Eisner and Noah A Smith. 2010. Favor short de-
pendencies: Parsing with soft and hard constraints
on dependency length. In Trends in Parsing Tech-
nology, pages 121-150. Springer.

Katja Filippova and Michael Strube. 2009. Tree lin-
earization in english: Improving language model
based approaches. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, NAACL-Short *09, pages 225-228,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Katrin Fundel, Robert Kiiffner, and Ralf Zimmer.
2006. Relexrelation extraction using dependency
parse trees. Bioinformatics, 23(3):365-371.

Richard Futrell and Edward Gibson. 2015. Experi-
ments with generative models for dependency tree
linearization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1978—1983.

Richard Futrell, Roger Levy, and Edward Gibson.
2017. Generalizing dependency distance: Comment
on dependency distance: A new perspective on syn-
tactic patterns in natural languages by haitao liu et
al. Physics of life reviews, 21:197-199.

Richard Futrell and Roger P. Levy. 2019. Do RNNs
learn human-like abstract word order preferences?
In Proceedings of the Society for Computation in
Linguistics (SCiL) 2019, pages 50-59.

Richard Futrell, Kyle Mahowald, and Edward Gibson.
2015. Large-scale evidence of dependency length
minimization in 37 languages. Proceedings of

95

the National Academy of Sciences, 112(33):10336—
10341.

Michael R Garey, Ronald L Graham, David S Johnson,
and Donald Ervin Knuth. 1978. Complexity results
for bandwidth minimization. SIAM Journal on Ap-
plied Mathematics, 34(3):477-495.

Michael R Garey, David S Johnson, and Larry Stock-
meyer. 1974. Some simplified np-complete prob-
lems. In Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 47-63.
ACM.

Norman E. Gibbs, William G. Poole, and Paul K.
Stockmeyer. 1976. An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM
Journal on Numerical Analysis, 13(2):236-250.

Edward Gibson, Richard Futrell, Steven T Piandadosi,
Isabelle Dautriche, Kyle Mahowald, Leon Bergen,
and Roger Levy. 2019. How efficiency shapes hu-
man language. Trends in cognitive sciences.

Daniel Gildea and David Temperley. 2007. Optimizing
grammars for minimum dependency length. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion of Computational Linguistics, pages 184—191.

Daniel Gildea and David Temperley. 2010. Do gram-
mars minimize dependency length? Cognitive Sci-
ence, 34(2):286-310.

Isao Goto, Masao Utiyama, and Eiichiro Sumita. 2012.
Post-ordering by parsing for japanese-english statis-
tical machine translation. In 50th Annual Meeting of
the Association for Computational Linguistics, page

311.

Kristina Gulordava, Paola Merlo, and Benoit Crabbé.
2015. Dependency length minimisation effects in
short spans: a large-scale analysis of adjective place-
ment in complex noun phrases. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 477-482.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL
’05, pages 427434, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Kadri Hacioglu. 2004. Semantic role labeling using
dependency trees. In Proceedings of the 20th inter-
national conference on Computational Linguistics,
page 1273. Association for Computational Linguis-
tics.

. Haralambides and F. Makedon. 1997. Approxi-
mation algorithms for the bandwidth minimization
problem for a large class of trees. Theory of Com-
puting Systems, 30(1):67-90.

https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/800195.805928
https://transacl.org/ojs/index.php/tacl/article/view/1510
https://transacl.org/ojs/index.php/tacl/article/view/1510
https://transacl.org/ojs/index.php/tacl/article/view/1510
http://dl.acm.org/citation.cfm?id=1620853.1620915
http://dl.acm.org/citation.cfm?id=1620853.1620915
http://dl.acm.org/citation.cfm?id=1620853.1620915
https://doi.org/10.7275/jb34-9986
https://doi.org/10.7275/jb34-9986
http://www.jstor.org/stable/2156090
http://www.jstor.org/stable/2156090
http://dx.doi.org/10.1111/j.1551-6709.2009.01073.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01073.x
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.1007/BF02679454
https://doi.org/10.1007/BF02679454
https://doi.org/10.1007/BF02679454

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. o appear.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328-339.

Mahesh Joshi and Carolyn Penstein-Rosé. 2009. Gen-
eralizing dependency features for opinion mining.
In Proceedings of the ACL-IJCNLP 2009 conference
short papers, pages 313-316.

Yuki Kawara, Chenhui Chu, and Yuki Arase. 2018.
Recursive neural network based preordering for
english-to-japanese machine translation. In Pro-
ceedings of ACL 2018, Student Research Workshop,
pages 21-27, Melbourne, Australia. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-

supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
Lstms can learn syntax-sensitive dependencies well,
but modeling structure makes them better. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1426—-1436.

Irene Langkilde and Kevin Knight. 1998. Gener-
ation that exploits corpus-based statistical knowl-
edge. In Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguis-
tics and 17th International Conference on Compu-
tational Linguistics-Volume 1, pages 704-710. As-
sociation for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of Istms to learn syntax-
sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521-535.

Haitao Liu. 2008. Dependency distance as a metric of
language comprehension difficulty. Journal of Cog-
nitive Science, 9(2):159-191.

Haitao Liu, Chunshan Xu, and Junying Liang. 2017.
Dependency distance: a new perspective on syntac-
tic patterns in natural languages. Physics of life re-
views, 21:171-193.

96

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. CoRR, abs/1903.08855.

Nelson F Liu, Omer Levy, Roy Schwartz, Chenhao
Tan, and Noah A Smith. 2018. Lstms exploit lin-
guistic attributes of data. In Proceedings of The
Third Workshop on Representation Learning for
NLP, pages 180—186.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412—1421.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506—1515.

Graham Neubig, Taro Watanabe, and Shinsuke Mori.
2012. Inducing a discriminative parser to optimize
machine translation reordering. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 843-853, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics, page 271. Association for Com-
putational Linguistics.

Christos H. Papadimitriou. 1976. The np-completeness
of the bandwidth minimization problem. Comput-
ing, 16:263-270.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237.

Matthew Peters, Sebastian Ruder, and Noah A. Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks.

Yevgeniy Puzikov and Iryna Gurevych. 2018. BinLin:
A simple method of dependency tree linearization.
In Proceedings of the First Workshop on Multilin-
gual Surface Realisation, pages 13-28, Melbourne,
Australia. Association for Computational Linguis-
tics.

https://www.aclweb.org/anthology/P18-3004
https://www.aclweb.org/anthology/P18-3004
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1903.08855
http://arxiv.org/abs/1903.08855
https://www.aclweb.org/anthology/D12-1077
https://www.aclweb.org/anthology/D12-1077
http://arxiv.org/abs/1903.05987
http://arxiv.org/abs/1903.05987
https://www.aclweb.org/anthology/W18-3602
https://www.aclweb.org/anthology/W18-3602

Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian,
and Stephen Gould. 2017. Deeppermnet: Visual
permutation learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 3949-3957.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673-2681.

Yossi Shiloach. 1979. A minimum linear arrangement
algorithm for undirected trees. SIAM Journal on
Computing, 8(1):15-32.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

David Temperley and Daniel Gildea. 2018. Min-
imizing syntactic dependency lengths: Typologi-
cal/cognitive universal? Annual Reviews of Linguis-
tics.

Walter Unger. 1998. The complexity of the approxi-
mation of the bandwidth problem. In Proceedings
39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280), pages 82-91.
IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—-6008.

Dingquan Wang and Jason Eisner. 2018. Synthetic data
made to order: The case of parsing. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1325-1337,
Brussels, Belgium. Association for Computational
Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do rnn language mod-
els learn about filler—gap dependencies? In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 211-221.

Ethan Wilcox, Roger P. Levy, and Richard Futrell.
2019a. What syntactic structures block dependen-
cies in rnn language models? In Proceedings of the
41st Annual Meeting of the Cognitive Science Soci-

ety.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019b. Structural su-
pervision improves learning of non-local grammat-
ical dependencies. In Proceedings of the 18th An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

97

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion min-
ing. In Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing:
Volume 3-Volume 3, pages 1533-1541. Association
for Computational Linguistics.

Fei Xia and Michael McCord. 2004. Improving a sta-
tistical mt system with automatically learned rewrite
patterns. In Proceedings of the 20th international
conference on Computational Linguistics, page 508.
Association for Computational Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205-2215.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In
Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the elastic net. Journal of the
royal statistical society: series B (statistical method-

ology), 67(2):301-320.

A Implementation Details

We implement our models in PyTorch (Paszke
et al., 2017) using the Adam optimizer (Kingma
and Ba, 2014) with its default parameters in Py-
Torch. We split the dataset using a 80/10/10
split and the results in Table 2 are on the test
set whereas those in Figure 2 are on the devel-
opment set. We use ELMo embeddings (Peters
et al., 2018)*, for the initial pretrained word repre-
sentations by concatenating the two 1024 dimen-
sional pretrained vectors, yielding a 2048 dimen-
sional initial pretrained representation for each to-
ken. These representations are frozen based on the
results of Peters et al. (2019) and passed through
a single-layer bidirectional LSTM with output di-
mensionality 256. The outputs of the forward and
backward LSTMs at position ¢ are concatenated
and a sentence representation is produced by max-
pooling as was found to be effective in Howard
and Ruder (2018) and Peters et al. (2019). The
sentence representation is passed through a linear
classifier M € R?2%2 and the entire model is
trained to minimize cross entropy loss. All mod-
els are trained for 13 epochs with a batch size of

“Specifically, we use embeddings available at:
https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway/elmo_2x4096_512_2048cnn_

2xhighway_options. json

https://www.cs.rochester.edu/u/gildea/pubs/temperley-gildea-ar18.pdf
https://www.cs.rochester.edu/u/gildea/pubs/temperley-gildea-ar18.pdf
https://www.cs.rochester.edu/u/gildea/pubs/temperley-gildea-ar18.pdf
https://www.aclweb.org/anthology/D18-1163
https://www.aclweb.org/anthology/D18-1163
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json

Development Performance

—— standard
random

—— bandwidth

—— minLA

0.97 q

o
w
=

Validation Accuracy
o
w0
v

o
o
s

T T T T T T
2 4 6 8 10 12

Epochs

Figure 2: Development set performance for each or-
dering. Values are reported beginning at epoch 1 in
intervals of 3 epochs.

16 with the test set results reported being from
the model checkpoint after epoch 13. We also ex-
perimented with changing the LSTM task-specific
encoder to be unidirectional but found the results
were strictly worse.

B Efficiency Analysis

Model Size The changes we introduce only im-
pact the initial preprocessing and ordering of the
pretrained representations for the model. As a re-
sult, we make no changes to the number of model
parameters and the only contribution to the model
footprint is we need to store the permutation on a
per example basis. This can actually be avoided
in the case where we have frozen pretrained em-
beddings as the permutation can be computed in
advance. Therefore, for the results in this paper,
the model size is entirely unchanged.

Runtime The wall-clock training time, i.e. the
wall-clock time for a fixed number of epochs, and
inference time are unchanged as we do not change
the underlying model in any way and the permuta-
tions can be precomputed. As noted in the paper,
on a single CPU it takes 21 minutes to complete
the entire preprocessing process and 25% of this
time is a result of computing bandwidth optimal
permutations and 70% of this time is a result of
computing minLLA optimal permutations. The pre-
processing time scales linearly in the number of
examples and we verify this as it takes 10 minutes
to process only the subjective examples (and the
dataset is balanced). Figure 2 shows the develop-
ment set performance for each of the permutation
types over the course of the fine-tuning process.

98

C End-to-End Permutations

In order to approach differentiable optimization
for permutations, we must specify a representa-
tion. A standard choice that is well-suited for lin-
ear algebraic manipulation is a permutation ma-
trix, i.e Pr € R™*", where P,[i,j] = 1if n(i) =
7 and O otherwise. As a result, permutation matri-
ces are discrete, and therefore sparse, in the space
of real matrices. As such they are poorly suited
for the gradient-based optimization that supports
most neural models. A recent approach from vi-
sion has considered a generalization of permu-
tation matrices to the associated class of doubly
stochastic matrices and then considered optimiza-
tion with respect to the manifold they define (the
Sinkhorn Manifold) to find a discrete permutation
(Santa Cruz et al., 2017). This approach cannot
be immediately applied for neural models for sen-
tences since the algorithms exploits that images,
and therefore permutations of the pixels in an im-
age, are of fixed size between examples. That be-
ing said we ultimately see this as being an impor-
tant direction of study given the shift from discrete
optimization to soft/differentiable alternatives for
similar problems in areas such as structured pre-
diction.

— \ / / \ o~ \ I~
She , among others excentricities’ , talks to a small rock , Gertrude , like if she was alive BW:8 MinLA: 51
\7 T/ .~ ; / \ ~) ~—

alive she if Gertrude , small a others was rock excentricities like to among , , , talks She BW: 8 MinLA: 73

\

[—

others excentricities among , She , talks , to a rock , Gertrude small like if was she alive BW: 8 MinLA: 38
\ N —

Figure 3: Addition example sentence with sentence permutations and overlayed dependency parses. Blue indi-
cates the standard ordering, green indicates the bandwidth optimal ordering, and red indicates the minLLA optimal
ordering. Black indicates the longest dependency arc in the original ordering.

99

