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Abstract

The unprompted patient experiences shared on
patient forums contain a wealth of unexploited
knowledge. Mining this knowledge and cross-
linking it with biomedical literature, could ex-
pose novel insights, which could subsequently
provide hypotheses for further clinical re-
search. As of yet, automated methods for open
knowledge discovery on patient forum text
are lacking. Thus, in this research proposal,
we outline future research into methods for
mining, aggregating and cross-linking patient
knowledge from online forums. Additionally,
we aim to address how one could measure the
credibility of this extracted knowledge.

1 Introduction

In the biomedical realm, open knowledge dis-
covery from text has traditionally been limited
to semi-structured data, such as electronic health
records, and biomedical literature (Fleuren and
Alkema, 2015). Patient forums (or discussion
groups), however, contain a wealth of unexploited
knowledge: the unprompted experiences of the pa-
tients themselves. Patients indicate that they rely
heavily on the experiences of others (Smailhodzic
et al., 2016), for instance for learning how to cope
with their illness on a daily basis (Burda et al.,
2016; Hartzler and Pratt, 2011).

In recent years, researchers have begun to ac-
knowledge the value of such knowledge from ex-
perience, also called experiential knowledge. It
is increasingly recognized as complementary to
empirical knowledge (Carter et al., 2013; Knot-
tnerus and Tugwell, 2012). Consequently, patient
forum data has been used for a range of health-
related applications from tracking public health
trends (Sarker et al., 2016b) to detecting adverse
drug responses (Sarker et al., 2015). In contrast to
other potential sources of patient experiences such
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as electronic health records or focus groups, pa-
tient forums offer uncensored and unsolicited ex-
periences. Moreover, it has been found that pa-
tients are more likely to share their experiences
with their peers than with a physician (Davison
et al., 2000).

Nonetheless, so far, the mining of experien-
tial knowledge from patient forums has been lim-
ited to the extraction of adverse drug responses
(ADRs) that patients experience when taking pre-
scription drugs. Yet, patient forums contain an
abundance of valuable information hidden in other
experiences. For example, patients may report ef-
fective coping techniques for side effects of med-
ication. Nevertheless, automated methods for
open knowledge discovery from patient forum
text, which could capture a wider range of expe-
riences, have not yet been developed.

Therefore, we aim to develop such automated
methods for mining anecdotal medical experi-
ences from patient forums and aggregating them
into a knowledge repository. This could then be
cross-linked to a comparable repository of curated
knowledge from biomedical literature and clini-
cal trials. Such a comparison will expose any
novel information present in the patient experi-
ences, which could subsequently provide hypothe-
ses for further clinical research, or valuable aggre-
gate knowledge directly for the patients.

Although hypothesis generation in this manner
could potentially advance research for all patient
groups, we expect it to be the most promising for
patients with rare diseases. Research into these
diseases is scarce (Aymé et al., 2008): their rar-
ity obstructs data collection and for-profit indus-
try considers this research too costly. Aggregation
of data from online forums could spur the coordi-
nated, trans-geographic effort necessary to attain
progress for these patients (Aymé et al., 2008).
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Problem statement Patient experiences are
shared in abundance on patient forums. Experi-
ential knowledge expressed in these experiences
may be able to advance understanding of the
disease and its treatment, but there is currently
no method for automatically mining, aggregating,
cross-linking and verifying this knowledge.

Research question To what extent can auto-
mated text analysis of patient forum posts aid
knowledge discovery and yield reliable hypothe-
ses for clinical research?

Contributions Our main contributions to the
NLP field will be: (1) methods for extracting of
aggregated knowledge from patient experiences
on online fora, (2) a method for cross-linking
curated knowledge and complementary patient
knowledge, and (3) a method for assessing the
credibility of claims derived from medical user-
generated content. We will release all code and
software related to this project. Data will be avail-
able upon request to protect the privacy of the pa-
tients.

2 Research Challenges

In order to answer this research question, five chal-
lenges must be addressed:

e Data Quality Knowledge extraction from so-
cial media text is complicated by colloquial
language, typographical errors, and spelling
mistakes (Park et al., 2015). The complex
medical domain only aggravates this chal-
lenge (Gonzalez-Hernandez et al., 2017).

e Named Entity Recognition (NER) Previous
work has been limited to extracting drug
names and adverse drug responses (ADRs).
Consequently, methods for extracting other
types of relevant entities, such as those re-
lated to coping behaviour, still need to be
developed. In general, layman’s terms and
creative language use hinder NER from user-
generated text (Sarker et al., 2018).

e Automatic Relation Annotation Relation ex-
traction from forum text has been explored
only for ADR-drug relations. A more open
extraction approach is currently lacking. The
typically small size of patient forum data
and the subsequent lack of redundancy is the
main challenge for relation extraction. Other
challenges include determining the presence,
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direction and polarity of relations and nor-
malizing relationships in order to aggregate
claims.

Cross-linking with Curated Knowledge In or-
der to extract novel knowledge, the extracted
knowledge should be compared with curated
sources. Thus, methods need to be developed
to build comparable enough knowledge bases
from both types of knowledge.

Credibility of Medical User-generated Con-
tent In order to assess the trustworthiness
of novel, health-related claims from user-
generated online content, a method for mea-
suring their relative credibility must be devel-
oped.

3 Prior work

In this section, we will highlight the prior work
for each of these research challenges. Hereafter, in
section 4, we will outline our proposed approach
to tackling them in light of current research gaps.

3.1 Data quality

The current state-of-the-art lexical normalization
pipeline for social media was developed by Sarker
(2017).  Their spelling correction method de-
pends on a standard dictionary supplemented with
domain-specific terms to defect mistakes, and on
a language model of generic Twitter data to cor-
rect these mistakes. For domains that have many
out-of-vocabulary terms compared to the available
dictionaries and language models, such as medical
social media, this is problematic and results in a
low precision for correct domain-specific words.

Besides improving data quality through spelling
normalization, it is essential to identify which
forum posts contain patient experiences before
knowledge can be extracted from these experi-
ences. Previous research into systematically dis-
tinguishing experiences on patient forums is lim-
ited to a single study on Dutch forum data (Ver-
berne et al., 2019). They identified narratives
using only lower-cased words as features. Fur-
thermore, specialized classifiers for differentiating
factual statements about ADRs and personal ex-
periences of ADRs on social media have also been
developed (e.g. Nikfarjam et al. (2015)). How-
ever, these are too specialized to be suited for iden-
tifying patient experiences in general.



3.2 NER on health-related social media

Named entity recognition on patient forums is cur-
rently restricted to the detection of ADRs to pre-
scription drugs (Sarker et al., 2015). Leaman et al.
(2010) were the first to extract ADRs from patient
forum data by matching tokens to a lexicon of side
effects compiled from three medical databases and
manually curated colloquial phrases. As lexicon-
based approaches are hindered by descriptive and
colloquial language use (O’Connor et al., 2014),
later studies attempted to use association mining
(Nikfarjam and Gonzalez, 2011). Although par-
tially successful, concepts occurring in infrequent
or more complex sentences remained a challenge.

Consequently, more recent studies have em-
ployed supervised machine learning, which can
detect inexact matches. The current state-of-the-
art systems use conditional random fields (CRF)
with lexicon-based mapping (Nikfarjam et al.,
2015; Metke-Jimenez and Karimi, 2015; Sarker
et al., 2016a). Key to their success is their ability
to incorporate textual information. Information-
rich semantic features, such as polarity (Liu et al.,
2016); and unsupervised word embeddings (Nik-
farjam et al., 2015; Sarker et al., 2016a), were
found to aid the supervised extraction of ADRs.
As of yet, deep learning methods have not been
explored for ADR extraction from patient forums.

For subsequent concept normalization of ADRs
i.e. their mapping to concepts in a controlled vo-
cabulary, supervised methods outperform lexicon-
based and unsupervised approaches (Sarker et al.,
2018). Currently, the state-of-the-art system is
an ensemble of a Recurrent Neural Network and
Multinomial Logistic Regression (Sarker et al.,
2018). In contrast to previous research, we aim
to extract a wider variety of entities, such as those
related to coping, and thus we will also extend
normalization approaches to a wider range of con-
cepts.

3.3 Automated relation extraction on
health-related social media

Research on relation extraction from patient fo-
rums has been explored to a limited extent in the
context of ADR-drug relations. Whereas earlier
studies simply used co-occurrence (Leaman et al.,
2010), Liu and Chen (2013) opted for a two-step
classifier system with a first classifier to determine
whether entities have a relation and a second to
define it. Another study used a Hidden Markov
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Model (Sampathkumar et al., 2014) to predict the
presence of a causal relationship using a list of
keywords e.g. ‘effects from’. More recently, Chen
et al. (2018) opted for a statistical approach: They
used the Proportional Reporting Ratio, a statistical
measure for signal detection, which compares the
proportion of a given symptom mentioned with a
certain drug to the proportion in combination with
all drugs. In order to facilitate more open knowl-
edge discovery on patient forums, we aim to inves-
tigate how other relations than ADR-drug relations
can be extracted.

3.4 Cross-linking medical user-generated
content with curated knowledge

Although the integration of data from different
biomedical sources has become a booming topic
in recent years (Sacchi and Holmes, 2016), only
two studies have cross-linked user-generated con-
tent from health-related social media with struc-
tured databases. Benton et al. (2011) compared
co-occurrence of side effects in breast cancer posts
to drug package labels, whereas Yeleswarapu et al.
(2014) combined user comments with structured
databases and MEDLINE abstracts to calculate
the strength of associations between drugs and
their side effects. We aim to develop cross-
linking methods with curated sources that go be-
yond ADR-drug relations in order to extract diver-
gent novel knowledge from user-generated text.

3.5 Credibility of medical user-generated
content

As the Web accumulates user-generated content, it
becomes important to know if a specific piece of
information is credible or not (Berti-Equille and
Ba, 2016). For novel claims, the factual truth can
often not be determined, and thus credibility is the
highest attainable.

So far, the approaches to automatically assess-
ing credibility of health-related information on so-
cial media has been limited to three studies (Vi-
viani and Pasi, 2017a). Firstly, Vydiswaran et al.
(2011) used textual features to compute trustwor-
thiness based on community support. They eval-
uated their approach using simulated data with
varying amounts of invalid claims, defined as dis-
approved or non-specific treatments, e.g. paraceta-
mol. Secondly, Mukherjee et al. (2014) developed
a semi-supervised probabilistic graph that uses an
expert medical database of known side effects as
a ground truth to assess the credibility of rare or
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Figure 1: Proposed pipeline

unknown side effects on an online health commu-
nity. Kinsora et al. (2017) was the first to not
focus solely on accessing relations of treatments
and side effects. They developed the first labeled
data set of misinformative and non-misinformative
comments from a health discussion forum, where
misinformation is defined as ‘medical relations
that have not been verified’. By definition, how-
ever, the novel health-related claims arising from
our knowledge discovery process will not be veri-
fied. Thus, so far, a methodology for assessing the
credibility of novel health-related claims on social
media is lacking. We aim to address this gap.

4 Proposed Pipeline

As can be seen in Figure 1, we propose a pipeline
that will automatically output a list of medical
claims from the knowledge contained in user-
generated posts on a patient forum. They will be
ranked in order of credibility to allow clinical re-
searchers to focus on the most credible candidate
hypotheses.

After preprocessing, we aim to extract relevant
entities and their relations from only those posts
that contain personal experiences. Therefore, we
need a classifier for personal experiences as well
as a robust preprocessing system. From the fil-
tered posts, we will subsequently extract a wider
range of entities than was done in previous re-
search, such as those related to coping with ad-
verse drug responses, medicine efficacy, comor-
bidity and lifestyle. Since patients with comor-
bities, i.e. co-occurring medical conditions, are
often excluded from clinical trials (Unger et al.,
2019), it is unknown whether medicine efficacy
and adverse drug responses might differ for these
patients. Moreover, certain lifestyle choices, such
as diet, are known to influence both the working of
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medication (Bailey et al., 2013) and the severity of
side effects. For instance, patients with the rare
disease Gastro-Intestinal Stromal Tumor (GIST)
provide anecdotal evidence that sweet potato can
influence the severity of side effects.! These is-
sues greatly impact the quality of life of patients
and can be investigated with our approach. How-
ever, extending towards a more open information
extraction approach instigates various questions.
Could, for instance, dependency parsing be em-
ployed? Should a pre-specified list of relations
be used and if so, which criteria should this list
conform to? Which approaches and insights from
other NLP domains could help us here?

Answering these questions is complicated by
our consecutive aim to cross-link the patient
knowledge with curated knowledge: the approach
to knowledge extraction and aggregation needs to
be similar enough to allow for filtering. A com-
pletely open approach may therefore not be pos-
sible. A key feature that impedes the generation
of comparable data repositories is the difference
in terminology. Extracting curated claims is also
not trivial, as biomedical literature is at best semi-
structured. Yet, comparable repositories are essen-
tial, as they will enable us to eliminate presently
known facts from our findings.

Finally, we aim to automatically assess the cred-
ibility of these novel claims in order to output
a ranked list of novel hypotheses to clinical re-
searchers. Our working definition of credibility is
the level of trustworthiness of the claim, or how
valid the audience perceives the statement itself to
be (Hovland et al., 1953). The development of a
method for measuring credibility raises interest-
ing points for discussion, such as: which linguistic
features could be used to measure the credibility of
a claim? And how could support of a statement, or
lack thereof, by other forum posts be measured?

In the next two sections, we will elaborate,
firstly, on initial results for improving data qual-
ity and, secondly, on implementation ideas for our
NER and relation extraction system; and for our
method for assessing credibility.

5 Initial results

To reduce errors in knowledge extraction, our re-
search initially focused on improving data quality
through (1) lexical normalization and (2) identify-

'https://liferaftgroup.org/
managing-side—-effects/
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ing messages that contain personal experiences.’

Lexical normalization Since the state-of-the-
art lexical normalization method (Sarker, 2017)
functions poorly for social media in the health do-
main, we developed a data-driven spelling correc-
tion module that is dependent only on a generic
dictionary and thus capable of dealing with small
and niche data sets (Dirkson et al., 2018, 2019b).
We developed this method on a rare cancer fo-
rum for GIST patients® consisting of 36,722 posts.
As a second cancer-related forum, we used a sub-
reddit on cancer of 274,532 posts .

For detecting mistakes, we implemented a de-
cision process that determines whether a token is
a mistake by, firstly, checking if it is present in
a generic dictionary, and if not, checking for vi-
able candidates. Viable candidates, which are de-
rived from the data, need to have at least double
the corpus frequency and a high enough similarity.
This relative, as opposed to an absolute, frequency
threshold enables the system to detect common
spelling mistakes. The underlying assumption is
that correct words will occur frequently enough
to not have any viable correction candidates: they
will thus be marked as correct. Our method at-
tained an Fys score of 0.888. Additionally, it
manages to circumvent the absence of specialized
dictionaries and domain- and genre-specific pre-
trained word embeddings. For correcting spelling
mistakes, relative weighted edit distance was em-
ployed: the weights are derived from frequen-
cies of online spelling errors (Norvig, 2009). Our
method attained an accuracy of 62.3% compared
to 20.8% for the state-of-the-art method (Sarker,
2017). By pre-selecting viable candidates, this ac-
curacy was further increased by 1.8% point.

This spelling correction pipeline reduced out-
of-vocabulary terms by 0.50% and 0.27% in the
two cancer-related forums. More importantly, it
mainly targeted, and thus corrected, medical con-
cepts. Additionally, it increased classification ac-
curacy on five out of six benchmark data sets of
medical forum text (Dredze et al. (2016); Paul and
Dredze (2009); Huang et al. (2017); and Task 1
and 4 of the ACL 2019 Social Media Mining 4
Health shared task®).

?Code and developed corpora can be found on https:
//github.com/AnneDirkson

*https://www.facebook.com/groups/
gistsupport/

‘www.reddit.com/r/cancer

‘https://healthlanguageprocessing.org/
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Personal experience classification As research
into systematically distinguishing patient experi-
ences was limited to Dutch data with only one fea-
ture type (Verberne et al., 2019), we investigated
how they could best be identified in English forum
data (Dirkson et al., 2019a). Each post was classi-
fied as containing a personal experience or not. A
personal experience did not need to be about the
author but could also be about someone else.

We found that character 3-grams (F; = 0.815)
significantly outperform psycho-linguistic fea-
tures and document embeddings in this task.
Moreover, we found that personal experiences
were characterized by the use of past tense, health-
related words and first-person pronouns, whereas
non-narrative text was associated with the future
tense, emotional support words and second-person
pronouns. Topic analysis of the patient experi-
ences in a cancer forum uncovered fourteen medi-
cal topics, ranging from surgery to side effects. In
this project, developing a clear and effective an-
notation guideline was the major challenge. Al-
though the inter-annotator agreement was substan-
tial (x = 0.69), an error analysis revealed that an-
notators still found it challenging to distinguish a
medical fact from a medical experience.

6 Current and Future work

In the upcoming second year of the PhD project,
we will focus on developing an NER and relation
extraction (RE) system (Section 6.1). After that,
we will address the challenge of credibility assess-
ment (Section 6.2).

6.1 Extracting entities and their relations

For named entity recognition, we are currently ex-
perimenting with BiLSTMs combined with Con-
ditional Random Fields. Our system builds on the
state-of-the-art contextual flair embeddings (Ak-
bik et al., 2018) trained on domain-specific data
(Dirkson and Verberne, 2019). Our next step will
be to combine these with Glove or Bert Embed-
dings (Devlin et al., 2018). We may also incorpo-
rate domain knowledge from structured databases
in our embeddings, as this was shown to im-
prove their quality (Zhang et al., 2019). The ex-
tracted entities will be mapped to a subset of pre-
selected categories of the UMLS (Unified Medical
Language System) (National Library of Medicine,

smmé4h/challenge/
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2009), as this was found to improve precision (Tu
et al., 2016).

For relation extraction (RE), our starting point
will also be state-of-the-art systems for various
benchmark tasks. Particularly the system by
Vashishth et al. (2018), RESIDE, is interesting as
it focuses on utilizing open IE methods (Angeli
et al., 2015) to leverage relevant information from
a Knowledge Base (i.e. possible entity types and
matching to relation aliases) to improve perfor-
mance. We may be able to employ similar meth-
ods using the UMLS. Nonetheless, as patient fo-
rums are typically small in size, recent work in
transfer learning for relation extraction (Alt et al.,
2019) is also interesting, as such systems may be
able to handle smaller data sets better. Recent
work on few-shot relation extraction (Han et al.,
2018) may also be relevant for this reason. Han
et al. (2018) showed that meta-learners, models
which try to learn how to learn, can aid rapid gen-
eralization to new concepts for few-shot RE. The
best performing meta-learner for their new bench-
mark FewRel was the Prototypical Network by
Snell et al. (2018): a few-shot classification model
that tries to learn a prototypical representation for
each class. We plan to investigate to what extent
these various state-of-the-art systems can be em-
ployed, adapted and combined for RE in domain-
specific patient forum data.

6.2 Assessing credibility

To assess credibility, we build upon extensive re-
search into rumor verification on social media. Zu-
biaga et al. (2018) consider a rumor to be: “an item
of circulating information whose veracity status is
yet to be verified at time of posting”. According to
this definition, our unverified claims would qualify
as rumors.

An important feature for verifying rumors is
the aggregate stance of social media users towards
the rumor (Enayet and El-Beltagy, 2017). This
is based on the idea that social media users can
collectively debunk inaccurate information (Proc-
ter et al., 2013), especially over a longer period
of time (Zubiaga et al., 2016b). In employing
a similar approach, we assume that collectively
our users, namely patients and their close rela-
tives, have sufficient expertise for judging a claim.
Stances of posts are generally classified into sup-
porting, denying, querying or commenting i.e.
when a post is either unrelated to the rumor or to
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its veracity (Qazvinian et al., 2011; Procter et al.,
2013). We plan to combine the state-of-the-art
LSTM approach by Kochkina et al. (2017) with
the two-step decomposition of stance classifica-
tion suggested by Wang et al. (2017): comments
are first distinguished from non-comments to then
classify non-comments into supporting, denying,
or querying. We will take into account the en-
tire conversation, as opposed to focusing on iso-
lated messages, since this has been shown to im-
prove stance classification (Zubiaga et al., 2016a).
We may employ transfer learning by using a pre-
trained language model tuned on domain-specific
data as input. Additional features will be derived
from previous studies into rumor stance classifica-
tion e.g. Aker et al. (2017).

For determining credibility, we plan to experi-
ment with the model-driven approach by Viviani
and Pasi (2017b), which was used to assess the
credibility of Yelp reviews. They argue that a
model-driven MCDM (Multiple-Criteria Decision
Analysis) grounded in domain knowledge can lead
to better or comparable results to machine learn-
ing if the amount of criteria is manageable on top
of allowing for better interpretability. According
to Zubiaga et al. (2018), interpretability is essen-
tial to make a credibility assessment more reli-
able for users. Alternatively, we may use inter-
pretable machine learning methods, such as Logis-
tic Regression or Support Vector Machines, simi-
lar to the state-of-the-art rumor verification system
(Enayet and El-Beltagy, 2017). Besides stance,
other linguistic and temporal features for deter-
mining credibility could be derived from rumor
veracity studies e.g. Kwon et al. (2013); Castillo
et al. (2011). We also plan to conduct a survey
amongst patients in order to include factors they
indicate to be important for judging credibility of
information on their forum.

A challenge we foresee is the absence of a
ground truth for the credibility of claims. To
solve this, we could make use of the ground truth
of claims that match curated knowledge through
distant supervised learning and extrapolate our
method to the unknown instances, comparable to
the work by Mukherjee et al. (2014). Likewise,
we could mirror Mukherjee et al. (2014) in our
evaluation of the credibility scores: we could ask
experts to evaluate ten random claims and the ten
most credible as determined by our method.
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