
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 54–63
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

54

Question Answering in the Biomedical Domain

Vincent Nguyen
Research School of Computer Science, Australian National University

Data61, CSIRO
vincent.nguyen@anu.edu.au

Abstract

Question answering techniques have mainly
been investigated in open domains. How-
ever, there are particular challenges in extend-
ing these open-domain techniques to extend
into the biomedical domain. Question answer-
ing focusing on patients is less studied. We
find that there are some challenges in patient
question answering such as limited annotated
data, lexical gap and quality of answer spans.
We aim to address some of these gaps by ex-
tending and developing upon the literature to
design a question answering system that can
decide on the most appropriate answers for
patients attempting to self-diagnose while in-
cluding the ability to abstain from answering
when confidence is low.

1 Introduction

Question Answering (QA) is the downstream task
of information seeking wherein a user presents
a question in natural language, Q, and a system
finds an answer or a set of answers from a col-
lection of natural language documents or knowl-
edge bases (Lende and Raghuwanshi, 2016), A,
that satisfies the user’s question (Molla and Gon-
zlez, 2007).

Questions fall into one of two categories: fac-
toid and non-factoid. Factoid QA provides brief
facts to the users’ questions; for example, Ques-
tion: What day is it? Answer: Monday. Non-
factoid question answering is a more complex
task. It involves answering questions that require
specific knowledge, common sense or a procedure
due to ambiguity or the scope of the question. An
example from the Yahoo non-factoid question an-
swer dataset1 illustrates this: Question: Why is it
considered unlucky to open an umbrella indoors?.
The answer is not apparent and requires specific
knowledge about cultural superstitions.

1https://ciir.cs.umass.edu/downloads/nfL6/

Question answering is fundamental in high-
level tools such as chatbots (Qiu et al., 2017;
Yan et al., 2016; Amato et al., 2017; Ram et al.,
2018), search engines (Kadam et al., 2015), and
virtual assistants (Yaghoubzadeh and Kopp, 2012;
Austerjost et al., 2018; Bradley et al., 2018). How-
ever, being a downstream task, question answering
suffers from pipeline error, as it often relies on the
quality of several upstream tasks such as coref-
erence resolution (Vicedo and Ferrández, 2000),
anaphora resolution (Ram et al., 2018), named en-
tity recognition (Aliod et al., 2006), information
retrieval (Mao et al., 2014), and tokenisation (De-
vlin et al., 2019).

Thus, there has been a growing demand for
these QA systems to deliver precise question-
specific answers (Pudaruth et al., 2016) and con-
sequently has sparked much research into improv-
ing upon relevant natural language processing ap-
proaches (Malik et al., 2013), datasets (Rajpurkar
et al., 2016; Kociský et al., 2017) and informa-
tion retrieval techniques (Weienborn et al., 2013;
Mao et al., 2014). These improvements have al-
lowed the domain to evolve from shallow keyword
matching to contextual and semantic retrieval sys-
tems (Kadam et al., 2015). However, most of
these techniques have been focused on the open-
domain (Soares and Parreiras, 2018) and the chal-
lenges harbouring the biomedical domain have not
been well addressed and remain unsolved. Here,
we define biomedical QA as either factoid or non-
factoid QA on biomedical literature.

One such challenge is due to the creation
of complex medical queries which require ex-
pert knowledge and up to four hours per
query (Russell-Rose and Chamberlain, 2017) to
adequately answer. This requirement of expert
knowledge leads to a lack of high-quality, publicly
available biomedical QA datasets. Furthermore,
medical datasets tend to be locked behind ethical,
obligatory agreements and are usually small due to
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cost constraints and lack of domain experts for an-
notation (Pampari et al., 2018; Shen et al., 2018).
Therefore, open-domain techniques which assume
data-rich conditions are not suitable for direct ap-
plication to the biomedical domain.

Another challenge is clinical term ambiguity,
which is due to the temporally and spatially vary-
ing nature of clinical terminology, and the fre-
quent use of abbreviation and esoteric medical ter-
minology (Lee et al., 2019) (see Table 1 for ex-
amples). It is difficult for systems to adequately
disambiguate clinical words to be used in down-
stream QA systems due to the complexity of the
ambiguity of medical terminology, such as abbre-
viations, due to their varying contexts. Though
there are existing tools such as MetaMap (Aron-
son and Lang, 2010) to disambiguate these terms
by mapping them to the UMLS (Unified Medi-
cal Language System) metathesaurus, coverage of
these systems is low and mappings are often inac-
curate (Wu et al., 2012).

Furthermore, systems in the open-domain typ-
ically retrieve a long answer before extracting a
short continuous span of text to present to the
user (Soares and Parreiras, 2018; Rajpurkar et al.,
2016). However, for biomedical responses, it is
not always sufficient to retrieve short answer con-
tinuous spans, and Answer Evidence spans that are
discontinuous that cross the sentence boundary are
often required (Pampari et al., 2018; Hunter and
Cohen, 2006; Nentidis et al., 2018).

These problems are not yet solved in the
biomedical domain and are reflected in the
BioASQ challenge (Nentidis et al., 2018), an an-
nual challenge with a biomedical question answer-
ing track. Currently, the state-of-the-art systems
do not perform much better than random guess
with an accuracy of 66.67% for binary question
answering (Chandu et al., 2017), 24.24% for fac-
toid (ranked list of named entities as answers) and
an F1-score of 0.3312 for list-type (unranked list
of named entities) (Peng et al., 2015) suggesting
that there is much room for improvement in terms
of algorithms and research.

Furthermore, we found that there is a lack of
a biomedical question answering system directed
for patients. Biomedical question answering for
patients is important as studies from the Pew Re-
search Centre have shown that 35% of U.S. adults
have diagnosed themselves using the information

they found online2. Of these adults, 35% said
that they did not get a professional opinion on
their self-diagnosis, illustrating that patients may
blindly trust the results of search engines without
consulting a medical professional. This is cause
for concern, as search engines tend to display the
most severe ailments first which could lead to a
potential waste of hospital resources or deteriora-
tion in patient health (Korfage et al., 2006).

Furthermore, although there are negatives to
searching symptoms via search engine, for the par-
ticipants who visited doctors after self-diagnosis,
research has revealed that doctor-patient relation-
ships and patient compliance with treatment im-
prove as the patients have a clearer understanding
of their symptoms and potential disease after self-
diagnosis (Cocco et al., 2018). These studies mo-
tivate the need for a strong biomedical question
answering question for patients as it will benefit
patients who self-diagnose and patients who seek
medical advice after looking up their symptoms
online.

Finally, we highlight that there is a lexical and
semantic gap between clinical and patient lan-
guage. For example, the expression “hole in lung“
taken literally is about a punctured lung. However,
this colloquialism refers to the condition known
as Pleurisy (Ben Abacha and Demner-Fushman,
2019; Abacha and Demner-Fushman, 2016), illus-
trating that patients do not have the level of literacy
to formulate complex medical queries nor under-
stand them (Graham and Brookey, 2008).

We aim to address the challenges in applying
question answering to biomedical question an-
swering for patients. We highlight that the cur-
rent gaps of biomedical QA research stem from
lack of clinical disambiguation tools, lack of high-
quality data, the quality of answer spans, weak
algorithms and clinical-patient lexical gaps. Our
goal is to present a patient biomedical QA system
that can address the gaps in biomedical research
and allows a patient to query their symptoms, dis-
eases or available treatment options accurately, but
will also abstain from providing answers in cases
where there is low confidence in the best answer,
question malformation or insufficiency of data to
answer the question.

2https://www.pewinternet.org/2013/01/15/health-online-
2013/
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Type Example Explanation
Temporally varying Flu The Flu evolves every year and the cause is predicated on the

year it is contracted
Spatially varying Cancer Cancer is a disease that varies with severity based on location

(Late stage brain cancer is much worse than early stage skin
cancer)

Abbreviation HR A common clinical abbreviation that typically means heart
rate, but may mean hazard ratio depending on the context

Esoteric terminology c.248T>C A gene mutation that does not appear in any open-domain cor-
pus such as Wikipedia and has no layman definition

Table 1: Examples of ambiguity in biomedical text.

2 Literature Review

Here, we detail a review of question answering in
the open and biomedical domains.

2.1 Information Retrieval Approaches

Biomedical QA systems up until 2015 relied heav-
ily on Information Retrieval (IR) techniques such
as tf-idf ranking (Lee et al., 2006) and entity
extraction tools such as MetaMap (Aronson and
Lang, 2010) in order to obtain candidate answers
(by querying biomedical databases) and feature
extraction before using machine learning mod-
els such as logistic regression (Weienborn et al.,
2013). While other techniques included using
cosine similarity between one-hot encoded vec-
tors of answer and question for candidate re-
ranking (Mao et al., 2014). However, these tech-
niques were inherently bag-of-word approaches
that ignored the context of words. Furthermore,
these techniques relied on complete matches of
question terms and answer paragraphs, which is
not realistic in practice. Patients use different ter-
minology to that of medical experts and biomedi-
cal literature (Graham and Brookey, 2008).

In more recent years, more neural approaches to
IR have been used in the biomedical space (Nen-
tidis et al., 2017, 2018) such as Position-
Aware Convolutional Recurrent Relevance Match-
ing (Hui et al., 2017), Deep Relevance Match-
ing Model (Guo et al., 2017) and Attention Based
Convolutional Neural Network (Yin et al., 2015).
However, though these approaches do not rely on
complete matching of words and capture seman-
tics, they either ignore local or global contexts
which are useful for disambiguation of clinical ter-
minology and comprehension (McDonald et al.,
2018).

2.2 Semantic-level Approach

QA requires the retrieval of long answers be-
fore summarisation or retrieval of answer spans.
Punyakanok et al. (2004) introduced the use of
a question’s dependency trees and candidate an-
swers’ dependency trees and aligning with the
Tree Edit Distance metric to augment statistical
classifiers such as Logistic Regression and Con-
ditional Random Fields. However, these meth-
ods failed to capture complex semantic informa-
tion due to a reliance on effective part-of-speech
tagging and were not attractive end-to-end solu-
tions. Otherwise, WordNet was utilised to extract
semantic relationships and estimate semantic dis-
tances between answers and questions (Terol et al.,
2007). However, WordNet suffered from being
open-domain focused and also was not able to cap-
ture complex semantic information such as poly-
semy (Molla and Gonzlez, 2007).

2.3 Neural Approaches

In recent years, approaches that use neural net-
works have become popular. Word embedding
techniques such as Word2vec and GloVe can
model the latent semantic distribution of language
through unsupervised learning (Chiu et al., 2016).
Furthermore, they are quickly adopted into neu-
ral networks as these models take fixed-sized
vector inputs, where embeddings could be used
as encoded inputs into neural networks such as
LSTM (Hochreiter and Schmidhuber, 1997) and
CNN (LeCun et al., 1999) in the biomedical do-
main (Nentidis et al., 2017, 2018).

Though these embedding techniques were use-
ful in capturing latent semantics, they did not dis-
tinguish between multiple meanings of clinical
text (Molla and Gonzlez, 2007; Vine et al., 2015).

There have been several solutions to this prob-
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lem (Peters et al., 2018; Howard and Ruder,
2018; Devlin et al., 2019) proposed but they are
not relevant specifically to the biomedical do-
main. Instead, we highlight BioBERT (Lee et al.,
2019), a biomedical version of BERT (Devlin
et al., 2019) which is a deeply bidirectional trans-
former (Vaswani et al., 2017) that is able to incor-
porate rich context into the encoding or embed-
ding process that has pre-trained on the Wikipedia
and PubMed corpora. However, this model fails to
account for the spatial and temporal aspects of dis-
eases in biomedical literature as temporality is not
encoded into its input. Furthermore, Biobert uses
a WordPiece tokeniser (Wu et al., 2016) which
keeps a fixed-size vocabulary dictionary for learn-
ing new words. However, the vocabulary within
the model is derived from Wikipedia, a general
domain corpus, and thus Biobert is unable to learn
distinct morphological semantics of medical terms
like -phobia, where ’-‘ denotes suffixation, mean-
ing fear as it only has the internal representation
for -bia.

3 Research Plan

We list the research questions to address some
of the research gaps in biomedical QA and the
system we aim to design, alongside baseline ap-
proaches and methodology as starting points. We
will also mention future directions to address these
research questions.

RQ1: What are the limitations of current
biomedical QA? The limitations in current
biomedical QA include the lack of: sufficient
ambiguity resolution tools (Wu et al., 2012),
robust techniques to using semantic neural ap-
proaches (Lee et al., 2019; Nentidis et al., 2018).
The lack of strong comprehension from systems
to produce sufficient answer spans that cross the
sentence boundary as reflected by poor results
in ideal answer production in BioASQ (Nentidis
et al., 2018, 2017) and addressing issues using
real-world patient queries rather than artificially
curated queries (Pampari et al., 2018; Guo et al.,
2006) which contain colloquial ambiguous non-
medical terminology such as hole in lung.

In our research, we aim to address each of these
gaps by researching into: higher coverage clini-
cal ambiguity tools that use contexts in the spatial
and temporal domains, summarisation techniques
that can translate from biomedical terminology to
patient language (Mishra et al., 2014; Shi et al.,

2018) and tuning biomedical models to solve com-
plex answer span tasks that cross sentence bound-
aries (Kociský et al., 2017) or require common
sense (Talmor et al., 2018).

RQ2: Data-driven approaches require high-
quality datasets. How can we construct or
leverage existing datasets to mimic real-world
biomedical question answering? By leverag-
ing existing techniques such as variational auto-
encoder (Shen et al., 2018) and Snorkel (Bach
et al., 2018), we will be able to generate, label and
process additional data that can meet stringent data
requirements of neural approaches.

However, synthetic datasets generally perform
weaker than handcrafted datasets (Bach et al.,
2018). In order to bridge this gap in the re-
search, we propose augmenting these data gener-
ation methods via crowd-sourcing methods with
textual entailment (Abacha and Demner-Fushman,
2016) and natural language inference (Johnson
et al., 2016) to improve the quality of the gener-
ated labels and data. For instance, we can use fo-
rums like Quora or medical specific forums such
as Health243 and utilise techniques such as ques-
tion entailment to find questions that are related
to ones seen in the dataset in order to generate
higher-quality annotated labels.

We will then develop techniques that can com-
bine synthetic and higher-quality labelled datasets
that can be utilized downstream in a QA system.
We will compare this against baselines such as
majority voting and Snorkel to evaluate our ap-
proaches.

Allowing the model to abstain from a deci-
sion, through comprehension, has been the focus
of many datasets as of late (Rajpurkar et al., 2016;
Kociský et al., 2017). We can use these datasets as
a starting problem to solve before applying these
techniques to the biomedical domain. However,
we will also develop and research further tech-
niques in order to allow for improved confidence
and low uncertainty from the model.

RQ3: How do we indicate the confidence of the
answer that the model has provided? Often re-
searchers interpret softmax or confidence scores
from the classifier models as direct correlations to
probability but often forget about uncertainties in
this measurement (Kendall and Gal, 2017). Due
to the real-world application and sensitivity of pre-

3https://www.health24.com/Experts
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dictions in a health-based QA system, there needs
to be guarantees that predictions are of both high
accuracy and low uncertainty.

In order to account for uncertainty, techniques
such as Inductive Conformal Prediction (Pa-
padopoulos, 2008) and Deep Bayesian Learn-
ing (Siddhant and Lipton, 2018) can be used to
model epistemic uncertainty, which is not inher-
ently captured by the model during training, in or-
der to make the loss function more robust to noise
and uncertainty and thereby strengthen the predic-
tions of the model. This would then allow soft-
max scores to be used as confidence scores within
a reasonable level of uncertainty.

RQ4: How do we include temporality or lo-
cality of diseases into answers? Diseases are
non-static, they evolve such as the flu or are sea-
sonal such as the summer cold. Current models
utilise only static vector inputs, such as word em-
beddings, that do not account for this temporal as-
pect of the input. Furthermore, though diseases
are non-static, they may be more likely in different
countries as there is a spatiotemporal relationship
where countries will experience different seasons
and thus different diseases. In order to accommo-
date for these relationships, we can draw on prior
research as starting points such as space-time lo-
cal embeddings (Sun et al., 2015), dynamic word
embeddings (Bamler and Mandt, 2017) or time-
embeddings (Barbieri et al., 2018) as baselines and
extend them into the biomedical setting.

RQ5: How do we bridge the semantic gap be-
tween clinical text and terminology that a pa-
tient can understand? Most patients lack the
expertise in utilising resources such as biomed-
ical literature in order to self-diagnose. There-
fore, knowledge or answers should be presented
in a form that they can understand (Graham and
Brookey, 2008). Biomedical language and pa-
tient language can be construed as two sepa-
rate languages as biomedical language changes
and evolves over time (Yan and Zhu, 2018) and
also pose the same problems (Hunter and Cohen,
2006). Therefore, we can model this problem as
a language translation problem and thus can use
techniques in neural machine translation (Qi et al.,
2018; Chousa et al., 2018) based on word embed-
dings.

However, as biomedical language and patient
English are primarily borne of the same language,
this poses unique problems. For instance, a token

in plain English may translate to several tokens in
the biomedical space or vice versa. This is known
as the alignment problem (Qi et al., 2018). We can
potentially remedy this by borrowing ideas from
n-gram embedding (Zhao et al., 2017) as a starting
point or using Biobert (Lee et al., 2019) projected
to a dual-language embedding space and use atten-
tion to produce the alignment. Furthermore, there
are biomedical abbreviations that need to be dis-
ambiguated before translation (Festag and Spreck-
elsen, 2017), for which we would use direct, rule-
based approaches using thesauri or tools such as
Metamap (Aronson and Lang, 2010) as our base-
line approaches and extend upon using data-driven
approaches (Wu et al., 2017).

4 Experimental Framework

4.1 Datasets

High-quality data is required to address the chal-
lenges we outlined. We therefore consider the
following datasets: (1) MEDNLI (Johnson et al.,
2016; Goldberger et al., 2000) for medical lan-
guage inference; (2) i2b2 in the form of em-
rQA (Pampari et al., 2018) for synthetic question-
answer pairs; (3) SQuAD (Rajpurkar et al.,
2016) for open-domain transfer learning; (4) the
question-answering datasets provided on MediQA
20194; (5) the question entailment dataset and
MedQuAD (Ben Abacha and Demner-Fushman,
2019); (5) CLEF eHealth (Suominen et al., 2018)
to utilize and evaluate IR methods; and (6) we will
supplement our datasets by generating labels for
unlabelled data by leveraging the signals from the
labelled datasets through the use of tools such as
Snorkel (Bach et al., 2018) and CVAE (Shen et al.,
2018).

4.2 Evaluation Metrics

In our experiments, we will evaluate our
summarisation strategies with metrics such as
ROGUE (Lin, 2004), in particular, rogue-
2 (Owczarzak and Dang, 2009) and BLEU (Pap-
ineni et al., 2002). For question-answering, we use
standard ranking metrics such as Mean Average
Precision and Mean Reciprocal Rank for evaluat-
ing candidate ranking and standard metrics such
as f1-score, Precision, Accuracy and more medi-
cal targeted metrics such as sensitivity and speci-
ficity (Parikh et al., 2008).

4https://sites.google.com/view/mediqa2019
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4.3 Proposed Framework

From the research questions mentioned, we pro-
pose a framework to unify their solutions.

Embeddings To begin, we need to construct our
date/seasonal embeddings (Barbieri et al., 2018),
to do this, we will need datasets that have mentions
of the seasonality and locality of disease entities.
Also, we will require embeddings that are repre-
sentative of the text, we will consider state-of-the-
art word-level context sensitive embeddings (Lee
et al., 2019; Peters et al., 2018) and word-level
context insensitive embeddings (Chiu et al., 2016)
and ensure they properly represent the biomedi-
cal datasets. For instance, BERT will need to pre-
trained with a biomedical vocabulary rather than
a general purpose open-domain one, and, in doing
so, we will be able to resolve ambiguity in poly-
semy or abbreviations.

Furthermore, we will also be researching
methodologies to handle out-of-vocabulary words
as the current WordPiece tokenization (Devlin
et al., 2019) or character-level embeddings (Barbi-
eri et al., 2018) would not be sufficient to address
esoteric terminology (Lee et al., 2019). The time
embeddings and the word-level embeddings will
be concatenated and used as input to the model.

Model Architecture Given the success of multi-
task learning (Zhao et al., 2018; Liu et al., 2019),
and having been proposed as the blocking task in
NLP (McCann et al., 2018) that needs to be solved.
We therefore apply multi-task learning to this
problem. From the state of the art multi-task learn-
ing models, we borrow the fundamental building
blocks such as multi-headed self-attention (Liu
et al., 2019) and multi-pointer generation (Mc-
Cann et al., 2018) to be used as decisions in a
Neural Architecture Search (NAS) (Zoph and Le,
2016). NAS will use reinforcement learning tech-
niques to find a suitable architecture for multi-task
learning. We elect to find the architecture to rep-
resent our problem this way due to one main rea-
son. The reason is that the field of deep learning
in NLP is quickly changing, and thus the state-
of-the-art techniques will always change. There-
fore, by having a tool that builds architectures
from the building blocks of state-of-the-art mod-
els is vital. However, crucially, we must add Het-
eroscedastic Aleatoric Uncertainty and Epistemic
Uncertainty minimisation to the model by adjust-
ing the loss function and weight distribution which

will allow the model to be more certain about deci-
sions (Kendall and Gal, 2017). One such decision
must be the ability to abstain from answering.

Concretely, we use NAS to discover models for
NMT from clinical text to the patient language
by conditioning to an encoder-decoder structure.
From here, using this model a starting point, NAS
will add task-specific layers that will minimise the
joint loss over the biomedical tasks such as ques-
tion answering (Nentidis et al., 2018), question
entailment (Abacha and Demner-Fushman, 2016)
and natural language inference (Johnson et al.,
2016). In doing so, multi-task learning will allow
for stronger generalisability and end-to-end train-
ing (McCann et al., 2018; Liu et al., 2019).

5 Summary

We highlight gaps within the literature in ques-
tion answering in the biomedical domain. We
outline challenges associated with implementing
these systems due to the limitations of current
work: lack of annotated data, ambiguity in clin-
ical text and lack of comprehension of ques-
tion/answer text by models.

We motivate this research in the area of patient
QA due to the high volume of medical queries in
search engines that are trusted by patients. Our re-
search aims to build upon the strengths of the cur-
rent state-of-the-art and research new strategies in
solving technical challenges to support a patient
in retrieving the answers they require with low un-
certainty and high confidence.
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