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Abstract

Understanding narrated instructional videos is
important for both research and real-world
web applications. Motivated by video dense
captioning, we propose a model to gener-
ate procedure captions from narrated instruc-
tional videos which are a sequence of step-
wise clips with description. Previous works
on video dense captioning learn video seg-
ments and generate captions without consid-
ering transcripts. We argue that transcripts
in narrated instructional videos can enhance
video representation by providing fine-grained
complimentary and semantic textual informa-
tion. In this paper, we introduce a framework
to (1) extract procedures by a cross-modality
module, which fuses video content with the
entire transcript; and (2) generate captions by
encoding video frames as well as a snippet
of transcripts within each extracted procedure.
Experiments show that our model can achieve
state-of-the-art performance in procedure ex-
traction and captioning, and the ablation stud-
ies demonstrate that both the video frames and
the transcripts are important for the task.

1 Introduction

Narrated instructional videos provide rich visual,
acoustic and language information for people to
easily understand how to complete a task by pro-
cedures. An increasing amount of people resort
to narrated instructional videos to learn skills and
solve problems. For example, people would like
to watch videos to repair a water damaged plas-
terboard / drywall ceiling1 or cook Cottage Pie2.
This motivates us to investigate whether machines
can understand narrated instructional videos like
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Figure 1: A showcase of video dense procedure cap-
tioning. In this task, the video frames and the transcript
are given to (1) extract procedures in the video, (2) gen-
erate a descriptive and informative sentence as the cap-
tion of each procedure.

humans. Besides, watching a long video is time-
consuming, captions of videos provide a quick
overview of video content for people to learn the
main steps rapidly. Inspired by this, our task is to
generate procedure captions from narrated instruc-
tional videos which are a sequence of step-wise
clips with a description as shown in Figure 1.

Previous works on video understanding tend to
recognize actions in video clips by detecting pose
(Wang et al., 2013a; Packer et al., 2012) and mo-
tion (Wang et al., 2013b; Yang et al., 2013) or
both (Wang et al., 2014) and fine-grained fea-
tures(Rohrbach et al., 2016). These works take
low-level vision features into account and can

https://goo.gl/QZFsfR
https://goo.gl/2Z4Kb8
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only detect human actions, instead of complicated
events that occur in the scene. To deeply under-
stand the video content, Video Dense Captioning
(Krishna et al., 2017) is proposed to generate se-
mantic captions for a video. The goal of this task
is to identify all events inside a video and our tar-
get is the video dense captioning on narrated in-
structional videos which we call dense procedure
captioning.

Different from videos in the open domain, in-
structional videos contain an explicit sequential
structure of procedures accompanied by a series
of shots and descriptive transcripts. Moreover,
they contain fine-grained information including
actions, entities, and their interactions. Accord-
ing to our analysis, many fine-grained entities and
actions also present in captions which are ignored
by previous works like (Krishna et al., 2017; Zhou
et al., 2018b). The procedure caption should be
detailed and informative. Previous works (Krishna
et al., 2017; Xu et al., 2016) for video captioning
usually consist of two stages: (1) temporal event
proposition; and (2) event captioning. However,
there are two challenges for narrated instructional
videos: one of the challenges is that video content
fails to provide semantic information so as to ex-
tract procedures semantically; the other challenge
is that it is hard to recognize fine-grained entities
from the video content only, and thus tends to gen-
erate coarse captions.

Previous models for dense video captioning
only use video signals without considering tran-
scripts. We argue that transcripts in narrated in-
structional videos can enhance video representa-
tion by providing fine-grained complimentary and
semantic textual information. As shown in Figure
1, the task takes a video with a transcript as input
and extracts the main procedures as well as these
captions. The whole video is divided into four pro-
posal procedure spans in sequential order includ-
ing: (1) grate some pecorino cheese and beat the
eggs during time span [0:00:12-0:00:46], (2) then
stir cheese into the eggs during [0:00:52-0:01:10],
and so on. Besides video content, transcripts can
provide semantic information. Our model embeds
transcript using a pre-trained context-aware model
to provide rich semantic information. Further-
more, with the transcript, our model can directly
”copy” many fine-grained entities, e.g. pecorino
cheese for procedure captioning.

In this paper, we propose utilizing multi-modal

content of videos including frame features and
transcripts to conduct procedure extraction and
captioning. First, we use the transcript of instruc-
tional videos as a global text feature and fuse it
with video signals to construct context-aware fea-
tures. Then we use temporal convolution to en-
code these features and generate procedure pro-
posals. Next, the fused features of video and tran-
script tokens within the proposed time span are
used to generate the final caption via a recurrent
model. Experiments on the YouCookII dataset
(Zhou et al., 2018a) (a cooking-domain instruc-
tional video corpus) are conducted to show that
our model can achieve state-of-the-art results and
the ablation studies demonstrate that the transcript
can not only improve procedure proposition per-
formance but also be very effective for procedure
captioning.

The contributions of this paper are as follows:

1. We propose a model fusing transcript of nar-
rated instructional video during procedure
extraction and captioning.

2. We employ the pre-trained BERT(Devlin
et al., 2018) and self-attention(Vaswani et al.,
2017) layer to embed transcript, and then in-
tegrate them to visual encoding during proce-
dure extraction.

3. We adopt the sequence-to-sequence model to
generate captions by merging tokens of the
transcript with the aligned video frames.

2 Related Works

Narrated Instructional Video Understanding
Previous works aim to ground the description to
the video. (Malmaud et al., 2015) adopted an
HMM model to align the recipe steps to the nar-
ration. (Naim et al., 2015) utilize latent-variable
based discriminative models (CRF, Structured Per-
ceptron) for unsupervised alignment. Besides
the alignment of transcripts with video, (Alayrac
et al., 2016, 2018) propose to learn the main steps
from a set of narrated instructional videos for five
different tasks and formulate the problem into two
clustering problems. Graph-based clustering is
also adopted to learn the semantic storyline of in-
structional videos in (Sener et al., 2015). These
works assume that ”one task” has the same pro-
cedures. Different from previous works, we fo-
cus on learning more complicated procedures for
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Figure 2: The main structure of our model.

each video and propose a neural network model
for step-wise summarization.

Temporal action proposal is designed to divide
a long video into contiguous segments as a se-
quence of actions, which is similar to the first stage
of our model. (Shou et al., 2016) adopt 3D con-
volutional neural networks to generate multi-scale
proposals. DAPs in (Escorcia et al., 2016) apply
a sliding window and a Long Short-Term Memory
(LSTM) network for video content encoding and
predicting proposals covered by the window. SST
in (Buch et al., 2017) effectively generates propos-
als in a single pass. However, previous methods do
not consider context information to produce non-
overlapped procedures. (Zhou et al., 2018a) is the
most similar work to ours, which is designed to de-
tect long complicated event proposals rather than
actions. We adopt this framework and inject the
textual transcript of narrated instructional videos
as our first step.

Dense video caption aims to generate descrip-
tive sentences for all events in the video. Differ-
ent from video captioning and paragraph genera-
tion, dense video caption requires segmenting of
each video into a sequence of temporal propos-

als with corresponding captions. (Krishna et al.,
2017) resorts to the DAP method (Escorcia et al.,
2016) for event detection and apply the context-
aware S2VT model (Venugopalan et al., 2015).
(Yu et al., 2018) propose to generate long and de-
tailed description for sport videos. (Li et al., 2018)
train jointly on unifying the temporal proposal lo-
calization and sentence generation for dense video
captioning. (Xiong et al., 2018) assembles tem-
porally localized description to produce a descrip-
tive paragraph. (Duan et al., 2018) propose weakly
supervised dense event captioning, which does
not require temporal segment annotations, and de-
composes the problem into a pair of dual tasks.
(Wang et al., 2018a) exploit both past and future
context for predicting accurate event proposals.
(Zhou et al., 2018b) adopt a transformer for ac-
tion proposing and captioning simultaneously. Be-
sides, there are also some works try to incorpo-
rate multi-modal information (e.g. audio stream)
for dense video captioning task(Ramanishka et al.,
2016; Xu et al., 2017; Wang et al., 2018b). The
major difference is that our work adopts a different
model structure and fuses transcripts to further en-
hance semantic representation. Experiments show
that transcripts can improve both procedure ex-
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traction and captioning.

3 Model

In this section, we describe our framework and
model details as shown in Figure 2. First, we adopt
a context-aware video-transcript fusion module to
generate features by fusing video information and
transcript embedding; Then the procedure extrac-
tion module takes the embedded features and pre-
dicts procedures with various lengths; Finally, the
procedure captioning module generates captions
for each procedure by an encoder-decoder based
model.

3.1 Context-Aware Fusion Module

We first encode transcripts and video frames sep-
arately and then extract cross-modal features by
feeding both embeddings into a context-aware
model.

To embed transcripts, we first split all tokens in
the transcript by a sliding window and input them
into a uncased BERT-large (Devlin et al., 2018)
model. Next, we encode these sentences by a
Transformer (Vaswani et al., 2017) and take the
first output as the context-aware transcript embed-
ding e ∈ Re.

To embed the videos, we uniformly sample
T frames and encode each frame vt in V =
{v1, · · · ,vT } to an embedding representation by
an ImageNet-pre-trained ResNet-32 (He et al.,
2016) network. Then we adopt another Trans-
former model to further encode the context infor-
mation, and output X = {x1, · · · ,xT } ∈ RT×d.

Finally, we combine each of the frame features
in X with transcript feature e to get the fused
feature C = {c1, · · · , ct, · · · , cT |ct = {xt ◦ e}}
and feed it into a Bi-directional LSTM (Hochreiter
and Schmidhuber, 1997) in order to encode past
and future contextual information of video frames:
F = Bi-LSTM(C) where F = {f1 · · · fT } ∈
RT×f , and f is the hidden size of the LSTM lay-
ers.

3.2 Procedure Extraction Module

We take the encoded T feature vectors F of each
video as the elementary units to generate proce-
dure proposals. We follow the idea in (Zhou et al.,
2018a; Krishna et al., 2017) that (1) generate a lot
of anchors, i.e. proposals, with different lengths
and (2) use the frame features within a proposal
span to predict plausible scores.

3.2.1 Procedure Proposal Generation
In order to generate different-sized procedure pro-
posals, we adopt a 1D (temporal) convolutional
layer with the setting of K different kernels; three
output channels and zero padding to generate pro-
cedure candidates. The layer takes F ∈ RT×f as
input and outputs a list of M(k) ∈ RT×3 for each
k-th kernel. All these results are stacked as a ten-
sor M ∈ RK×T×3.

Next, the tensor M is divided into three ma-
trices: M =

[
M̂m, M̂l, M̂s

]
where M̂m, M̂l,

M̂s ∈ RK×T , They are designed to represent the
offset of the proposal’s midpoint; the offset of the
proposal’s length and the prediction score. We cal-
culate the starting and ending timestamp of each
proposal by the offset of midpoint and length. Fi-
nally, a non-linear projection is applied on each
matrix: Mm = tanh(M̂m), Ml = tanh(M̂l),
Ms = σ(M̂s) where σ is the Sigmoid projection.

3.2.2 Procedure Proposal Prediction
It is obvious that all proposed procedure candi-
dates are co-related to each other. In order to
encode this interaction, we follow the method in
(Zhou et al., 2018a) which uses an LSTM model
to predict a sequence from the K × T generated
procedure proposal.

The input of the recurrent prediction model
for each time step consists of three parts: frame
features, the position embedding, the plausibility
score feature.

Frame Features For a generated procedure pro-
posal, the corresponding feature vectors F(k,t) are
calculated as follows:

F(k,t) =
{
fC(k,t)−L(k,t), · · · , fC(k,t)+L(k,t)

}
(1)

C(k, t) = bt+ k(k) ×M(k,t)
m c (2)

L(k, t) = bk(k) ×
M

(k,t)
l

2
c (3)

where k = {k1, · · · , kK} is a list of different ker-
nel sizes. The M

(k,t)
m and M

(k,t)
l represent the

midpoint and length offset of the span for k-th
kernel and t-th frame respectively and k(k) is the
length of the k-th kernel.

Position Embedding We treat all possible posi-
tions as a list of tokens and use an embedding layer
to get a continuous representation. The [BOS] and
[EOS], i.e. the begin of sentence and the end of
sentence, are also added into the vocabulary for
sequence prediction.
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Score Feature The score feature is a flatten of
matrix Ms, i.e. s ∈ RK·T×1.

The input embedding of each time step is the
concatenation of:

1. The averaged features of the proposal pre-
dicted in the previous step t:

F(k,t) =
1

2L(k, t)

L(k,t)∑
t′=−L(k,t)

fC(k,t)+t′ (4)

2. The position embedding of the proposal.

3. The score feature s.

Specifically, for the first step, the input frame
feature is the averaged frame features of the entire
video. F = 1

T

∑T
t=1 ft and the position embed-

ding is the encoding of [BOS]. The procedure ex-
traction finishes when [EOS] is predicted, and the
output of this module is a sequence of indexes of
frames: P = {p1 · pL} where L is the maximum
count of the predicted proposals.

3.3 Procedure Captioning Module
We design an LSTM based sequence-to-sequence
model (Sutskever et al., 2014) to generate captions
for each extracted procedure.

For the (k, t)-th extracted procedure, we cal-
culate the starting time ts and ending time te
separately and retrieve all tokens within the time
span [ts, te]: E(ts, te) = {ets , · · · , ete} ⊂
{e1, · · · , eQ} where Q is the total word count of a
video’s transcript.

On each step, we concatenate the embedding
representation of each token q ∈ E(ts, te), i.e. q,
with the nearest video frame feature fq̂ into the in-
put vector eq = {q ◦ fq̂} of the encoder. We em-
ploy the hidden state of the last step after encoding
all tokens in E(ts, te) and decode the caption of
this extracted procedure as W = {w1, · · · , wZ}
where Z is the word count of the decoded proce-
dure caption.

3.4 Loss Functions
The target of the model is to extract procedures
and generate captions. The loss function consists
of four parts: (1) Ls: a binary cross-entropy loss
of each generated positive and negative procedure;
(2) Lr: the regression loss with a smooth l1-loss
(Ren et al., 2015) of a time span between the ex-
tracted and the ground-truth procedure. (3) Lp:

the cross-entropy loss of each proposed procedure
in the predicted sequence of proposals. (4) Lc: the
cross-entropy loss of each token in the generated
procedure captions. Here are the formulations:

L = αsLs + αrLr + αpLp + αcLc (5)

Ls = −
1

CP

CP∑
i=1

log(MP
s )

− 1

CN

CN∑
i=1

log(1−MN
s ) (6)

Lr =
1

CP

CP∑
i=1

||Bpred
i −Bgt

i ||s−l1 (7)

Lp = −
1

L

L∑
l=1

log(pl1
(gtl)
l ) (8)

Lc = −
1

L

L∑
l=1

1

|Wl|
∑

w∈Wl

log(w1(gtw)) (9)

where MP
s and MN

s are the scoring matrix of
positive and negative samples in a video, and CP

and CN represent the count separately. Here we
regard a sample as positive if its IoU (Intersection
of Union) with any ground-truth procedure is more
than 0.8. If the IoU is less than 0.2, we treat it as
negative. The loss Ls aims to enlarge the score of
all positive samples and decrease the score other-
wise.

The Bpred
i and Bgt

i represent the boundary (cal-
culated by the offset of midpoint and length) of the
positive sample and ground-truth procedure sepa-
rately. We only take positive samples into account
and conduct the regression with Lr to shorten
the distance between all positive samples and the
ground-truth procedures.

The pl is the classification result of the proce-
dure extraction module and the value of 1 will
be 1 if the predicted class of extracted procedure
proposal is identical to the class of the ground-
truth proposal with the maximal IoU and 0 oth-
erwise. The cross-entropy loss Lp aims to exploit
the model to correctly select the most similar pro-
posal of each ground-truth procedure from many
positive samples.

Finally, W stores all decoded captions of pro-
cedures of a video. The Lc is designed for the cap-
tioning module based on the extracted procedures.
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4 Experiment and Case Study

4.1 Evaluation Metrics

We separately evaluate the procedure extraction
and captioning module.

For procedure extraction, we adopt the widely
used mJacc (mean of Jaccard) (Bojanowski et al.,
2014) and mIoU (mean of IoU) metrics for eval-
uating the procedure proposition. The Jaccard
calculates the intersection of the predicted and
ground-truth procedure proposals over the length
of the latter. The IoU replaces the denominator
part with the union of predicted and ground-truth
procedures.

For procedure captioning, we adopt BLEU-
4(Papineni et al., 2002) and METEOR(Banerjee
and Lavie, 2005) as the metrics to evaluate the per-
formance on the result of captioning based on both
extracted and ground-truth procedures.

4.2 Dataset

In this paper, we use the YouCookII3 (Zhou et al.,
2018a) dataset to conduct experiments. It con-
tains 2000 videos dumped from YouTube which
are all instructional cooking recipe videos. For
each video, human annotators were asked to first
label the starting and ending time of procedure
segments, and then write captions for each proce-
dure.

This dataset contains pre-processed frame fea-
tures (T = 500 frames for each video, each frame
feature is a 512-d vector, extracted by ResNet-32)
which were used in (Zhou et al., 2018a). In this
paper, we also use these pre-computed video fea-
tures for our task.

Besides the video content, our proposed model
also relies on transcripts to provide multi-modality
information. Since the YouCookII dataset does not
have transcripts, we crawl all transcripts automat-
ically generated by YouTube’s ASR engine.

YouCookII provides a partition on these 2000
videos: 1333 for training, 457 for validation and
210 for testing. However, the labels of 210 test-
ing videos are unpublished, we can only adopt the
training and validation dataset for our experiment.
We also remove several videos which are unavail-
able on YouTube. In all, we use 1387 videos from
the YouCookII dataset. We split these videos into
967 for training, 210 for validation and 210 for
testing. As shown in Table 1, even though we use

3http://youcook2.eecs.umich.edu/

validation testing
Methods mJacc mIoU mJacc mIoU

YouCookII Partition
SCNN-prop 46.3 28.0 45.6 26.7
vsLSTM 47.2 33.9 45.2 32.2
ProcNets 51.5 37.5 50.6 37.0

Our Partition
ProcNets 50.9 38.2 49.1 37.0
Ours (Video Only) 53.3 38.0 52.8 37.1
Ours (Full Model) 56.5 41.4 56.4 41.8

Table 1: Result on Procedure Extraction

less data for training, we can still obtain compara-
ble results.

4.3 Implementation Details
For the procedure extraction module, we follow
the method in (Zhou et al., 2018a) to use 16 dif-
ferent kernel sizes for the temporal convolutional
layer, i.e. from 3 to 123 with the interval step of
8, which can cover the different lengths. We also
used a max-pooling layer with a kernel of [8, 5]
after the convolutional layer.

We extract at most 16 procedures for each
video, and the maximum caption length of each
extracted procedure is 50. The hidden size of
all recurrent model (LSTM) is 512 and we con-
duct a dropout for each layer with a probability of
0.5. We use two transformer models with 2048 in-
ner hidden sizes, 8 heads, and 6 layers to encode
context-aware transcripts and video frame features
separately.

We adopt an Adam optimizer (Kingma and Ba,
2015) with a starting learning rate of 0.000025 and
α = 0.8 and β = 0.999 to train the model. The
batch size of training is 4 for each GPU and we
use 4 GPUs to train our model so the overall batch
size is 16.

4.4 Result on Procedure Extraction

Ground-Truth
Procedures

Predicted
Procedures

Methods B@4 M B@4 M
Bi-LSTM
+TempoAttn 0.87 8.15 0.008 4.62

End-to-End
Transformer 1.42 11.20 0.30 6.58

Ours (Video Only) 2.20 17.59 1.70 16.71
Ours (Full Model) 2.76 18.08 2.61 17.43

Table 2: Result on Procedure Captioning

We demonstrate the result of the procedure ex-
traction model by Table 1. We compare our model
with several baseline methods: (1) SCNN-prop
(Shou et al., 2016) is the Segment CNN for pro-
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Procedure Extraction Procedure Captioning
Ground-Truth

Procedures
Predicted

Procedures
Methods mJacc mIoU B@4 M B@4 M
1. Video Only Model
Proposal by Video Only & Caption by Video Only 52.80 37.13 2.20 17.59 1.70 16.72

2. Transcript Only Model
Proposal by Transcript Only & Caption by Transcript Only 48.25 31.66 2.43 17.66 1.09 15.23

3. Caption by Video Model
Proposal by Video+Transcript & Caption by Video Only 53.83 37.72 3.12 18.24 2.59 17.38

4. Caption by Transcript Model
Proposal by Video+Transcript & Caption by Transcript Only 52.66 36.54 2.12 17.27 1.85 15.80

5. Full Model
Proposal by Video+Transcript & Caption by Video+Transcript 56.37 41.76 2.76 18.08 2.61 17.43

Table 3: Ablation experiments of our model. (All experiments are conducted on testing dataset)

Ground Truth

5. Full Model

3. Cap�on by Video 

4. Cap�on by Transcript 

(a) (b) (c) (d) (e) (f) (g)
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(4.3)

Predic�on of Procedures

2. Transcript Only(2.1) (2.2) (2.3) (2.4) (2.5) (2.6)

Figure 3: The ground-truth and extracted procedures, which are generated by our full and ablated models. (best
viewed in color)

posals; (2) vsLSTM is an LSTM based video sum-
marization model (Zhang et al., 2016); (3) Proc-
Nets (Zhou et al., 2018a) which is the previous
SOTA method.

As shown in Table 1, we first show the results
reported in (Zhou et al., 2018a) which use the full
dataset with 2000 videos. In order to ensure a fair
comparison, we first run the ProcNets on the vali-
dation dataset of YouCookII and get a comparable
result. In further experiments, we directly use the
subset (the our partition in the table) described in
the previous section.

Moreover, we conduct two experiments to
demonstrate the effectiveness of incorporating
transcripts in this task. The Ours (Full Model)
is the final model we propose, which achieves
state-of-the-art results. The Ours (Video Only)
model considers video content without transcripts
in the procedure extraction module. Compared
with ProcNets, our video only model adds a cap-
tioning module, which helps the procedure extrac-
tion module to get a better result.

4.5 Result on Procedure Captioning

For evaluating procedure captioning, we consider
two baseline models: (1) Bi-LSTM with tempo-
ral attention (Yao et al., 2015) (2) an end-to-end

transformer based video dense captioning model
proposed in (Zhou et al., 2018b). We evaluate the
performance of captioning on two different pro-
cedures: (1) the ground-truth procedure; (2) the
procedure extracted by models. In Table 2, we
demonstrate that using ground-truth procedures
can generate better captions. Additionally, our
model achieves the SOTA result on BLEU-4 and
METEOR metrics when using the ground-truth
procedures as well as the extracted procedures.

4.6 Ablation and analysis

We conduct the ablation experiments to show the
effectiveness of utilizing transcripts. Table 3 lists
the results.

The Video Only Model only relies on video in-
formation for all modules. The Captioning by
Video Model fuses transcripts during the proce-
dure extraction which shows the transcript is effec-
tive for the extracting procedure. The Caption by
Transcript Model only uses transcripts for caption-
ing. Compared with the Caption by Video Model,
we find that only using transcripts for captioning
decreases performance. The reason is that only
using transcripts for captioning will miss several
actions appearing in the video but not mentioned
in the transcript. The full Model achieves state-



6389

(a) Cap�on of Extracted Procedures

(b) Cap�on of Ground-Truth Procedures

Ground Truth

(a)grate some pecorino 
cheese and beat the eggs
(b)s�r cheese into the eggs
(c)cut some bacon strips 
into small pieces
(d)cook the spaghe� in 
the boiling water
(e)heat the pan put bacon 
and pepper in it and cook 
the bacon
(f)mix the spaghe� with 
the bacon
(g)pour the egg sauce on 
the spaghe� and mix well

1. Full Model

(1.1)mix the eggs and mix 
in a bowl
(1.2)mix the eggs in a bowl
(1.3)cut the meat into 
pieces
(1.4)mix some olive oil in a 
bowl
(1.5)add salt and pepper 
and pepper to the bowl
(1.6)mix the sauce and mix
(1.7)pour the sauce in the 
pan and s�r
(1.8)add the pasta and mix 
it with the sauce

2. Cap�on by Video

(2.1)add some oil in a pan 
and add some water
(2.2)add a li�le of oil and 
add a pan and add some oil
(2.3)add oil and add to a 
pan and add some oil
(2.4)add salt and pepper to 
the pan and s�r
(2.5)add the chicken to the 
pan and s�r
(2.6)add the sauce to the 
pan and s�r
(2.7)add the pasta and add 
the sauce and mix 

3. Cap�on by 
Transcript

(3.1)add the sauce and soy 
sauce and sugar to the rice
(3.2)mix the onion garlic 
garlic powder and pepper 
and pepper to the bowl
(3.3)add the rice and 
chopped onions and garlic 
paste
(3.4)add salt and pepper 
and s�r
(3.5)add salt and pepper 
and pepper to the pan
(3.6)add the pasta to the 
wok
(3.7)coat the chicken in the 
flour and place the bread 
crumbs in the pan
(3.8)add flour to the 
mixture and s�r
(3.9)add salt and pepper to 
the wok

4. Video Only

(4.1)slice the potatoes and 
add some oil and pepper
(4.2)add chopped garlic 
and garlic and add chopped 
onions and add the onions
(4.3)add the onion and 
pepper and add the onion 
and s�r
(4.4)add the sauce and fry 
the noodles in the pan and 
add them to the pan
(4.5)add the sauce and add 
the sauce and s�r
(4.6)add the sauce and add 
the sauce and s�r

Ground Truth

(a)grate some pecorino 
cheese and beat the eggs
(b)s�r cheese into the eggs
(c)cut some bacon strips 
into small pieces
(d)cook the spaghe� in 
the boiling water
(e)heat the pan put bacon 
and pepper in it and cook 
the bacon
(f)mix the spaghe� with 
the bacon
(g)pour the egg sauce on 
the spaghe� and mix well

1. Full Model

(a)mix the eggs in the bowl
(b)mix some salt and mix in 
a bowl
(c)cut the meat into a bowl
(d)add salt and pepper to 
the bowl
(e)add salt and pepper to 
the bowl and mix well 
(f)pour the sauce in the 
pan
(g)add the pasta and mix it 

with the sauce

2. Cap�on by Video

(a)add some oil and salt 
and pepper to a bowl
(b)add a bowl of water and 
add to a bowl of water
(c)add a li�le of oil on a 
pan
(d)add oil and a pan and 
add some oil
(e)add oil and add to a pan 
and add some oil
(f)add some oil and salt to 
the pan and s�r
(g)add the pasta and add 
the sauce to the pan and 
mix

3. Cap�on by 
Transcript

(a)mix the eggs and soy 
sauce and sugar to the bowl
(b)add some chili sauce 
and chili powder to the wok
(c)place the sandwich on 
the bread
(d)add the cheese and 
pepper to the salad
(e)add the meat and 
pepper to the bowl and mix 
together
(f)heat the pan in the pan
(g)add soy sauce soy sauce 
soy sauce and sugar and 
mix together

4. Video Only

(a)cut the potatoes into a 
bowl and add some oil and 
pepper
(b)cut a pan and add some 
oil and add the pan
(c)cut the potatoes into a 
bowl and add them
(d)heat some oil in a pan 
and add some chopped 
onions and add some 
chopped onions and pepper
(e)add chopped garlic and 
garlic and garlic and add to 
the pot
(f)add the sauce and cook 
in the pan and s�r
(g)add the sauce and add 
the sauce and s�r

5. Transcript Only

(5.1)blend the pepper and 
a small pieces
(5.2)mix cheese bread 
crumbs parmesan cheese 
egg yolks a bowl and whisk 
the mixture
(5.3)add sugar cream 
ketchup and worcestershire 
sauce on a pan
(5.4)add some tomato into 
a bowl
(5.5)add salt and black 
pepper to the salad and mix
(5.6)mix the cabbage and 
salt in a bowl

5. Transcript Only

(a)mix the egg yolks milk 
and
(b)add some milk and 
worcestershire sauce to the 
pan
(c)place the bacon into a 
bowl
(d) take the bread on top of 
the bread mixture with 
some cheese and top it
(e) add some salt and 
pepper and an egg into the 
bowl
(f)add beef into the pan 
and add the meat
(g) pour the mixture 
parmesan cheese egg 
mixture and the mixture

Figure 4: The procedure captions, which are generated based on the Extracted Procedures and the Ground-Truth
Procedures. (best review in color)

of-the-art results on procedure extraction and cap-
tioning, while Caption by Video Model gets better
results on captioning for the ground-truth proce-
dure. To sum up, both video frame frames and
transcripts are important for the task.

We study several captioning results and find that
the Caption by Video Model tends to generate gen-
eral descriptions such as ”add ...” for all steps.
Nonetheless, our model tends to generate various
fine-grained captions. Motivated by this, we con-
duct another experiment to use cherry picked sen-
tence like add the chicken (or beef, carrot, onion,
etc.) to the pan and stir or add pepper and salt
to the bowl as the captions for all procedures and
can still achieve a good result on BLEU (4.0+) and
METEOR (16.0+). We find that the distribution of
captions in this dataset is biased because there are
many similar procedure descriptions even in dif-
ferent recipes.

4.7 Case study

We also present a qualitative analysis based on the
case study shown in Figures 3 and 4 (best viewed
in color).

Figure 3 visualizes the ground-truth procedures
and the predicted procedures. The horizontal axis

is the time and the number on each small ribbon is
the ID of the procedure. We have slightly shifted
the overlapping procedures in order to show the re-
sults more clearly. It can be seen that the extracted
procedures by our full model have the most similar
trend with the ground-truth procedures.

Figure 4 presents the generated captions on ex-
tracted procedures (Fig.4a) and ground-truth pro-
cedures (Fig.4b) separately. Each column shows
captioning results from one model, and the first
column is the ground-truth result. On one hand,
only the full model can generate eggs in the pro-
cedure (1.1) and (1.2), which is also an important
ingredient entity in the ground-truth captions. On
the other hand, the ingredient bacon in ground-
truth caption (c) is ignored by all models. In fact,
our Full Model predicts meat synonyms of bacon.
Besides, the Full Model can also generate the ac-
tion cut and the final state of ingredient pieces
mentioned in transcript, while it is hard to recog-
nize using only video signals.

5 Conclusion

In this paper, we propose a framework for pro-
cedure extraction and captioning modeling in in-
structional videos. Our model use narrated tran-
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scripts of each video as the supplementary infor-
mation and can help to predict and caption proce-
dures better. The extensive experiments demon-
strate that our model achieves state-of-the-art re-
sults on the YouCookII dataset, and ablation stud-
ies indicate the effectiveness of utilizing tran-
scripts.
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