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Abstract

Multi-Label Hierarchical Text Classification
(MLHTC) is the task of categorizing docu-
ments into one or more topics organized in an
hierarchical taxonomy. MLHTC can be for-
mulated by combining multiple binary classifi-
cation problems with an independent classifier
for each category. We propose a novel trans-
fer learning based strategy, HTrans, where bi-
nary classifiers at lower levels in the hier-
archy are initialized using parameters of the
parent classifier and fine-tuned on the child
category classification task. In HTrans, we
use a Gated Recurrent Unit (GRU)-based deep
learning architecture coupled with attention.
Compared to binary classifiers trained from
scratch, our HTrans approach results in signifi-
cant improvements of 1% on micro-F1 and 3%
on macro-F1 on the RCV1 dataset. Our exper-
iments also show that binary classifiers trained
from scratch are significantly better than single
multi-label models.

1 Introduction

Two main approaches for Multi-Label Hierarchi-
cal Text Classification (MLHTC) have been pro-
posed (Tsoumakas and Katakis, 2007): 1. trans-
forming the problem to a collection of independent
binary classification problems by training a classi-
fier for each category 2. training a single multi-
label model that can predict all categories for in-
stances simultaneously.

In a hierarchical taxonomy of categories, de-
pendencies exist between parent and child cat-
egories that should be exploited when training
classifiers. Recent work on MLHTC uses a
Deep Graph-based Convolutional Neural Network
(DGCNN) (Peng et al., 2018) -based single multi-
label model with a recursive regularization com-
ponent to model dependencies between parent and
child categories. However, multi-label models suf-

fer on categories with very few training exam-
ples (Krawczyk, 2016) due to data imbalance. Due
to a large prediction space (all categories) of multi-
label models, it is very difficult to optimize class
weights to handle data imbalance. By contrast,
binary classifiers provide more flexibility as class
weights for each classifier can easily be optimized
based on validation metrics. With a reasonable
number of categories (few hundreds), collection
of binary classifiers are a feasible option to solve
MLHTC problems.

Influenced by recent progress of transfer learn-
ing on Natural Language Processing (NLP)
tasks (Howard and Ruder, 2018; Mou et al., 2016),
we present HTrans, a Hierarchical Transfer
Learning approach. We hypothesize that introduc-
ing dependencies between parent and child cate-
gories is possible using transfer learning. There-
fore, we initialize parameters of the child category
classifier from the binary parent category clas-
sifier and later fine-tune the model. The trans-
fer of parameters can provide a better starting
point for the child category classifier than training
from scratch using randomly initialized parame-
ters. Without any loss of generality, we propose a
simple classification model using Gated Recurrent
Unit (GRU) (Cho et al., 2014) coupled with atten-
tion (Dzmitry et al., 2015). We also select optimal
class weights for each category to account for class
imbalance (Burez and Van den Poel, 2009) in the
data.

Our experiments on the RCV1 (Lewis et al.,
2004) dataset show that HTrans improves over
training models from scratch by 1% and 3% on
micro-F1 and macro-F1 scores, respectively. Fur-
thermore, we also show that binary models based
on our architecture surpass DGCNN (state-of-the-
art multi label model on RCV1 dataset) by 4% and
19% on micro-F1 and macro-F1 scores, respec-
tively. Class weight optimization in itself produces
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Figure 1: Architecture of our Proposed Model

an improvement of ∼9% on macro-F1 scores.

2 Related Work

A major focus of multi-label text classification re-
search has been exploiting possible label depen-
dencies to improve predictive performance. To
account for label dependencies, some approaches
utilize label correlations found in the training
data (Tsoumakas et al., 2009; Huang and Zhou,
2012; Zhang and Zhang, 2010; Guo and Gu,
2011). Others make use of pre-defined label
hierarchies. These approaches usually employ
hierarchy-induced model regularization by putting
constraints on the weight vectors of adjacent mod-
els, a type of transfer learning (Zhou et al.,
2011; Gopal and Yang, 2013; Peng et al., 2018).
HTrans is similar to the latter category of work
as it uses transfer learning. We utilize fine-tuning
to introduce inductive bias from a parent cate-
gory to its children, whereas previous approaches
use model regularization. Results are compared
to the state-of-the-art DGCNN (Peng et al., 2018)
model where a graph-based Convolutional neural
network model is deployed in combination with
recursive model regularization.

Fine-tuning of pre-trained models has shown
promising results on various NLP tasks. Some
of these approaches employ supervised pre-
training transferring knowledge between related
tasks (Mou et al., 2016; Min et al., 2017; Conneau
et al., 2017). Another set of research focuses on a
more general transfer task where models are pre-
trained on a language modeling task on large un-
supervised corpora and later fine-tuned to a super-
vised downstream task (Howard and Ruder, 2018;
Devlin et al., 2018; Radford et al., 2018). Our

work is more similar to the former, since we fine-
tune a parent category model in order to obtain a
model for its subcategory – transfer from super-
vised data.

3 Proposed Approach

We propose a minimalistic model architecture
based on Gated Recurrent Unit (GRU) (Cho et al.,
2014) combined with an attention (Dzmitry et al.,
2015) mechanism. We use a bidirectional GRU
to encode both forward and backward sequences.
GRU can memoize the context of the text docu-
ments while the attention layer allows the model
to selectively focus on important elements in the
text. Our attention model closely follows the word
attention module from (Yang et al., 2016).

Our model architecture is shown in Figure 1.
The word sequences are fed into the GRU as em-
beddings. We use pre-trained embeddings from
Glove (Pennington et al., 2017). Each state st pro-
duced by the GRU is a combination of sbt and
sft, where b and f denote the backward and for-
ward hidden states, respectively, for each timestep
t. As shown in the equations below, S denotes
states for all the timesteps (1, 2, ...., T ). We ap-
ply attention on top of the GRU states to produce
a fixed-dimensional vector representation Att(S).
Furthermore, we combine a max-pooled (Max-
pool) and mean-pooled (Meanpool) representation
of all the GRU hidden states along with the Att(S)
vector to produce R – the sequence representation
that is fed into the output layer.

S = [s1, s2, s3, ...sT ]

R = [Att(S),Maxpool(S),Meanpool(S)]



6297

Finally, the output layer of the model includes
a fully connected layer with sigmoid activations.
The dimensionality of the fully-connected layer
is determined by the number of categories in the
classification task.
HTrans (Hierarchical Transfer Learning) is
based on a recursive strategy of training parent and
child category classifiers. Say, P1 is a top-level
category with C1 as one of its children. Also, lets
consider C12 as a child of C1. First, we train a
binary classifier for P1. Documents in the train-
ing data that contain P1 as one of the labels are
treated as positive instances, the rest are all neg-
ative. Next, we initialize the C1 binary classi-
fier with the final model parameters of P1 classi-
fier. After training the C1 classifier, the C12 clas-
sifier is initialized with parameters from C1 and
so on. Following recent work on transfer learn-
ing in other domains (Hoo-Chang et al., 2016), we
re-initialize the parameters of the final output layer
randomly but retain the parameters of other layers.

Recent work on transfer learning (Howard and
Ruder, 2018) suggested to use different learning
rates for different layers. Based on recent findings
in transfer learning (Bowman et al., 2015), we ap-
ply lower learning rates to the transferred param-
eters (from the parent classifier) and higher learn-
ing rates to the final fully connected classification
(output) layer. We use Adam (Kingma and Ba,
2014) as our optimizer. We set the learning rate
of the fully connected layer to 0.001 (high) as all
the parameters in the layer are randomly initialized
and they should be readjusted to the best possible
values. In contrast, the learning rate for the other
layers (GRU and attention) are changed to 0.0005
(low) to retain parent classification knowledge. In
addition to different learning rates, we also freeze
the embedding layer (Hu et al., 2014) after the top
level classifiers have been trained. Layer freez-
ing prevents over-fitting classifiers for categories
in lower levels of the taxonomy.

4 Experimental Results

In this section, first, we describe the characteristics
of the dataset followed by implementation details.
Thereafter, we describe the experiments we con-
duct along with the results obtained.
Dataset: We use the Reuters dataset (RCV-v1) as
provided in (Lewis et al., 2004). The dataset is
a human-labeled collection of Reuters News arti-
cles from 1996-1997. There are a total of 103 cat-

Model Micro-F1 Macro-F1
DGCNN 0.7618 0.4334
GRU-Att-basic 0.7980 0.5166
GRU-Att (class weights) 0.7974 0.5669
HTrans 0.8051† 0.5849†

Table 1: Comparison of Models on RCV1 dataset (†:
Statistically significant at p≤0.05 compared to GRU-
Att (with class weights))

egories according to the taxonomy. The dataset
consists of 23,149 training and 784,446 testing
documents, respectively.
Implementation and Metrics: We implemented
our proposed network using PyTorch1. We use a
1 layer GRU with 96 hidden units and attention
was added on top of the GRU layer. A dropout
probability of 0.4 was applied on the GRU output.
We use 100-dimensional pretrained word embed-
dings from Glove (Pennington et al., 2014). Each
of the binary classifiers is trained for 10 epochs
with early stopping (Caruana et al., 2001) with pa-
tience level 3. We use a batch size of 128 units for
all our experiments. Models are trained on 2 Tesla
V100 GPUs. The data corresponding to each cat-
egory was randomly split into 85% training and
15% validation instances. We restrict the docu-
ments in the dataset to a maximum of 100 words
from the body of the documents2.

We use Binary Cross Entropy as the loss func-
tion for the classification problem. Due to sig-
nificant data imbalance in several categories, we
experiment with multiple class weights – 1, 2, 3,
5, 10, 30, 50 for each binary classifier and finally
choose the best model based on validation metrics.
Metrics: We follow the most recent work (Peng
et al., 2018) on RCV1 dataset and report Micro-F1
and Macro-F1 scores for our experiments. Micro-
F1 considers the global precision and recall of the
categories while Macro-F1 computes the average
of the F1 scores obtained by individual categories.

4.1 Comparison of Different Models

We show the comparison of different approaches
on the RCV1 dataset in table 13. We refer to
a version of GRU-Att without class weight opti-
mization (default: 1) as GRU-Att-basic. As can
be seen from the table, GRU-Att-basic performs
significantly better than DGCNN on both Micro-

1https://pytorch.org/
2We tokenize using spacy: https://spacy.io/
3For comparisons with other models, please refer to

(Peng et al., 2018)

https://pytorch.org/
https://spacy.io/
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Figure 2: RCV1 dataset Levels 2 and 3: Macro-F1
without and with Transfer Learning

F1 (0.7980 vs 0.7618) and Macro-F1 (0.5166 vs
0.4334) scores, respectively. Using binary classi-
fiers with a very basic architecture beats DGCNN
easily.

Addition of class weights during model training
(GRU-Att) further improves the binary models.
We optimize the class weights based on the F1-
score on the validation data. As can be seen from
the table, Macro-F1 improves by close to 10% af-
ter incorporating class weights. The Micro-F1 re-
mains unchanged, though. Therefore, the biggest
benefit of using class weights is observed in cate-
gories where the number of instances during train-
ing is very low.

HTrans, our proposed technique that uses
transfer learning (with embedding freezing and
differential learning rates), further improves on
GRU-Att by more than 3% on the Macro-F1
scores. Our initial conjecture was that transfer
learning should help categories located at lower
levels in the taxonomy. Therefore, we wanted
to see the impact of HTrans on categories in
different levels. Figure 2 shows the differences
in Macro-F1 scores for the GRU-Att model (with
class weights) and HTrans across different levels
- Combined (level 2 and 3 both), level 2 and level
3. As can be seen from the Macro-F1 scores,
HTrans outperforms GRU-Att at both levels –
level 2 (0.587 vs 0.584) and 3 (0.556 vs 0.517).
As expected, the improvement is visible in level
3 (∼7%) with more clarity as level 3 contains the
least number of training instances in the hierarchy.

Multi-label Model: We realize that training and
inference using multiple binary classifiers might
be a bottleneck due to resource constraints. In

Model Micro-F1 Macro-F1
DGCNN 0.7618 0.4334
GRU-Att-Multi (no weights) 0.7407 0.3937
GRU-Att-Multi (weights) 0.7654 0.4842

Table 2: Comparison of Multi-label Models on RCV1
dataset (weights imply the use of class weights during
training)

such cases, a single multi-label model might be
preferred over multiple binary classifiers.

To this end, we build a multi-label version of
GRU-Att, GRU-Att-Multi, by replacing the out-
put layer. Instead of a single output, it contains
103 output nodes (for the number of classes) for
the RCV1 dataset. We wanted to investigate the
use of class weights on the multi-label model. To
select class weights on the multi-label model us-
ing a search over user-provided weights, we will
have to evaluate an intractable number of class
weight combinations. For example, say, we have
two class weight options for each category. For
103 categories, it would result in trying out 2103

combinations of class weights making it imprac-
tical. Instead, we propose using the optimal class
weights obtained from training the binary models
and using them for the multi-label model training.
We optimize the weighted F1-score during train-
ing the multi-label model. Loss function and opti-
mizers are kept unchanged.

As can be seen from table 2, the use of
the optimal class weights obtained from binary
classifiers improve the Micro-F1 and Macro-F1
scores significantly on the multi-label model. The
Macro-F1 scores suffer without the use of class
weights. A more interesting observation is that our
GRU-Att-Multi model trained using class weights
outperforms the state-of-the-art multilabel model
(DGCNN) on both metrics. The improvement of
12% seen in Macro-F1 score over DGCNN can be
totally attributed to the class weighting scheme.
We employ a much simpler architecture without
the use of any regularization constraint but still can
outperform DGCNN on both metrics.

5 Conclusions and Future Work

In this work, we propose HTrans, a hierarchi-
cal transfer learning-based strategy to train binary
classifiers for categories in a taxonomy. Our ap-
proach relies on re-using model parameters trained
at upper levels in the taxonomy and fine-tuning
them for classifying categories at lower levels.
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Our experiments on the RCV1 dataset show that
classifiers of categories with less training exam-
ples benefit using pre-trained model parameters
from upper level categories. Furthermore, we
show that binary classifiers greatly outperform
multi-label models. Finally, we show improve-
ment over the state of the art multi-label model
by using optimized class weights obtained when
training the binary classifiers. As future work, we
will investigate approaches to hyperparameter tun-
ing to find better model architectures for hierarchi-
cal multi-label text classification tasks.
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