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Abstract

We introduce a novel method of generating
synthetic question answering corpora by com-
bining models of question generation and an-
swer extraction, and by filtering the results to
ensure roundtrip consistency. By pretraining
on the resulting corpora we obtain significant
improvements on SQuAD2 (Rajpurkar et al.,
2018) and NQ (Kwiatkowski et al., 2019), es-
tablishing a new state-of-the-art on the latter.
Our synthetic data generation models, for both
question generation and answer extraction, can
be fully reproduced by finetuning a publicly
available BERT model (Devlin et al., 2018)
on the extractive subsets of SQuAD2 and NQ.
We also describe a more powerful variant that
does full sequence-to-sequence pretraining for
question generation, obtaining exact match
and F1 at less than 0.1% and 0.4% from hu-
man performance on SQuAD2.

1 Introduction

Significant advances in Question Answering (QA)
have recently been achieved by pretraining deep
transformer language models on large amounts of
unlabeled text data, and finetuning the pretrained
models on hand labeled QA datasets, e.g. with
BERT (Devlin et al., 2018).

Language modeling is however just one exam-
ple of how an auxiliary prediction task can be con-
structed from widely available natural text, namely
by masking some words from each passage and
training the model to predict them. It seems plau-
sible that other auxiliary tasks might exist that are
better suited for QA, but can still be constructed
from widely available natural text. It also seems
intuitive that such auxiliary tasks will be more
helpful the closer they are to the particular QA task
we are attempting to solve.

Based on this intuition we construct auxil-
iary tasks for QA, generating millions of syn-

Input (C)
... in 1903, boston participated in the
first modern world series, going up
against the pittsburgh pirates ...

(1) C → A 1903
(2) C,A → Q when did the red sox first go to the

world series
(3) C,Q → A′ 1903

(4) A
?
= A′ Yes

Table 1: Example of how synthetic question-answer
pairs are generated. The model’s predicted answer (A′)
matches the original answer the question was generated
from, so the example is kept.

thetic question-answer-context triples from unla-
beled passages of text, pretraining a model on
these examples, and finally finetuning on a partic-
ular labeled dataset. Our auxiliary tasks are illus-
trated in Table 1.

For a given passage C, we sample an extrac-
tive short answer A (Step (1) in Table 1). In Step
(2), we generate a question Q conditioned on A
and C, then (Step (3)) predict the extractive an-
swer A′ conditioned on Q and C. If A and A′

match we finally emit (C,Q,A) as a new syn-
thetic training example (Step (4)). We train a
separate model on labeled QA data for each of
the first three steps, and then apply the models
in sequence on a large number of unlabeled text
passages. We show that pretraining on synthetic
data generated through this procedure provides us
with significant improvements on two challenging
datasets, SQuAD2 (Rajpurkar et al., 2018) and NQ
(Kwiatkowski et al., 2019), achieving a new state
of the art on the latter.

2 Related Work

Question generation is a well-studied task in its
own right (Heilman and Smith, 2010; Du et al.,
2017; Du and Cardie, 2018). Yang et al. (2017)
and Dhingra et al. (2018) both use generated
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question-answer pairs to improve a QA system,
showing large improvements in low-resource set-
tings with few gold labeled examples. Validating
and improving the accuracy of these generated QA
pairs, however, is relatively unexplored.

In machine translation, modeling consistency
with dual learning (He et al., 2016) or back-
translation (Sennrich et al., 2016) across both
translation directions improves the quality of
translation models. Back-translation, which adds
synthetically generated parallel data as training
examples, was an inspiration for this work, and
has led to state-of-the-art results in both the super-
vised (Edunov et al., 2018) and the unsupervised
settings (Lample et al., 2018).

Lewis and Fan (2019) model the joint distribu-
tion of questions and answers given a context and
use this model directly, whereas our work uses
generative models to generate synthetic data to be
used for pretraining. Combining these two ap-
proaches could be an area of fruitful future work.

3 Model

Given a dataset of contexts, questions, and an-
swers: {(c(i), q(i), a(i)) : i = 1, . . . , N}, we train
three models: (1) answer extraction: p(a|c; θA),
(2) question generation: p(q|c, a; θQ), and (3)
question answering: p(a|c, q; θA′).

We use BERT (Devlin et al., 2018)∗ to model
each of these distributions. Inputs to each of these
models are fixed length sequences of wordpieces,
listing the tokenized question (if one was avail-
able) followed by the context c. The answer ex-
traction model is detailed in §3.1 and two vari-
ants of question generation models in §3.2 and
§3.3. The question answering model follows Al-
berti et al. (2019).

3.1 Question (Un)Conditional Extractive QA
We define a question-unconditional extractive an-
swer model p(a|c; θA) and a question-conditional
extractive answer model p(a|q, c; θA′) as follows:

p(a|c; θA) =
efJ (a,c;θA)∑
a′′ e

fJ (a′′,c;θA)

p(a|c, q; θA′) =
efI(a,c,q;θA′ )∑
a′′ e

fI(a′′,c,q;θA′ )

∗Some experiments use a variant of BERT that
masks out whole words at training time, similar to
Sun et al. (2019). See https://github.com/
google-research/bert for both the original and
whole word masked versions of BERT.

where a, a′′ are defined to be token spans over c.
For p(a|c; θA), a and a′′ are constrained to be of
length up to LA, set to 32 word piece tokens. The
key difference between the two expressions is that
fI scores the start and the end of each span inde-
pendently, while fJ scores them jointly.

Specifically we define fJ : Rh → R and fI :
Rh → R to be transformations of the final token
representations computed by a BERT model:

fJ(a, c; θA) =

MLPJ(CONCAT(BERT(c)[s],BERT(c)[e]))

fI(a, q, c; θA′)) =

AFFI(BERT(q, c)[s]) + AFFI(BERT(q, c)[e]).

Here h is the hidden representation dimension,
(s, e) = a is the answer span, BERT(t)[i] is the
BERT representation of the i’th token in token se-
quence t. MLPJ is a multi-layer perceptron with
a single hidden layer, and AFFI is an affine trans-
formation.

We found it was critical to model span start and
end points jointly in p(a|c; θA) because, when the
question is not given, there are usually multiple
acceptable answers for a given context, so that the
start point of an answer span cannot be determined
separately from the end point.

3.2 Question Generation: Fine-tuning Only
Text generation allows for a variety of choices in
model architecture and training data. In this sec-
tion we opt for a simple adaptation of the public
BERT model for text generation. This adaptation
does not require any additional pretraining and no
extra parameters need to be trained from scratch at
finetuning time. This question generation system
can be reproduced by simply finetuning a publicly
available pretrained BERT model on the extractive
subsets of datasets like SQuAD2 and NQ.

Fine-tuning We define the p(q|c, a; θQ) model
as a left-to-right language model

p(q|a, c; θQ) =
LQ∏
i=1

p(qi|q1, . . . , qi−1, a, c; θQ)

=

LQ∏
i=1

efQ(q1,...,qi,a,c;θQ)∑
q′i
efQ(q1,...,q′i,a,c;θQ)

,

where q = (q1, . . . , qLQ
) is the sequence of ques-

tion tokens and LQ is a predetermined maxi-
mum question length, but, unlike the more usual

https://github.com/google-research/bert
https://github.com/google-research/bert
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encoder-decoder approach, we compute fQ using
the single encoder stack from the BERT model:

fQ(q1, . . . , qi, a, c; θQ) =

BERT(q1, . . . , qi−1, a, c)[i− 1] ·W ᵀ
BERT,

where WBERT is the word piece embedding ma-
trix in BERT. All parameters of BERT including
WBERT are finetuned. In the context of question
generation, the input answer is encoded by intro-
ducing a new token type id for the tokens in the
extractive answer span, e.g. the question tokens
being generated have type 0 and the context tokens
have type 1, except for the ones in the answer span
that have type 2. We always pad or truncate the
question being input to BERT to a constant length
LQ to avoid giving the model information about
the length of the question we want it to generate.

This model can be trained efficiently by using
an attention mask that forces to zero all the atten-
tion weights from c to q and from qi to qi+1 . . . qLQ

for all i.

Question Generation At inference time we
generate questions through iterative greedy decod-
ing, by computing argmaxqi fQ(q1, . . . , qi, a, c)
for i = 1, . . . , LQ. Question-answer pairs are kept
only if they satisfy roundtrip consistency.

3.3 Question Generation: Full Pretraining
The prior section addressed a restricted setting
in which a BERT model was fine-tuned, without
any further changes. In this section, we describe
an alternative approach for question generation
that fully pretrains and fine-tunes a sequence-to-
sequence generation model.

Pretraining Section 3.2 used only an encoder
for question generation. In this section, we use a
full sequence-to-sequence Transformer (both en-
coder and decoder). The encoder is trained iden-
tically (BERT pretraining, Wikipedia data), while
the decoder is trained to output the next sentence.

Fine-tuning Fine-tuning is done identically as
in Section 3.2, where the input is (C,A) and
the output is Q from tuples from a supervised
question-answering dataset (e.g., SQuAD).

Question Generation To get examples of syn-
thetic (C,Q,A) triples, we sample from the de-
coder with both beam search and Monte Carlo
search. As before, we use roundtrip consistency
to keep only the high precision triples.

3.4 Why Does Roundtrip Consistency Work?
A key question for future work is to develop a
more formal understanding of why the roundtrip
method improves accuracy on question answer-
ing tasks (similar questions arise for the back-
translation methods of Edunov et al. (2018) and
Sennrich et al. (2016); a similar theory may ap-
ply to these methods). In the supplementary mate-
rial we sketch a possible approach, inspired by the
method of Balcan and Blum (2005) for learning
with labeled and unlabeled data. This section is
intentionally rather speculative but is intended to
develop intuition about the methods, and to pro-
pose possible directions for future work on devel-
oping a formal grounding.

In brief, the approach discussed in the sup-
plementary material suggests optimizing the log-
likelihood of the labeled training examples, under
a constraint that some measure of roundtrip con-
sistency β(θA′) on unlabeled data is greater than
some value γ. The value for γ can be estimated
using performance on development data. The aux-
iliary function β(θA′) is chosen such that: (1) the
constraint β(θA′) ≥ γ eliminates a substantial part
of the parameter space, and hence reduces sample
complexity; (2) the constraint β(θA′) ≥ γ nev-
ertheless includes ‘good’ parameter values that fit
the training data well. The final step in the ar-
gument is to make the case that the algorithms
described in the current paper may effectively
be optimizing a criterion of this kind. Specifi-
cally, the auxiliary function β(θA′) is defined as
the log-likelihood of noisy (c, q, a) triples gener-
ated from unlabeled data using the C → A and
C,A → Q models; constraining the parameters
θA′ to achieve a relatively high value on β(θA′) is
achieved by pre-training the model on these exam-
ples. Future work should consider this connection
in more detail.

4 Experiments

4.1 Experimental Setup
We considered two datasets in this work: SQuAD2
(Rajpurkar et al., 2018) and the Natural Questions
(NQ) (Kwiatkowski et al., 2019). SQuAD2 is
a dataset of QA examples of questions with an-
swers formulated and answered by human anno-
tators about Wikipedia passages. NQ is a dataset
of Google queries with answers from Wikipedia
pages provided by human annotators. We used the
full text from the training set of NQ (1B words) as
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Dev Test
EM F1 EM F1

Fine-tuning Only
BERT-Large (Original) 78.7 81.9 80.0 83.1
+ 3M synth SQuAD2 80.1 82.8 - -

+ 4M synth NQ 81.2 84.0 82.0 84.8
Full Pretraining
BERT (Whole Word Masking)† 82.6 85.2 - -
+ 50M synth SQuAD2 85.1 87.9 85.2 87.7

+ ensemble 86.0 88.6 86.7 89.1

Human - - 86.8 89.5

Table 2: Our results on SQuAD2. For our fine-tuning
only setting, we compare a BERT baseline (BERT sin-
gle model - Google AI Language on the SQuAD2
leaderboard) to similar models pretrained on our syn-
thetic SQuAD2-style corpus and on a corpus contain-
ing both SQuAD2- and NQ-style data. For the full pre-
training setting, we report our best single model and
ensemble results.

a source of unlabeled data.
In our fine-tuning only experiments (Section

3.2) we trained two triples of models (θA, θQ, θA′)
on the extractive subsets of SQuAD2 and NQ.
We extracted 8M unlabeled windows of 512 to-
kens from the NQ training set. For each unla-
beled window we generated one example from the
SQuAD2-trained models and one example from
the NQ-trained models. For A we picked an an-
swer uniformly from the top 10 extractive answers
according to p(a|c; θA). For A′ we picked the best
extractive answer according to p(a|c, q; θA′). Fil-
tering for roundtrip consistency gave us 2.4M and
3.2M synthetic positive instances from SQuAD2-
and NQ-trained models respectively. We then
added synthetic unanswerable instances by taking
the question generated from a window and associ-
ating it with a non-overlapping window from the
same Wikipedia page. We then sampled negatives
to obtain a total of 3M and 4M synthetic training
instances for SQuAD2 and NQ respectively. We
trained models analogous to Alberti et al. (2019)
initializing from the public BERT model, with a
batch size of 128 examples for one epoch on each
of the two sets of synthetic examples and on the
union of the two, with a learning rate of 2 · 10−5
and no learning rate decay. We then fine-tuned the
the resulting models on SQuAD2 and NQ.

In our full pretraining experiments (Section 3.3)
we only trained (θA, θQ, θA′) on SQuAD2. How-

†https://github.com/google-research/
bert
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Figure 1: Learning curves for pretraining using syn-
thetic question-answering data (fine-tuning only set-
ting). “no-RT” refers to omitting the roundtrip consis-
tency check. Best exact match is reported after fine-
tuning on SQuAD2. Performance improves with the
amount of synthetic data. For a fixed amount of syn-
thetic data, having a more diverse source (NQ+SQuAD
vs. just SQuAD) yields higher accuracies. Roundtrip
filtering gives further improvements.

ever, we pretrained our question generation model
on all of the BERT pretraining data, generating the
next sentence left-to-right. We created a synthetic,
roundtrip filtered corpus with 50M examples. We
then fine-tuned the model on SQuAD2 as previ-
ously described. We experimented with both the
single model setting and an ensemble of 6 models.

4.2 Results

The final results are shown in Tables 2 and 3. We
found that pretraining on SQuAD2 and NQ syn-
thetic data increases the performance of the fine-
tuned model by a significant margin. On the NQ
short answer task, the relative reduction in head-
room is 50% to the single human performance and
10% to human ensemble performance. We addi-
tionally found that pretraining on the union of syn-
thetic SQuAD2 and NQ data is very beneficial on
the SQuAD2 task, but does not improve NQ re-
sults.

The full pretraining approach with ensembling
obtains the highest EM and F1 listed in Table 2.
This result is only 0.1− 0.4% from human perfor-
mance and is the third best model on the SQuAD2
leaderboard as of this writing (5/31/19).

Roundtrip Filtering Roundtrip filtering ap-
pears to be consistently beneficial. As shown in
Figure 1, models pretrained on roundtrip consis-
tent data outperform their counterparts pretrained
without filtering. From manual inspection, of 46
(C,Q,A) triples that were roundtrip consistent

https://github.com/google-research/bert
https://github.com/google-research/bert
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Long Answer Dev Long Answer Test Short Answer Dev Short Answer Test
P R F1 P R F1 P R F1 P R F1

BERTjoint 61.3 68.4 64.7 64.1 68.3 66.2 59.5 47.3 52.7 63.8 44.0 52.1
+ 4M synth NQ 62.3 70.0 65.9 65.2 68.4 66.8 60.7 50.4 55.1 62.1 47.7 53.9

Single Human 80.4 67.6 73.4 - - - 63.4 52.6 57.5 - - -
Super-annotator 90.0 84.6 87.2 - - - 79.1 72.6 75.7 - - -

Table 3: Our results on NQ, compared to the previous best system and to the performance of a human annotator
and of an ensemble of human annotators. BERTjoint is the model described in Alberti et al. (2019).

Question Answer

NQ what was the population of chicago in 1857? over 90,000
SQuAD2 what was the weight of the brigg’s hotel? 22,000 tons

NQ where is the death of the virgin located? louvre
SQuAD2 what person replaced the painting? carlo saraceni

NQ when did rick and morty get released? 2012
SQuAD2 what executive suggested that rick be a grandfather? nick weidenfeld

Table 4: Comparison of question-answer pairs generated by NQ and SQuAD2 models for the same passage of text.

39% were correct, while of 44 triples that were
discarded only 16% were correct.

Data Source Generated question-answer pairs
are illustrative of the differences in the style of
questions between SQuAD2 and NQ. We show a
few examples in Table 4, where the same passage
is used to create a SQuAD2-style and an NQ-style
question-answer pair. The SQuAD2 models seem
better at creating questions that directly query a
specific property of an entity expressed in the text.
The NQ models seem instead to attempt to cre-
ate questions around popular themes, like famous
works of art or TV shows, and then extract the
answer by combining information from the entire
passage.

5 Conclusion

We presented a novel method to generate syn-
thetic QA instances and demonstrated improve-
ments from this data on SQuAD2 and on NQ. We
additionally proposed a possible direction for for-
mal grounding of this method, which we hope to
develop more thoroughly in future work.
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