
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6086–6096
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

6086

Latent Retrieval for Weakly Supervised
Open Domain Question Answering

Kenton Lee Ming-Wei Chang Kristina Toutanova
Google Research

Seattle, WA
{kentonl,mingweichang,kristout}@google.com

Abstract

Recent work on open domain question answer-
ing (QA) assumes strong supervision of the
supporting evidence and/or assumes a black-
box information retrieval (IR) system to re-
trieve evidence candidates. We argue that both
are suboptimal, since gold evidence is not al-
ways available, and QA is fundamentally dif-
ferent from IR. We show for the first time that
it is possible to jointly learn the retriever and
reader from question-answer string pairs and
without any IR system. In this setting, evi-
dence retrieval from all of Wikipedia is treated
as a latent variable. Since this is impracti-
cal to learn from scratch, we pre-train the re-
triever with an Inverse Cloze Task. We evalu-
ate on open versions of five QA datasets. On
datasets where the questioner already knows
the answer, a traditional IR system such as
BM25 is sufficient. On datasets where a
user is genuinely seeking an answer, we show
that learned retrieval is crucial, outperforming
BM25 by up to 19 points in exact match.

1 Introduction

Due to recent advances in reading comprehension
systems, there has been a revival of interest in
open domain question answering (QA), where the
evidence must be retrieved from an open corpus,
rather than being given as input. This presents a
more realistic scenario for practical applications.

Current approaches require a blackbox informa-
tion retrieval (IR) system to do much of the heavy
lifting, even though it cannot be fine-tuned on the
downstream task. In the strongly supervised set-
ting popularized by DrQA (Chen et al., 2017),
they also assume a reading comprehension model
trained on question-answer-evidence triples, such
as SQuAD (Rajpurkar et al., 2016). The IR sys-
tem is used at test time to generate evidence candi-
dates in place of the gold evidence. In the weakly
supervised setting, proposed by TriviaQA (Joshi

et al., 2017), SearchQA (Dunn et al., 2017), and
Quasar (Dhingra et al., 2017), the dependency on
strong supervision is removed by assuming that
the IR system provides noisy gold evidence.

These approaches rely on the IR system to mas-
sively reduce the search space and/or reduce spu-
rious ambiguity. However, QA is fundamentally
different from IR (Singh, 2012). Whereas IR is
concerned with lexical and semantic matching,
questions are by definition under-specified and re-
quire more language understanding, since users
are explicitly looking for unknown information.
Instead of being subject to the recall ceiling from
blackbox IR systems, we should directly learn to
retrieve using question-answering data.

In this work, we introduce the first Open-
Retrieval Question Answering system (ORQA).
ORQA learns to retrieve evidence from an open
corpus, and is supervised only by question-
answer string pairs. While recent work on im-
proving evidence retrieval has made significant
progress (Wang et al., 2018; Kratzwald and Feuer-
riegel, 2018; Lee et al., 2018; Das et al., 2019),
they still only rerank a closed evidence set. The
main challenge to fully end-to-end learning is that
retrieval over the open corpus must be considered
a latent variable that would be impractical to train
from scratch. IR systems offer a reasonable but
potentially suboptimal starting point.

The key insight of this work is that end-to-
end learning is possible if we pre-train the re-
triever with an unsupervised Inverse Cloze Task
(ICT). In ICT, a sentence is treated as a pseudo-
question, and its context is treated as pseudo-
evidence. Given a pseudo-question, ICT requires
selecting the corresponding pseudo-evidence out
of the candidates in a batch. ICT pre-training
provides a sufficiently strong initialization such
that ORQA, a joint retriever and reader model,
can be fine-tuned end-to-end by simply optimiz-
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Task Training Evaluation ExampleEvidence Answer Evidence Answer

Reading Comprehension given span given string SQuAD (Rajpurkar et al., 2016)
Open-domain QA

Unsupervised QA none none none string GPT-2 (Radford et al., 2019)
Strongly Supervised QA given span heuristic string DrQA (Chen et al., 2017)
Weakly Supervised QA

Closed Retrieval QA heuristic string heuristic string TriviaQA (Joshi et al., 2017)
Open Retrieval QA learned string learned string ORQA (this work)

Table 1: Comparison of assumptions made by related tasks, along with references to examples. Heuristic evidence
refers to the typical strategy of considering only a closed set of evidence documents from a traditional IR system,
which sets a strict upper-bound on task performance. In this work (ORQA), only question-answer string pairs are
observed during training, and evidence retrieval is learned in a completely end-to-end manner.

ing the marginal log-likelihood of correct answers
that were found.

We evaluate ORQA on open versions of five ex-
isting QA datasets. On datasets where the question
writers already know the answer—SQuAD (Ra-
jpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017)—the retrieval problem resembles tradi-
tional IR, and BM25 (Robertson et al., 2009)
provides state-of-the-art retrieval. On datasets
where question writers do not know the answer—
Natural Questions (Kwiatkowski et al., 2019),
WebQuestions (Berant et al., 2013), and Curat-
edTrec (Baudis and Sedivý, 2015)—we show that
learned retrieval is crucial, providing improve-
ments of 6 to 19 points in exact match over BM25.

2 Overview

In this section, we introduce notation for open do-
main QA that is useful for comparing prior work,
baselines, and our proposed model.

2.1 Task

In open domain question answering, the input q is
a question string, and the output a is an answer
string. Unlike reading comprehension, the source
of evidence is a modeling choice rather than a part
of the task definition. We compare the assump-
tions made by variants of reading comprehension
and question answering tasks in Table 1.

Evaluation is exact match with any of the ref-
erence answer strings after minor normalization
such as lowercasing, following evaluation scripts
from DrQA (Chen et al., 2017).

2.2 Formal Definitions

We introduce several general definitions of model
components that subsume many retrieval-based
open domain question answering systems.

Models are defined with respect to an unstruc-
tured text corpus that is split into B blocks of ev-
idence texts. An answer derivation is a pair (b, s),
where 1 ≤ b ≤ B indicates the index of an ev-
idence block and s denotes a span of text within
block b. The start and end token indices of span s
are denoted by START(s) and END(s) respectively.

Models define a scoring function S(b, s, q) indi-
cating the goodness of an answer derivation (b, s)
given a question q. Typically, this scoring func-
tion is decomposed over a retrieval component
Sretr (b, q) and a reader component Sread (b, s, q):

S(b, s, q) = Sretr (b, q) + Sread (b, s, q)

During inference, the model outputs the answer
string of the highest scoring derivation:

a∗ = TEXT(argmax
b,s

S(b, s, q))

where TEXT(b, s) deterministically maps answer
derivation (b, s) to an answer string. A major chal-
lenge of any open domain question answering sys-
tem is handling the scale. In our experiments on
the English Wikipedia corpus, we consider over
13 million evidence blocks b, each with over 2000
possible answer spans s.

2.3 Existing Pipelined Models
In existing retrieval-based open domain question
answering systems, a blackbox IR system first
chooses a closed set of evidence candidates. For
example, the score from the retriever component
of DrQA (Chen et al., 2017) is defined as:

Sretr (b, q) =

{
0 b ∈ TOP(k, TF-IDF(q, b))

−∞ otherwise

Most work following DrQA use the same candi-
dates from TF-IDF and focus on reading compre-
hension or re-ranking. The reading component
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BERTQ(q)

[CLS]What does the zip in
zip code stand for?[SEP]

BERTB(0)

[CLS]...The term ‘ZIP’
is an acronym for Zone

Improvement Plan...[SEP]

BERTB(1)

[CLS]...group of ze-
bras are referred to as a
herd or dazzle...[SEP]

BERTB(2)

[CLS]...ZIPs for other
operating systems may

be preceded by...[SEP]

BERTB(...)

...

Sretr (0, q)

Sretr (1, q)

Sretr (2, q)

Sretr (..., q)

BERTR(q, 0)

[CLS] What does the
zip in zip code stand for?
[SEP]...The term ‘ZIP’
is an acronym for Zone

Improvement Plan...[SEP]

BERTR(q, 2)

[CLS] What does the
zip in zip code stand for?
[SEP]...ZIPs for other
operating systems may

be preceded by...[SEP]

Top K

Top K

Sread (0, “The term”, q)

Sread (0, “Zone Improvement Plan”, q)

Sread (0, ..., q)

MLP

M
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M
LP

Sread (2, “ZIPs”, q)

Sread (2, “operating systems”, q)

Sread (2, ..., q)
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Figure 1: Overview of ORQA. A subset of all possible answer derivations given a question q is shown here.
Retrieval scores Sretr (q, b) are computed via inner products between BERT-based encoders. Top-scoring evidence
blocks are jointly encoded with the question, and span representations are scored with a multi-layer perceptron
(MLP) to compute Sread(q, b, s). The final joint model score is Sretr (q, b) + Sread(q, b, s). Unlike previous work
using IR systems for candidate proposal, we learn to retrieve from all of Wikipedia directly.

Sread (b, s, q) is learned from gold answer deriva-
tions, typically from the SQuAD (Rajpurkar et al.,
2016) dataset, where the evidence text is given.

In work that is more closely related to our ap-
proach, the reader is learned entirely from weak
supervision (Joshi et al., 2017; Dhingra et al.,
2017; Dunn et al., 2017). Spurious ambiguities
(see Table 2) are heuristically removed by the re-
trieval system, and the cleaned results are treated
as gold derivations.

3 Open-Retrieval Question Answering
(ORQA)

We propose an end-to-end model where the re-
triever and reader components are jointly learned,
which we refer to as the Open-Retrieval Question
Answering (ORQA) model. An important aspect
of ORQA is its expressivity—it is capable of re-
trieving any text in an open corpus, rather than be-
ing limited to the closed set returned by a black-
box IR system. An illustration of how ORQA
scores answer derivations is presented in Figure 1.

Following recent advances in transfer learn-
ing, all scoring components are derived from
BERT (Devlin et al., 2018), a bidirectional trans-
former that has been pre-trained on unsupervised
language-modeling data. We refer the reader to
the original paper for details of the architecture.
In this work, the relevant abstraction can be de-
scribed by the following function:

BERT(x1, [x2]) = {CLS : hCLS, 1 : h1, 2 : h2, ...}

The BERT function takes one or two string in-
puts (x1 and optionally x2) as arguments. It re-
turns vectors corresponding to representations of
the CLS pooling token or the input tokens.

Retriever component In order for the retriever
to be learnable, we define the retrieval score as
the inner product of dense vector representations
of the question q and the evidence block b.

hq = WqBERTQ(q)[CLS]

hb = WbBERTB(b)[CLS]

Sretr (b, q) = h>q hb

where Wq and Wb are matrices that project the
BERT output into 128-dimensional vectors.

Reader component The reader is a span-based
variant of the reading comprehension model pro-
posed in Devlin et al. (2018):

hstart = BERTR(q, b)[START(s)]

hend = BERTR(q, b)[END(s)]

Sread (b, s, q) = MLP([hstart ;hend ])

Following Lee et al. (2016), a span is represented
by the concatenation of its end points, which
is scored by a multi-layer perceptron to enable
start/end interaction.

Inference & Learning Challenges The model
described above is conceptually simple. However,
inference and learning are challenging since (1) an
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Example Supportive Spurious
Evidence Ambiguity

Q: Who is
credited with
developing the XY
coordinate plane?

...invention of
Cartesian
coordinates by
René Descartes
revolutionized...

...René
Descartes was
born in La Haye
en Touraine,
France...A: René Descartes

Q: How many
districts are in the
state of Alabama?

...Alabama is
currently divided
into seven
congressional
districts, each
represented by ...

...Alabama is
one of seven
states that levy a
tax on food at
the same rate as
other goods...

A: seven

Table 2: Examples of spurious ambiguities arising from
the use of weak supervision. Good evidence retrieval is
needed to generate a meaningful learning signal.

open evidence corpus presents an enormous search
space (over 13 million evidence blocks), and (2)
how to navigate this space is entirely latent, so
standard teacher-forcing approaches do not apply.
Latent-variable methods are also difficult to ap-
ply naively due to the large number of spuriously
ambiguous derivations. For example, as shown
in Table 2, many irrelevant passages in Wikipedia
would contain the answer string “seven.”

We address these challenges by carefully initial-
izing the retriever with unsupervised pre-training
(Section 4). The pre-trained retriever allows
us to (1) pre-encode all evidence blocks from
Wikipedia, enabling dynamic yet fast top-k re-
trieval during fine-tuning (Section 5), and (2) bias
the retrieval away from spurious ambiguities and
towards supportive evidence (Section 6).

4 Inverse Cloze Task

The goal of our proposed pre-training procedure is
for the retriever to solve an unsupervised task that
closely resembles evidence retrieval for QA.

Intuitively, useful evidence typically discusses
entities, events, and relations from the question. It
also contains extra information (the answer) that
is not present in the question. An unsupervised
analog of a question-evidence pair is a sentence-
context pair—the context of a sentence is semanti-
cally relevant and can be used to infer information
missing from the sentence.

Following this intuition, we propose to pre-train
our retrieval module with an Inverse Cloze Task
(ICT). In the standard Cloze task (Taylor, 1953),
the goal is to predict masked-out text based on
its context. ICT instead requires predicting the
inverse—given a sentence, predict its context (see

BERTQ(q)

[CLS]They are generally
slower than horses, but their

great stamina helps them
outrun predators.[SEP]

BERTB(0)

[CLS]...Zebras have four
gaits: walk, trot, canter

and gallop. When chased,
a zebra will zig-zag from
side to side... ...[SEP]

BERTB(1)

[CLS]...Gagarin was
further selected for an elite

training group known as
the Sochi Six...[SEP]

BERTB(...)

...

Sretr (0, q)

Sretr (1, q)

Sretr (..., q)

Figure 2: Example of the Inverse Cloze Task (ICT),
used for retrieval pre-training. A random sentence
(pseudo-query) and its context (pseudo evidence text)
are derived from the text snippet: “...Zebras have four
gaits: walk, trot, canter and gallop. They are gener-
ally slower than horses, but their great stamina helps
them outrun predators. When chased, a zebra will zig-
zag from side to side...” The objective is to select the
true context among candidates in the batch.

Figure 2). We use a discriminative objective that
is analogous to downstream retrieval:

PICT(b|q) =
exp(Sretr (b, q))∑

b′∈BATCH

exp(Sretr (b
′, q))

where q is a random sentence that is treated as a
pseudo-question, b is the text surrounding q, and
BATCH is the set of evidence blocks in the batch
that are used as sampled negatives.

An important aspect of ICT is that it requires
learning more than word matching features, since
the pseudo-question is not present in the evi-
dence. For example, the pseudo-question in Fig-
ure 2 never explicitly mentions “Zebras”, but the
retriever must still be able to select the context that
discusses Zebras. Being able to infer the seman-
tics from under-specified language is what sets QA
apart from traditional IR.

However, we also do not want to dissuade
the retriever from learning to perform word
matching—lexical overlap is ultimately a very
useful feature for retrieval. Therefore, we only
remove the sentence from its context in 90% of
the examples, encouraging the model to learn
both abstract representations when needed and
low-level word matching features when available.

ICT pre-training accomplishes two main goals:

1. Despite the mismatch between sentences dur-
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ing pre-training and questions during fine-
tuning, we expect zero-shot evidence re-
trieval performance to be sufficient for boot-
strapping the latent-variable learning.

2. There is no such mismatch between pre-
trained evidence blocks and downstream ev-
idence blocks. We can expect the block en-
coder BERTB(b) to work well without fur-
ther training. Only the question encoder
needs to be fine-tuned on downstream data.

As we will see in the following section, these two
properties are crucial for enabling computationally
feasible inference and end-to-end learning.

5 Inference

Since fixed block encoders already provide a
useful representation for retrieval, we can pre-
compute all block encodings in the evidence cor-
pus. As a result, the enormous set of evidence
blocks does not need to be re-encoded while fine-
tuning, and it can be pre-compiled into an index
for fast maximum inner product search using ex-
isting tools such as Locality Sensitive Hashing.

With the pre-compiled index, inference follows
a standard beam-search procedure. We retrieve the
top-k evidence blocks and only compute the ex-
pensive reader scores for those k blocks. While we
only considering the top-k evidence blocks dur-
ing a single inference step, this set dynamically
changes during training since the question encoder
is fine-tuned according to the weakly supervised
QA data, as discussed in the following section.

6 Learning

Learning is relatively straightforward, since ICT
should provide non-trivial zero-shot retrieval. We
first define a distribution over answer derivations:

P (b, s|q) = exp(S(b, s, q))∑
b′∈TOP(k)

∑
s′∈b′

exp(S(b′, s′, q))

where TOP(k) denotes the top k retrieved blocks
based on Sretr . We use k = 5 in our experiments.

Given a gold answer string a, we find all (pos-
sibly spuriously) correct derivations in the beam,
and optimize their marginal log-likelihood:

Lfull(q, a) = − log
∑

b∈TOP(k)

∑
s∈b, a=TEXT(s)

P ′(b, s|q)

where a = TEXT(s) indicates whether the answer
string a matches exactly the span s.

To encourage more aggressive learning, we also
include an early update, where we consider a
larger set of c evidence blocks but only update the
retrieval score, which is cheap to compute:

Pearly(b|q) =
exp(Sretr (b, q))∑

b′∈TOP(c)

exp(Sretr (b
′, q))

Learly(q, a) = − log
∑

b∈TOP(c), a∈TEXT(b)

Pearly(b|q)

where a ∈ TEXT(b) indicates whether answer
string a appears in evidence block b. We use
c = 5000 in our experiments.

The final loss includes both updates:

L(q, a) = Learly(q, a) + Lfull(q, a)

If no matching answers are found at all, then the
example is discarded. While we would expect al-
most all examples to be discarded with random ini-
tialization, we discard less than 10% of examples
in practice due to ICT pre-training.

As previously mentioned, we fine-tune all pa-
rameters except those in the evidence block en-
coder. Since the query encoder is trainable, the
model can potentially learn to retrieve any evi-
dence block. This expressivity is a crucial differ-
ence from blackbox IR systems, where recall can
only be improved by retrieving more evidence.

7 Experimental Setup

7.1 Open Domain QA Datasets
We train and evaluate on data from 5 existing ques-
tion answering or reading comprehension datasets.
Not all of them are intended as open domain QA
datasets in their original form, so we convert them
to open formats, following DrQA (Chen et al.,
2017). Each example in the open version of the
datasets consists of a single question string and a
set of reference answer strings.

Natural Questions contains question from ag-
gregated queries to Google Search (Kwiatkowski
et al., 2019). To gather an open version of this
dataset, we only keep questions with short answers
and discard the given evidence document. An-
swers with many tokens often resemble extractive
snippets rather than canonical answers, so we dis-
card answers with more than 5 tokens.
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Dataset Train Dev Test Example Question Example Answer

Natural Questions 79168 8757 3610 What does the zip in zip code stand for? Zone Improvement Plan
WebQuestions 3417 361 2032 What airport is closer to downtown Houston? William P. Hobby Airport
CuratedTrec 1353 133 694 What metal has the highest melting point? Tungsten
TriviaQA 78785 8837 11313 What did L. Fran Baum, author of The Wonder-

ful Wizard of Oz, call his home in Hollywood?
Ozcot

SQuAD 78713 8886 10570 Other than the Automobile Club of Southern
California, what other AAA Auto Club chose
to simplify the divide?

California State Automo-
bile Association

Table 3: Statistics and examples for the datasets that we evaluate on. There are slightly differences from the
original datasets as described in Section 7.1, since not all of them were intended to be used in the open setting.

WebQuestions contains questions that were
sampled from the Google Suggest API (Berant
et al., 2013). The answers are annotated with re-
spect to Freebase, but we only keep the string rep-
resentation of the entities.

CuratedTrec is a corpus of question-answer
pairs derived from TREC QA data curated by
Baudis and Sedivý (2015). The questions come
from various sources of real queries, such as
MSNSearch or AskJeeves logs, where the ques-
tion askers do not observe any evidence docu-
ments (Voorhees, 2001).

TriviaQA is a collection of trivia question-
answer pairs that were scraped from the web
(Joshi et al., 2017). We use their unfiltered set and
discard their distantly supervised evidence.

SQuAD was designed to be a reading com-
prehension dataset rather than an open domain
QA dataset (Rajpurkar et al., 2016). Answer
spans were selected from a Wikipedia paragraph,
and the questions were written by annota-
tors who were instructed to ask questions that
are answered by a given answer in a given context.

On datasets where a development set does
not exist, we randomly hold out 10% of the
training data for development. On datasets where
the test set is hidden, we also randomly hold out
10% of the training data for development, and use
the original development set for testing (following
DrQA). A summary of dataset statistics and
examples are shown in Table 3.

7.2 Dataset Biases
Evaluating on this diverse set of question-answer
pairs is crucial, because all existing datasets have
inherent biases that are problematic for open do-
main QA systems with learned retrieval. These
biases are summarized in Table 4.

In the Natural Questions, WebQuestions, and
CuratedTrec, the question askers do not already
know the answer. This accurately reflects a distri-
bution of genuine information-seeking questions.
However, annotators must separately find correct
answers, which requires assistance from automatic
tools and can introduce a moderate bias towards
results from the tool.

In TriviaQA and SQuAD, automatic tools are
not needed since the questions are written with
known answers in mind. However, this introduces
another set of biases that are arguably more prob-
lematic. Question writing is not motivated by an
information need. This often results in many hints
in the question that would not be present in natu-
rally occurring questions, as shown in the exam-
ples in Table 3. This is particularly problematic
for SQuAD, where the question askers are also
prompted with a specific piece of evidence for the
answer, leading to artificially large lexical overlap
between the question and evidence.

Note that these are simply properties of the
datasets rather than actionable criticisms—such
data collection methods are necessary to scale up,
and it is unclear how one could collect a truly un-
biased dataset without impractical costs.

7.3 Implementation Details

We mainly evaluate in the setting where only
question-answer string pairs are available for su-
pervision. See Section 9 for head-to-head com-
parisons with the DrQA setting that uses the same
evidence corpus and the same type of supervision.

Evidence Corpus We use the English
Wikipedia snapshot from December 20, 2018
as the evidence corpus.1 The corpus is greedily

1We deviate from DrQA’s 2016 Wikipedia evidence cor-
pus because the original snapshot is no longer publicly avail-
able. The 12-20-2018 snapshot is available at https://
archive.org/download/enwiki-20181220.

https://archive.org/download/enwiki-20181220
https://archive.org/download/enwiki-20181220
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Dataset Question Question Tool-
writer writer assisted
knows knows answer
answer evidence

Natural Questions 3
WebQuestions 3
CuratedTrec 3

TriviaQA 3
SQuAD 3 3

Table 4: A breakdown of biases in existing QA
datasets. These biases are associated with either the
question or the answer.

split into chunks of at most 288 wordpieces based
on BERT’s tokenizer, while preserving sentence
boundaries. This results in just over 13 million
evidence blocks. The title of the document is
included in the block encoder.

Hyperparameters In all uses of BERT (both
the retriever and reader), we initialize from the
uncased base model, which consists of 12 trans-
former layers with a hidden size of 768.

As mentioned in Section 3, the retrieval repre-
sentations, hq and hb , have 128 dimensions. The
small hidden size was chosen so that the final QA
model can comfortably run on a single machine.
We use the default optimizer from BERT.

When pre-training the retriever with ICT, we
use a learning rate of 10−4 and a batch size of 4096
on Google Cloud TPUs for 100k steps. When fine-
tuning, we use a learning rate of 10−5 and a batch
size of 1 on a single machine with a 12GB GPU.
Answer spans are limited to 10 tokens. We per-
form 2 epochs of fine-tuning for the larger datasets
(Natural Questions, TriviaQA, and SQuAD), and
20 epochs for the smaller datasets (WebQuestions
and CuratedTrec).

8 Main Results

8.1 Baselines

We compare against other retrieval methods by us-
ing alternate retrieval scores Sretr (b, q), but with
the same reader.

BM25 A de-facto state-of-the-art unsupervised
retrieval method is BM25 (Robertson et al., 2009).
It has been shown to be robust for both traditional
information retrieval tasks, and evidence retrieval
for question answering (Yang et al., 2017).2 Since

2We also include the title, which was slightly beneficial.

Model BM25 NNLM ELMO ORQA+BERT +BERT +BERT

D
ev

Natural Questions 24.8 3.2 3.6 31.3
WebQuestions 20.8 9.1 17.7 38.5
CuratedTrec 27.1 6.0 8.3 36.8

TriviaQA 47.2 7.3 6.0 45.1
SQuAD 28.1 2.8 1.9 26.5

Te
st

Natural Questions 26.5 4.0 4.7 33.3
WebQuestions 17.7 7.3 15.6 36.4
CuratedTrec 21.3 4.5 6.8 30.1

TriviaQA 47.1 7.1 5.7 45.0
SQuAD 33.2 3.2 2.3 20.2

Table 5: Main results: End-to-end exact match
for open-domain question answering from question-
answer pairs only. Datasets where question askers
know the answer behave differently from datasets
where they do not.

BM25 is not trainable, the retrieved evidence con-
sidered during fine-tuning is static. Inspired by
BERTserini (Yang et al., 2019), the final score is
a learned weighted sum of the BM25 and reader
score. Our implementation is based on Lucene.3

Language Models While unsupervised neural
retrieval is notoriously difficult to improve over
traditional IR (Lin, 2019), we include them as
baselines for comparison. We experiment with
unsupervised pooled representations from neural
language models (LM), which has been shown
to be state-of-the-art unsupervised representa-
tions (Perone et al., 2018). We compare with two
widely-used 128-dimensional representations: (1)
NNLM, context-independent embeddings from a
feed-forward LMs (Bengio et al., 2003),4 and (2)
ELMO (small), a context-dependent bidirectional
LSTM (Peters et al., 2018).5

As with ICT, we use the alternate encoders to
pre-compute the encoded evidence blocks hb and
to initialize the question encoding hq, which is
fine-tuned. Based on existing IR literature and the
intuition that LMs do not explicitly optimize for
retrieval, we do not expect these to be strong base-
lines, but they demonstrate the difficulty of encod-
ing blocks of text into 128 dimensions.

8.2 Results
The main results are show in Table 5. The first
result to note is that BM25 is a powerful re-
trieval system. Word matching is important, and

3
https://lucene.apache.org/

4
https://tfhub.dev/google/nnlm-en-dim128/1

5
https://allennlp.org/elmo

https://lucene.apache.org/
https://tfhub.dev/google/nnlm-en-dim128/1
https://allennlp.org/elmo
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Model Evidence SQuADRetrieved

DRQA 5 documents 27.1
DRQA (DS) 5 documents 28.4
DRQA (DS + MTL) 5 documents 29.8

BERTSERINI 5 documents 19.1
BERTSERINI 29 paragraphs 36.6
BERTSERINI 100 paragraphs 38.6

BM25 + BERT 5 blocks 34.7(gold deriv.)

Table 6: Analysis: Results comparable to previous
work in the strongly supervised setting, where models
have access to gold derivations from SQuAD. Differ-
ent systems segment Wikipedia differently. There are
5.1M documents, 29.5M paragraphs, and 12.1M blocks
in the December 12, 2016 Wikipedia snapshot.

dense vector representations derived from lan-
guage models do not readily capture this.

We also show that on questions that were de-
rived from real users who are seeking informa-
tion (Natural Questions, WebQuestions, and Cu-
ratedTrec), our ICT pre-trained retriever outper-
forms BM25 by a large marge—6 to 19 points in
exact match depending on the dataset.

However, in datasets where the question askers
already know the answer, i.e. SQuAD and Triv-
iaQA, the retrieval problem resembles traditional
IR. In this setting, a highly compressed 128-
dimensional vector cannot match BM25’s ability
to precisely represent every word in the evidence.

The notable drop between development and test
accuracy for SQuAD is a reflection of an artifact
in the dataset—its 100k questions are derived from
only 536 documents. Therefore, good retrieval tar-
gets are highly correlated between training exam-
ples, violating the IID assumption, and making it
unsuitable for learned retrieval. We strongly sug-
gest that those who are interested in end-to-end
open-domain QA models no longer train and eval-
uate with SQuAD for this reason.

9 Analysis

9.1 Strongly supervised comparison

To verify that our BM25 baseline is indeed state
of the art, we also provide direct comparisons with
DrQA’s setup, where systems have access to gold
answer derivations from SQuAD (Rajpurkar et al.,
2016). While many systems have been proposed
following DrQA’s original setting, we compare
only to the original system and the best system that
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Figure 3: Analysis: Performance on our open version
of the Natural Questions dev set with various mask-
ing rates for the ICT pre-training. Too much masking
prevents the model from learning to exploit exact n-
gram overlap. Too little masking makes language un-
derstanding unnecessary.

we are aware of—BERTserini (Yang et al., 2019).
DrQA’s reader is DocReader (Chen et al.,

2017), and they use TF-IDF to retrieve the top k
documents. They also include distant supervision
based on TF-IDF retrieval. BERTserini’s reader is
derived from base BERT (much like our reader),
and they use BM25 to retrieve the top k paragraphs
(much like our BM25 baseline). A major differ-
ence is that BERTserini uses true paragraphs from
Wikipedia rather than arbitrary blocks, resulting in
more evidence blocks due to uneven lengths.

For fair comparison with these strongly su-
pervised systems, we pre-train the reader on
SQuAD data.6 In Table 6, our BM25 baseline,
which retrieves 5 evidence blocks, greatly outper-
forms 5-document BERTserini and is close to 29-
paragraph BERTserini.

9.2 Masking Rate in the Inverse Cloze Task

The pseudo-query is masked from the evidence
block 90% of the time, motivated by intuition in
Section 4. We empirically verify our intuitions in
Figure 3 by varying the masking rate, and com-
paring results on our open version of the Natural
Questions development set.

If we always mask the pseudo-query, the re-
triever never learns that n-gram overlap is a pow-
erful retrieval signal, losing almost 10 points in
end-to-end performance. If we never mask the
pseudo-query, the problem is reduced to memo-
rization and does not generalize well to question
answering. The latter loses 6 points in end-to-end
performance, which—perhaps not surprisingly—
produces near-identical results to BM25.

6We use DrQA’s December 12, 2016 snapshot of
Wikipedia for an apples-to-apples comparison.
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Example ORQA BM25 + BERT

Q: what is the new
orleans saints symbol
called

...The team’s primary colors are old gold and
black; their logo is a simplified fleur-de-lis.
They played their home games in Tulane
Stadium through the 1974 NFL season....

...the SkyDome was owned by Sportsco at the
time... the sale of the New Orleans Saints with
team owner Tom Benson... the Saints became a
symbol for that community...A: fleur-de-lis

Q: how many senators
per state in the us

...powers of the Senate are established in
Article One of the U.S. Constitution. Each
U.S. state is represented by two senators...

...The Georgia Constitution mandates a
maximum of 56 senators, elected from
single-member districts...A: two

Q: when was germany
given a permanent seat
on the council of the
league of nations

...Under the Weimar Republic, Germany (in
fact the “Deutsches Reich” or German Empire)
was admitted to the League of Nations through
a resolution passed on September 8 1926. An
additional 15 countries joined later...

...the accession of the German Democratic
Republic to the Federal Republic of Germany,
it was effective on 3 October 1990...Germany
has been elected as a non-permanent member
of the United Nations Security Council...A: 1926

Q: when was diary of
a wimpy kid double
down published

...“Diary of a Wimpy Kid” first appeared on
FunBrain in 2004, where it was read 20 million
times. The abridged hardcover adaptation was
released on April 1, 2007...

Diary of a Wimpy Kid: Double Down is the
eleventh book in the ”Diary of a Wimpy Kid”
series by Jeff Kinney... The book was
published on November 1, 2016...A: November 1, 2016

Table 7: Analysis: Example predictions on our open version of the Natural Questions dev set. We show the highest
scoring derivation, consisting of the evidence block and the predicted answer in bold. ORQA is more robust at
separating semantically distinct text that have high lexical overlap. However, the limitation of the 128-dimensional
vectors is that extremely specific concepts are less precisely represented.

9.3 Example Predictions
For a more intuitive understanding of the improve-
ments from ORQA, we compare its predictions
with baseline predictions in Table 7. We find that
ORQA is more robust at separating semantically
distinct text with high lexical overlap, as shown
in the first three examples. However, it is ex-
pected that there are limits to how much informa-
tion can be compressed into 128-dimensional vec-
tors. The last example shows that ORQA has trou-
ble precisely representing extremely specific con-
cepts that sparse representations can cleanly sepa-
rate. These errors indicate that a hybrid approach
would be promising future work.

10 Related Work

Recent progress has been made towards improving
evidence retrieval (Wang et al., 2018; Kratzwald
and Feuerriegel, 2018; Lee et al., 2018; Das et al.,
2019) by learning to aggregate from multiple re-
trieval steps. They re-rank evidence candidates
from a closed set, and we aim to integrate these
complementary approaches in future work.

Our approach is also reminiscent of weakly su-
pervised semantic parsing (Clarke et al., 2010;
Liang et al., 2013; Artzi and Zettlemoyer,
2013; Fader et al., 2014; Berant et al., 2013;
Kwiatkowski et al., 2013), with which we share
similar challenges—(1) inference and learning
are tightly coupled, (2) latent derivations must
be discovered, and (3) strong inductive biases

are needed to find positive learning signal while
avoiding spurious ambiguities.

While we motivate ICT from first principles as
an unsupervised proxy for evidence retrieval, it is
closely related to existing representation learning
literature. ICT can be considered a generalization
of the skip-gram objective (Mikolov et al., 2013),
with a coarser granularity, deep architecture, and
in-batch negative sampling from Logeswaran and
Lee (2018).

Consulting external evidence sources with la-
tent retrieval has also been explored in information
extraction (Narasimhan et al., 2016). In compari-
son, we are able to learn a much more expressive
retriever due to the strong inductive biases from
ICT pre-training.

11 Conclusion

We presented ORQA, the first open domain ques-
tion answering system where the retriever and
reader are jointly learned end-to-end using only
question-answer pairs and without any IR system.
This is made possible by pre-training the retriever
using an Inverse Cloze Task (ICT). Experiments
show that learning to retrieve is crucial when the
questions reflect an information need, i.e. the
question writers do not already know the answer.
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