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Abstract

Large-scale pretrained language models define
state of the art in natural language process-
ing, achieving outstanding performance on a
variety of tasks. We study how these archi-
tectures can be applied and adapted for natu-
ral language generation, comparing a number
of architectural and training schemes. We fo-
cus in particular on open-domain dialog as a
typical high entropy generation task, present-
ing and comparing different architectures for
adapting pretrained models with state of the art
results.

1 Introduction

Over the past few years, the field of natural lan-
guage processing (NLP) has witnessed the emer-
gence of transfer learning methods which have
significantly improved the state of the art (Dai
and Le, 2015; Peters et al., 2018; Howard and
Ruder, 2018; Radford et al., 2018; Devlin et al.,
2018). These methods depart from classical super-
vised machine learning where a predictive model
for a given task is trained in isolation on a sin-
gle dataset. Here, a model is pretrained on large
text corpora and then fine-tuned on the target task.
Such models are usually evaluated on natural lan-
guage understanding (NLU) tasks such as text
classification or question answering (Wang et al.;
Rajpurkar et al., 2016), but natural language gen-
eration (NLG) tasks such as summarization, dia-
log, or machine translation remain relatively un-
derexplored. At first glance, large-scale pretrained
models appear to be a natural fit for NLG since
their pretraining objectives are often derived from
language modeling. However, interesting ques-
tions and problems still arise.

We consider a text-only NLG task where the
generation of an output sequence of symbols
y = (y1, . . . ,ym) is conditioned on a context X =
(x1, . . . ,xK) composed of one or several sequences
of symbols xk = (xk

1, . . . ,xk
n). Several types of con-

texts may warrant different treatment in the model.
E.g., in case of dialog generation they may in-
clude: (i) facts from a knowledge base, (ii) dia-
log history, and (iii) the sequence of already gen-
erated output tokens (y1, . . . ,ym−1). Thus, there
arises a general question of how to adapt a single-
input pretrained model to a multi-input down-
stream generation task.

In this work, we study two general schemes to
adapt a pretrained language model to an NLG task.
In the single-input setting, contexts are concate-
nated to create a sequence prefix from which the
output is decoded as a continuation by the pre-
trained language model following Radford et al.
(2018, 2019). The model can be used as is or
with a small number of special token embeddings
added to the vocabulary to identify the contexts.
In the multi-input setting, the pretrained model is
duplicated to form an encoder-decoder structure
where the encoder processes contexts while the
decoder generates the output.

2 Related work

Unsupervised pretraining for transfer learning has
a long history in natural language processing, and
a common thread has been to reduce the amount
of task-specific architecture added on top of pre-
trained modules. Most early methods (Mikolov
et al., 2013; Pennington et al., 2014) focused on
learning word representations using shallow mod-
els, with complex recurrent or convolutional net-
works later added on top for specific tasks. With
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Persona for Speaker 1 (P1)
I like to ski
My wife does not like me anymore
I have went to Mexico 4 times this year
I hate Mexican food
I like to eat cheetos
P1: Hi
P2: Hello! How are you today?
P1: I am good thank you, how are you.
P2: Great, thanks! My children and I were just about to watch Game of
Thrones.
P1: Nice! How old are your children?
P2: I have four that range in age from 10 to 21. You?
P1: I do not have children at the moment.
P2: That just means you get to keep all the popcorn for yourself.
P1: And Cheetos at the moment!
P2: Good choice. Do you watch Game of Thrones?
P1: No, I do not have much time for TV.
P2: I usually spend my time painting: but, I love the show.

Table 1: Sample dialogue from PersonaChat with per-
sona facts for Speaker 1 (P1). Speaker 2 (P2) also has
a random persona (not shown).

increased computing capacities, it has now be-
come feasible to pretrain deep neural language
models. Dai and Le (2015); Ramachandran et al.
(2016) proposed unsupervised pretraining of a lan-
guage model for transfer learning and to initial-
ize encoder and decoder in a seq2seq model for
machine translation tasks. Works in zero-shot
machine translation used large corpora of mono-
lingual data to improve performances for low-
resource languages (Johnson et al., 2017; Wada
and Iwata, 2018; Lample and Conneau, 2019).
Most of the work transfering large-scale language
models from and for monolingual NLG tasks fo-
cus on classification and natural language under-
standing (Kiros et al., 2015; Jozefowicz et al.,
2016). Recently, Radford et al. (2019) studied
large-scale language models for various genera-
tion tasks in the zero-shot setting focusing on sum-
marization and translation and Wolf et al. (2019)
presented early work on chit-chat.

3 Problem setting and dataset

NLG tasks can be divided into high entropy
(story generation, chit-chat dialog) and low en-
tropy (summarization, machine translation) tasks.
We focus on the high entropy task of chit-chat di-
alog to study the use and effect of various types of
contexts: facts, history and previous tokens.

Table 1 shows a typical dialog from Per-
sonaChat (Zhang et al., 2018b), one of the largest
multi-turn open-domain dialog dataset available.
PersonaChat consists of crowdsourced conversa-
tions between real human beings who were asked
to chit-chat. Each participant was given a set of
4-5 profile sentences that define his/her persona
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Figure 1: General model architectures: (a) single-input
model; (b) multi-input model.
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Figure 2: Token embeddings: (a) single-input model
with CTE; (b) multi-input model with start/end tokens.
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Figure 3: OpenAI GPT
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Figure 4: Multi-input Transformer-based architecture.
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for the conversation and asked to chitchat natu-
rally and try to get to know each other. The dataset
contains 162,064 utterances over 10,907 dialogs
with 1,155 possible personas and 7 speaker turns
per dialogue on average. Although it is one of the
largest multi-turn dialogue datasets, PersonaChat
is still too small to train a large-scale model; state
of the art models trained directly on PersonaChat
are very prone to overfitting (Dinan et al., 2019),
hence the motivation for the present work.

4 Single- and multi-input adaptation

While we expect many more large-scale pretrained
language models to become publicly available
soon (Radford et al., 2019), our work is based
on the only large-scale pretrained language model
that was available at the time of this study, the
OpenAI GPT (Radford et al., 2018). We refer to
this publication for the details of the model, which
is a 12-layer decoder-only Transformer (Vaswani
et al., 2017) with masked multi-head attention.
The model uses a bytepair encoding (BPE) vocab-
ulary (Sennrich et al., 2015) with 40,000 merges
and learned positional embeddings for sequences
with at most 512 positions.

We now detail the various adaptation schemes
we used to adapt this model to the task of open-
domain dialogue. More specifically, in our target
task the inputs to the model are: (i) a set of person-
ality sentences, (ii) a dialog history involving two
speakers, and (iii) the history of previously gener-
ated tokens for auto-regressive generation.

In the first adaptation setting, which we call
the single-input model, the pretrained language
model is used as is to generate an output sequence
y = (y1, . . . ,ym) without any architectural modifi-
cations. Contexts are concatenated to create a se-
quence prefix from which the output is then de-
coded as a continuation. In this direction, sev-
eral ways to construct prefixes from heterogeneous
contexts can be investigated: (i) concatenating
contexts with natural separators to make the test
data distribution close to the training data (Rad-
ford et al., 2019) (in our case we added double
quotes to each utterance to mimic dialog punc-
tuation); (ii) concatenating contexts with addi-
tional spatial-separator tokens (fine-tuned on the
target task) to build an input sequence (Radford
et al., 2018); (iii) concatenating contexts and sup-
plementing the input sequence with a parallel se-
quence of context-type embeddings (CTE) to be

added to the token and positional embeddings (De-
vlin et al., 2018). Each CTE shows the context
type for its input token as shown on Fig. 2a: winfo

CTE
for persona info, wp1

CTE for dialog history coming
from person 1, and wp2

CTE for person 2. These vec-
tors are also fine-tuned on the target task.

In the second adaptation scheme, the multi-
input model, the pretrained language model is
duplicated in an encoder-decoder architecture
(Fig. 1b). Similar to the single-input model, natu-
ral separators, spatial-separator tokens or context-
type embeddings can be added for each persona
fact and dialog utterance, surrounding the corre-
sponding text with these tokens as preprocessing,
as shown on Fig. 2b. Persona information and dia-
logue history are successively processed in the en-
coder (Fig. 4) to obtain two respective sequences
of vector representations to be used as input to
the decoder model. The multi-head attention lay-
ers of the decoder are modified to process the
three inputs as follows (see Fig. 4). We copy the
multi-headed attention layer of the decoder three
times—for the embeddings of the current state,
persona facts, and dialog history—averaging the
results (Zhang et al., 2018a). The weights in both
encoder and decoder are initialized from the pre-
trained model.

Using both encoder and decoder allows to sepa-
rate the contexts (dialogue history and persona in-
formation) and alleviate the maximal length con-
straint of 512 tokens. Weight sharing between
encoder and decoder reduces the total number of
model parameters and allows for multi-task learn-
ing. On the other hand, untying the decoder and
encoder lets the attention heads and architectures
specialize for each task.

5 Results

We have performed a series of quantitative evalu-
ation on the test subset of the PersonaChat dataset
as well as a few quantitative evaluations.

Following the recommendations of the End-
to-End conversation Modeling Task at DSTC-7
Workshop (Michel Galley and Gao), we evalu-
ated the models on the following set of metrics:
METEOR (Lavie and Agarwal, 2007), NIST-4,
BLEU (Papineni et al., 2002) as well as diver-
sity metrics: Entropy-4, Distinct-2, and the av-
erage length of the generated utterances. Ta-
ble 2 illustrates the results for three typical mod-
els: the single-input model in the zero-shot set-
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Model METEOR NIST-4 BLEU Entropy-4 Distinct-2 Average Length
Single-input (zero-shot) 0.07727 1.264 2.5362 9.454 0.1759 9.671
Single-input (additional embeddings) 0.07641 1.222 2.5615 9.234 0.1614 9.43
Multi-input 0.07878 1.278 2.7745 9.211 0.1546 9.298

Table 2: Selected evaluation results and statistics.
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Figure 5: Results for single- (SIM) and multi-input (MIM) models; left: word statistics; right: evaluation metrics.

ting (no modification) and with additional em-
beddings fine-tuned on the target task, and the
multi-input model in which the encoder and de-
coder are not shared, which is thus a high-capacity
model in comparison to the previous two models.
We can see that both approaches reach compara-
ble performances on the automatic metrics with
the multi-input model performing better on ME-
TEOR, NIST-4 and BLEU.

We investigated in greater detail the evolution
of the single-input and multi-input models during
training to understand the origin of their differ-
ences. To this aim, we tagged the words gener-
ated by each model according to four categories:
(i) content words that were mentioned in the per-
sona facts, (ii) content words that were mentioned
in the dialog history, (iii) content words that were
mentioned in both, and (iv) all other generated
words. Fig. 5 shows the statistics of these types of
words along a representative training run obtained
using compare-mt (Neubig et al., 2019).

An interesting observation is that single-input
and multi-input models adopt differing behaviors
which can be related to an intrinsic difference be-
tween two contextual inputs: dialog history and
personality facts. While dialog history is very re-
lated to sequentiality, personality facts are not se-
quential in essence: they are not ordered, a well-
trained model should be invariant to the ordering
of the facts. Moreover, a personality fact can be
relevant anywhere in a dialog. On the contrary, di-

alog history is sequential; it cannot be reordered
freely without changing the meaning of the dialog
and the relevance of a particular utterance of the
dialog history is strongly dependent on its location
in the dialog: older history becomes less relevant.

This difference in nature can be related to dif-
ferences in the models. Single-input adaptation is
closer to a bare language-model and the compari-
son with multi-input model shows that the former
tends to stay closer to the dialog history and con-
sistently uses more words from the history than
multi-input model. On the other hand, splitting
encoder and decoder makes persona facts avail-
able to the multi-input model in a non-sequential
manner and we can see that the multi-input model
use more and more persona facts as the training
evolves, out-performing the single-input model
when it comes to reusing words from persona
facts. We also note that the multi-input model,
with its unshared encoder and decoder, may be
able to specialize his sub-modules.

6 Conclusion

In this work, we have presented various ways in
which large-scale pretrained language models can
be adapted to natural language generation tasks,
comparing single-input and multi-input solutions.
This comparison sheds some light on the charac-
teristic features of different types of contextual in-
puts, and our results indicate that the various archi-
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tectures we presented have different inductive bias
with regards to the type of input context. Further
work on these inductive biases could help under-
stand how a pretrained transfer learning model can
be adapted in the most optimal fashion to a given
target task.
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