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Abstract

Paraphrase generation can be regarded as
monolingual translation. Unlike bilingual
machine translation, paraphrase generation
rewrites only a limited portion of an input
sentence. Hence, previous methods based on
machine translation often perform conserva-
tively to fail to make necessary rewrites. To
solve this problem, we propose a neural model
for paraphrase generation that first identifies
words in the source sentence that should be
paraphrased. Then, these words are para-
phrased by the negative lexically constrained
decoding that avoids outputting these words as
they are. Experiments on text simplification
and formality transfer show that our model im-
proves the quality of paraphrasing by making
necessary rewrites to an input sentence.

1 Introduction

Paraphrase generation is a generic term for tasks
that generate sentences semantically equivalent to
input sentences. These techniques make it pos-
sible to control information other than the mean-
ing of the text. Typical paraphrase generation
tasks include subtasks such as text simplification
to control complexity, formality transfer to con-
trol formality, grammatical error correction to con-
trol fluency, and sentence compression to con-
trol sentence length. These paraphrase gener-
ation applications not only support communica-
tion and language learning but also contribute
to the performance improvement of other natu-
ral language processing applications (Evans, 2011;
Štajner and Popović, 2016).

Paraphrase generation can be considered as
a monolingual machine translation problem.
Sentential paraphrases with different complexi-
ties (Coster and Kauchak, 2011; Xu et al., 2015)
and formalities (Rao and Tetreault, 2018) were
created manually, and parallel corpora special-

ized for each subtask were constructed. As
in the field of machine translation, phrase-
based (Coster and Kauchak, 2011; Xu et al., 2012)
and syntax-based (Zhu et al., 2010; Xu et al.,
2016) methods were proposed early. In re-
cent years, the encode-decoder model based
on the attention mechanism (Nisioi et al., 2017;
Zhang and Lapata, 2017; Jhamtani et al., 2017;
Niu et al., 2018) has been studied, inspired
by the success of neural machine transla-
tion (Bahdanau et al., 2015).

In machine translation, all words appearing in
an input sentence must be rewritten in the target
language. However, paraphrase generation does
not require rewriting of all words. When some cri-
teria are provided, words not satisfying the criteria
in the input sentence are identified and rewritten.
For example, the criterion for text simplification
is the textual complexity, and rewrites complex
words to simpler synonymous words. Owing to
the characteristics of the task where only a limited
portion of an input sentence needs to be rewrit-
ten, previous methods based on machine transla-
tion often perform conservatively and fail to pro-
duce necessary rewrites (Zhang and Lapata, 2017;
Niu et al., 2018). To solve the problem of con-
servative paraphrasing that copies many parts of
the input sentence, we propose a neural model for
paraphrase generation that first identifies words in
the source sentence requiring paraphrasing. Sub-
sequently, these words are paraphrased by the neg-
ative lexically constrained decoding that avoids
outputting them as they are.

We evaluate the performance of the pro-
posed method with two major paraphrase gen-
eration tasks. Experiments on text simpli-
fication (Xu et al., 2015) and formality trans-
fer (Rao and Tetreault, 2018) show that our model
improves the quality of paraphrasing by perform-
ing necessary rewrites to an input sentence.
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2 Proposed Method

To improve the conservative rewriting of the neu-
ral paraphrase generation, we first identify the
words to be paraphrased for a given input sen-
tence (Section 2.1). Next, we paraphrase the in-
put sentence using the pretrained paraphrase gen-
eration model. Here, we select sentences not in-
cluding those words by adding negative lexically
constrained decoding to the beam search (Sec-
tion 2.2). Because our method only changes the
beam search, it can be applied to various para-
phrase generation models and model retraining is
not necessary.

2.1 Identification of Word to be Paraphrased

We extract words strongly related to the source
style included in the input sentence si as vo-
cabulary Vi to be paraphrased. Point-wise mu-
tual information is used to estimate the related-
ness between each word w ∈ si and style z ∈
{x, y} (Pavlick and Nenkova, 2015). Here, x and
y are the source style (e.g. informal) and the target
style (e.g. formal), respectively.

PMI(w, z) = log
p(w, z)

p(w)p(z)
= log

p(w|z)
p(w)

(1)

We define the vocabulary Vi to be paraphrased us-
ing the threshold θ as follows.

Vi = {w | w ∈ si ∧ PMI(w, x) ≥ θ} (2)

After extracting the vocabulary Vi to be para-
phrased for each input sentence si, we generate
paraphrase sentences using it as a hard constraints.
Note that PMI score is calculated using a training
parallel corpus for paraphrase generation.

2.2 Negative Lexically Constrained Decoding

Lexically constrained decoding (Anderson et al.,
2017; Hokamp and Liu, 2017; Post and Vilar,
2018) adds constraints to the beam search to
force the output text to include certain words.
The effectiveness of these methods are demon-
strated in image captioning using given image
tags (Anderson et al., 2017) and in the post-editing
of machine translation (Hokamp and Liu, 2017).

In paraphrase generation, there is no situation
that words to be included in the output sentence
are given. Therefore, positive lexical constraints
used in the image captioning and post-editing of
machine translation cannot be applied to this task

Train Dev Test

Newsela 94,208 1,129 1,077
GYAFC-E&M 52,595 2,877 1,416
GYAFC-F&R 51,967 2,788 1,332

Table 1: Number of sentence pairs for each dataset.

as they are. Meanwhile, negative lexical con-
straints that are forced to not include certain words
in output sentence are promising for paraphrase
generation. This is because, for example, text sim-
plification is a task of generating sentential para-
phrase without using complex words that appear
in the source sentence.

In this study, we add negative lexical con-
straints to beam search using dynamic beam allo-
cation (Post and Vilar, 2018), which is the fastest
lexically constrained decoding algorithm. In nega-
tive lexical constraints, we exclude hypotheses in-
cluding the given words during beam search. Con-
sequently, the words identified in Section 2.1 will
not appear in our generated sentences.

3 Experiment

We evaluate the performance of the proposed
method on two major paraphrase generation tasks.
We conduct experiments on text simplification
and formality transfer using datasets shown in Ta-
ble 1. For text simplification, we identify com-
plex words in the input sentence and generate sim-
ple paraphrase sentence without using these com-
plex words. Similarly, for formality transfer, we
identify informal words in the input sentence and
generate formal paraphrase sentence without using
these informal words.

3.1 Setup

For text simplification, we used the Newsela
dataset (Xu et al., 2015) split and tok-
enized with the same settings as the previ-
ous study (Zhang and Lapata, 2017). For
formality transfer, we used the GYAFC
dataset (Rao and Tetreault, 2018) normalized
and tokenized using Moses toolkit.1 For each
task, we used byte-pair encoding2 (Sennrich et al.,
2016) to limit the number of token types to
16, 000. In the GYAFC dataset, it is reported that
a correlation exists between manual evaluation

1https://github.com/moses-smt/mosesdecoder
2https://github.com/rsennrich/subword-nmt
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Newsela GYAFC-E&M GYAFC-F&R

Add Keep Del BLEU SARI Add Keep Del BLEU Add Keep Del BLEU

RNN-Base 1.8 60.8 22.3 24.1 17.4 31.9 90.0 57.5 71.2 32.9 90.5 61.1 74.7
RNN-PMI 2.8 61.1 36.5 24.7 22.8 33.5 90.0 59.9 71.7 34.3 90.9 63.1 75.9
RNN-Oracle 10.4 82.9 89.9 36.4 40.0 34.8 92.7 72.4 75.2 35.7 93.2 74.6 79.3

SAN-Base 1.8 60.9 23.8 24.0 17.8 34.4 90.0 59.9 71.8 34.5 91.1 63.2 76.7
SAN-PMI 2.5 61.3 38.0 24.6 23.3 35.2 90.0 61.2 72.1 35.3 91.1 64.0 77.0
SAN-Oracle 10.1 82.0 89.4 35.9 39.9 36.6 92.4 71.4 75.1 36.6 92.9 73.7 79.8

Table 2: Performance of our paraphrase generation models on text simplification (complex → simple) in Newsela
dataset and formality transfer (informal → formal) in GYAFC dataset. For both RNN and SAN models, our method
consistently improves BLEU and SARI scores across styles or domains. In addition, a consistent improvement on
Add and Del means that our method promotes active rewriting.

and automatic evaluation using BLEU only when
paraphrasing from an informal style to formal
style (Rao and Tetreault, 2018). Therefore, we
will only experiment with this setting.

For lexical constraints, we identified words with
a PMI score above the threshold θ. We selected
a threshold θ ∈ {0.0, 0.1, 0.2, ..., 0.7} that max-
imizes the BLEU score between the output sen-
tence and the reference sentence in the develop-
ment dataset. We calculated PMI scores using
each training dataset shown in Table 1.

As a paraphrase generation model, we con-
structed the recurrent neural network (RNN) and
self-attention network (SAN) models using the
Sockeye toolkit (Hieber et al., 2017).3 Our RNN
model uses a single LSTM with a layer size of
512 for both the encoder and decoder, and MLP
attention with a layer size of 512. Our SAN model
uses a six-layer transformer with a model size of
512 and a single attention head. We used word
embeddings in 512 dimensions tying the source,
target, and the output layer’s weight matrix. We
added dropout to the embeddings and hidden lay-
ers with probability 0.2. In addition, we used
layer-normalization and label-smoothing for reg-
ularization. We trained using the Adam opti-
mizer (Kingma and Ba, 2014) with a batch size
of 4,096 tokens and checkpoint the model ev-
ery 1,000 updates. The training stopped after
five checkpoints without improvement in valida-
tion perplexity.

BLEU (Papineni et al., 2002) is primarily used
for our evaluation metrics; SARI (Xu et al., 2016)
is also used for text simplification. For a more de-
tailed comparison of the models, we evaluated the
F1 score of the words that are added (Add), kept

3https://github.com/awslabs/sockeye

(Keep), and deleted (Del) by the models.4

Our proposed method is compared with previ-
ous methods trained only on the dataset shown
in Table 1. For detailed analysis, we chose
the methods whose model outputs are published.
Among these, Dress-LS (Zhang and Lapata, 2017)
and BiFT-Ens (Niu et al., 2018) with the highest
BLEU score in each task are compared with our
model. Following BiFT-Ens, we also used a bi-
directional domain-mixed ensemble model for for-
mality transfer task.

We also experimented with Oracle settings that
can properly identify words to be paraphrased. In
this setting, we used all words that did not ap-
pear in the reference sentence among the words in-
cluded in the input sentence as lexical constraints.

3.2 Results

The experimental results are shown in Table 2.
These results in both RNN and SAN architectures
and three datasets showed that our PMI-based
method consistently improves the Base method
that does not use constraints in both BLEU and
SARI metrics. As a result of a detailed analysis
of the model outputs, our PMI method always im-
proves the Base method in terms of Add and Del in
both model architectures. These results mean that
our proposed method promotes active rewriting as
expected. In addition, since Oracle method shows
higher performance, it is worthwhile to further im-
prove PMI-based identification. In this study, we
identified words to be paraphrased using the train-
ing corpus for paraphrase generation. In future
work, we plan to identify these words using not
only a parallel corpus but also larger data.

4Because the test dataset of GYAFC is multi-reference,
the F1 scores of each reference sentence does not reach 100.
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Newsela GYAFC-E&M GYAFC-F&R

Add Keep Del BLEU SARI Add Keep Del BLEU Add Keep Del BLEU

Source 0.0 60.3 0.0 21.4 2.8 0.0 85.4 0.0 49.1 0.0 85.8 0.0 51.0
Reference 100 100 100 100 70.3 57.2 82.9 61.2 100 56.5 82.7 60.6 100
Dress-LS 2.4 60.7 44.9 24.3 26.6
BiFT-Ens 32.1 90.0 58.2 71.4 32.6 90.6 60.9 74.5
Ours (RNN) 2.8 61.1 36.5 24.7 22.8 33.5 90.0 59.9 71.7 34.3 90.9 63.1 75.9
Ours (SAN) 2.5 61.3 38.0 24.6 23.3 35.2 90.0 61.2 72.1 35.3 91.1 64.0 77.0

Table 3: Comparison with previous models on text simplification in Newsela dataset and formality transfer in
GYAFC dataset. Our models achieved the best BLEU scores across styles and domains.

GYAFC-E&M: Informal → Formal

Source mama so ugly, she scares buzzards off of a meat wagon.
Reference Your mother is so unattractive she scared buzzards off of a meat wagon.
SAN-BASE mama is so ugly, she scares buzzards off of a meat wagon.
SAN-PMI The mother is so unattractive that she scares buzzards off of a meat wagon.

GYAFC-F&R: Informal → Formal

Source Well, if the one boy picks on you, why like him?
Reference Well, if that one boy bullies you, why the attraction to him?
SAN-BASE If the one boy picks on you, why like him?
SAN-PMI Well, if the one boy teases you, why like him?

Table 4: Examples of formality transfer. Bolded words are words that are identified as the source style (informal).
We succeeded in paraphrasing as follows: mama → mother, picks on → teases.

Table 3 shows a comparison between our mod-
els and comparative models. Whereas Dress-LS
has a higher SARI score because it directly op-
timizes SARI using reinforcement learning, our
models achieved the best BLEU scores across
styles and domains.

Table 4 shows examples of generated para-
phrases in formality transfer task. We succeeded
in identifying informal expressions of mama and
picks, and successfully paraphrased them. Our
proposed method avoids these informal words dur-
ing beam search, and outputs their synonymous
formal expressions, i.e., mother and teases.

Figure 1 shows the sensitivity of the quality of
generated paraphrases to PMI threshold θ on the
development dataset. Too low thresholds cause a
large amount of constraints, which adversely af-
fect paraphrase quality. However, with a high
threshold, the proposed method can achieve high
performance stably. Finally, we used a threshold
of θ = 0.5 to maximize the BLEU score on the
development dataset for formality transfer tasks.
Similarly, in the text simplification task, we used a
threshold of θ = 0.2.
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Figure 1: Thresholds of PMI and quality of generated
paraphrases on the development dataset.

4 Related Work

4.1 Style-Sensitive Paraphrase Acquisition

Pavlick and Nenkova (2015) worked on a style-
sensitive paraphrase acquisition. They used a
large-scale raw corpus in each style to calculate
PMI scores for each word or phrase and assigned
style scores to paraphrase pairs in the paraphrase
database (Ganitkevitch et al., 2013; Pavlick et al.,



6051

2015). Pavlick and Callison-Burch (2016) fur-
ther improved style-sensitive paraphrase acquisi-
tion based on supervised learning with additional
features such as frequency and word embeddings.
In this study, as in these previous studies, we have
identified words that are strongly related to a par-
ticular style. Furthermore, we used these words
to control the neural paraphrase generation model
and improved the performance of sentential para-
phrase generation.

4.2 Lexically Constrained Paraphrasing
Hu et al. (2019b) automatically constructed a
large-scale paraphrase corpus5 via lexically con-
strained machine translation. In a Czech–English
bilingual corpus, sentence pairs of a Czech-to-
English machine translation and an English refer-
ence can be regarded as automatically generated
sentential paraphrase pairs (Wieting and Gimpel,
2018). They used words in reference sentences as
positive or negative constraints and succeeded in
generating diverse paraphrases via machine trans-
lation. In addition, recent work (Hu et al., 2019a)
has used lexically constrained paraphrase gener-
ation for data augmentation and improve perfor-
mance in some NLP applications. Unlike these
previous studies, we focused on the paraphrase
generation as an application. Furthermore, we
have shown that negative lexical constraints con-
sistently improve the performance of paraphrase
generation applications such as text simplification
and formality transfer.

5 Conclusion

To improve the conservative rewriting of the para-
phrase generation model, we proposed the identi-
fication of words to be paraphrased and the addi-
tion of negative lexical constraints on beam search.
Experimental results on English text simplification
and formality transfer indicated that the proposed
method consistently improved the quality of para-
phrase generation for both RNN and SAN models
across styles or domains. Our proposed method
deleted complex or informal words appearing in
source sentences and promoted the addition of
simple or formal words to paraphrased sentences.
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