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Abstract

Information need of humans is essentially
multimodal in nature, enabling maximum ex-
ploitation of situated context. We introduce a
dataset for sequential procedural (how-to) text
generation from images in cooking domain.
The dataset consists of 16,441 cooking recipes
with 160,479 photos associated with different
steps. We setup a baseline motivated by the
best performing model in terms of human eval-
uation for the Visual Story Telling (ViST) task.
In addition, we introduce two models to in-
corporate high level structure learnt by a Fi-
nite State Machine (FSM) in neural sequen-
tial generation process by: (1) Scaffolding
Structure in Decoder (SSiD) (2) Scaffolding
Structure in Loss (SSiL). Our best perform-
ing model (SSiL) achieves a METEOR score
of 0.31, which is an improvement of 0.6 over
the baseline model. We also conducted human
evaluation of the generated grounded recipes,
which reveal that 61% found that our proposed
(SSiL) model is better than the baseline model
in terms of overall recipes. We also discuss
analysis of the output highlighting key impor-
tant NLP issues for prospective directions.

1 Introduction

Interpretation is heavily conditioned on context.
Real world interactions provide this context in
multiple modalities. In this paper, the context is
derived from vision and language. The descrip-
tion of a picture changes drastically when seen
in a sequential narrative context. Formally, this
task is defined as: given a sequence of images
I = {I1, I2, ..., In} and pairwise associated textual
descriptions, T = {T1, T2, ..., Tn}; for a new se-
quence I

′
, our task is to generate the corresponding

T
′
. Figure 1 depicts an example for making veg-

etable lasagna, where the input is the first row and
the output is the second row. We call this a ‘story-
board’, since it unravels the most important steps
of a procedure associated with corresponding nat-
ural language text. The sequential context differ-

Lasagna 
ingredients: tomato 
sauce or canned 
tomatoes for making 
sauce - at least 4-6 
cups, one box no 
boil lasagna 
noodles, one 
zucchini, one 
yellow squash, one 
jalapeno (or bell 
pepper!), 1/2 an 
onion, pinch of 
oregano, pinch of 
basil.

To make the sauce, 
cook diced onion in 
olive oil, and then add 
the ground beef, garlic 
and tomato paste. Stir 
until fragrant and then 
meat starts to brown 
and break up, and then 
add the crushed 
tomatoes. Pour some 
water into tomato can 
and swish it around and 
then pour that into the 
pot. Stir well and let 
simmer while the veg 
continue to lose 
moisture. 

Spoon your ricotta 
into a bowl and 
add a good pinch 
of Italian 
seasoning and 
crushed red 
pepper. I like to 
add a little black 
pepper too. Mix 
around until well 
combined. Shred 
your mozzarella or 
cut into small 
slices.

This is the way I 
layered: spoonful 
of sauce on the 
bottom of the pan,  
lasagna noodles, 
1/2 the ricotta 
cheese, 1/2 the 
sauteed vegetables,  
mozzarella cheese, 
sauce to cover. Do 
that twice and then 
sprinkle parmesan 
cheese on the top.

Bake in a 400 F 
oven for 30-40 
minutes or until 
you can easily 
pierce through the 
noodles with a 
knife and the top is 
lightly browned. 
Try not to eat it all 
at once. The boy 
and I have eaten 
1/2 of it, and it's 
only been a day 
since I made it. :D

Figure 1: Storyboard for the recipe of vegetable lasagna

entiates this task from image captioning in isola-
tion. The dataset is similar to that of ViST (Huang
et al., 2016) with an apparent difference between
stories and instructional in-domain text which is
the clear transition in phases of the narrative. This
task supplements the task of ViST with richer con-
text of goal oriented procedure (how-to). Numer-
ous online blogs and videos depict various cate-
gories of how-to guides for games, do-it-yourself
(DIY) crafts, technology etc. This task lays ini-
tial foundations for full fledged storyboarding of a
given video, by selecting the right junctions/clips
to ground significant events and generate sequen-
tial textual descriptions. We are going to focus on
the domain of cooking recipes in the rest of this pa-
per.In this paper, we discuss our approach in gen-
erating more structural/coherent cooking recipes
by explicitly modeling the state transitions be-
tween different stages of cooking (phases). We in-
troduce a framework to apply traditional FSMs to
incorporate more structure in neural generation.

The two main contributions of this paper are:
(1) A dataset of 16k recipes targeted for sequential
multimodal procedural text generation, (2) Two
models (SSiD: Structural Scaffolding in Decoder
,and SSiL: Structural Scaffolding in Loss) for in-
corporating high level structure learnt by an FSM
into a neural text generation model to improve
structure/coherence.
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2 Related Work

Why domain constraint? Martin et al. (2017)
and Khalifa et al. (2017) demonstrated that the
predictive ability of a seq2seq model improves as
the language corpus is reduced to a specialized do-
main with specific actions. Our choice of restrict-
ing domain to recipes is inspired from this, where
the set of events are specialized (such as ‘cut’,
‘mix’, ‘add’) although we are not using event rep-
resentations explicitly. These specialized set of
events are correlated to phases of procedural text
as described in the following sections.
Planning while writing content: A major chal-
lenge faced by neural text generation (Lu et al.,
2018) while generating long sequences is the in-
ability to maintain structure, contravening the co-
herence of the overall generated text. This aspect
was also observed in various tasks like summa-
rization (Liu et al., 2018), story generation (Fan
et al., 2019). Pre-selecting content and planning to
generate accordingly was explored by Puduppully
et al. (2018) and Lukin et al. (2015) in contrast
to generate as you proceed paradigm. Fan et al.
(2018) adapt a hierarchical approach to generate a
premise and then stories to improve coherence and
fluency. Yao et al. (2018) experimented with static
and dynamic schema to realize the entire storyline
before generating. However, in this work we pro-
pose a hierarchical multi task approach to perform
structure aware generation.
Comprehending Food: Recent times have seen
large scale datasets in food, such as Recipe1M
(Marin et al., 2018), Food-101 (Bossard et al.,
2014).Food recognition (Arora et al., 2019) ad-
dresses understanding food from a vision perspec-
tive. Salvador et al. (2018) worked on generating
cooking instructions by inferring ingredients from
an image. Zhou et al. (2018) proposed a method to
generate procedure segments for YouCook2 data.
In NLP domain, this is studied as generating pro-
cedural text by including ingredients as checklists
(Kiddon et al., 2016) or treating the recipe as a
flow graph (Mori et al., 2014). Our work is at
the intersection of two modalities (language and
vision) by generating procedural text for recipes
from a sequence of images. (Bosselut et al.,
2017) worked on reasoning non-mentioned causal
effects thereby improving the understanding and
generation of procedural text for cooking recipes.
This is done by dynamically tracking entities by
modeling actions using state transformers.
Visual Story Telling: Research at the intersec-
tion of language and vision is accelerating with
tasks like image captioning (Hossain et al., 2019),

visual question answering (Wu et al., 2017), vi-
sual dialog (Das et al., 2017; Mostafazadeh et al.,
2017; De Vries et al., 2017; de Vries et al., 2018).
ViST (Huang et al., 2016) is a sequential vision to
language task demonstrating differences between
descriptions in isolation and stories in sequences.
Similarly, Gella et al. (2018) created VideoStory
dataset from videos on social media with the task
of generating a multi-sentence story captions for
them. Smilevski et al. (2018) proposed a late fu-
sion based model for ViST challenge. Kim et al.
(2018) attained the highest scores on human read-
ability in this task by attending to both global and
local contexts. We use this as our baseline model
and propose two techniques on top of this baseline
to impose structure needed for procedural text.

3 Data Description
We identified two how-to blogs from: instructa-
bles.comand snapguide.com, comprising step-
wise instructions (images and text) of various
how-to activities like games, crafts etc,. We gath-
ered 16,441 samples with 160,479 photos for food,
dessert and recipe topics. We used 80% for train-
ing, 10% for validation and 10% for testing our
models. In some cases, there are multiple images
for the same step and we randomly select an im-
age from the set of images. We indicate that there
is a potential space for research here, in select-
ing most distinguishing/representative/meaningful
image. Details of the datasets are presented in Ta-
ble 1. The data and visualization of distribution of
topics is here1. A trivial extension could be done
on other domains like gardening, origami crafts,
fixing guitar strings etc, which is left for future
work.

4 Model Description
We first describe a baseline model for the task
of storyboarding cooking recipes in this section.
We then propose two models with incremental im-
provements to incorporate the structure of proce-
dural text in the generated recipes : SSiD (Scaf-
folding Structure in Decoder) and SSiL (Scaffold-
ing Structure in Loss). The architecture of scaf-
folding structure is presented in Figure 2, of which
different aspects are described in the following
subsections.

4.1 Baseline Model (Glocal):
The baseline model is inspired from the best per-
forming system in ViST challenge with respect to

1https://storyboarding.github.io/
story-boarding/

https://storyboarding.github.io/story-boarding/
https://storyboarding.github.io/story-boarding/
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Figure 2: Architecture for incorporating high level structure in neural recipe generation

Data Sources # Recipes # Avg Steps
instructables 9,101 7.14
snapguide 7,340 13.01

Table 1: Details of dataset for storyboarding recipes

human evaluation (Kim et al., 2018). The images
are first resized into 224 X 224. Image features for
each step are extracted from the penultimate layer
of pre-trained ResNet-152 (He et al., 2016). These
features are then passed through an affinity layer
to obtain an image feature of dimension 1024. To
maintain the context of the entire recipe (global
context), the sequence of these image features are
passed through a two layered Bi-LSTM with a hid-
den size of 1024. To maintain specificity of the
current image (local context), the image features
for the current step are concatenated using a skip
connection to the output of the Bi-LSTM to obtain
glocal representation. Dropout of 0.5 is applied
systematically at the affinity layer to obtain the im-
age feature representation and after the Bi-LSTM
layer. Batch normalization is applied with a mo-
mentum 0.01. This completes the encoder part of
the sequence to sequence architecture. These glo-
cal vectors are used for decoding each step. These
features are passed through a fully connected layer
to obtain a representation of 1024 dimension fol-
lowed by a non-linear transformation using ReLU.
These features are then passed through a decoder
LSTM for each step in the recipe which are trained
by teacher forcing. The overall coherence in gen-
eration is addressed by feeding the decoder state of
the previous step to the next one. This is a seq2seq
model translating one modality into another. The

model is optimized using Adam with a learning
rate of 0.001 and weight decay of 1e-5.

The model described above does not explicitly
cater to the structure of the narration of recipes in
the generation process. However, we know that
procedural text has a high level structure that car-
ries a skeleton of the narrative. In the subsequent
subsections, we present two models that impose
this high level narrative structure as a scaffold.
While this scaffold lies external to the baseline
model, it functions on imposing the structure in
decoder (SSiD) and in the loss term (SSiL).

4.2 Scaffolding Structure in Decoder (SSiD):
There is a high level latent structure involved in a
cooking recipe that adheres to transitions between
steps, that we define as phases. Note that the steps
and phases are different here. To be specific, ac-
cording to our definition, one or more steps map
to a phase (this work does not deal with multiple
phases being a part of a single step). Phases may
be ‘listing ingredients’, ‘baking’, ‘garnishing’ etc.,
The key idea of the SSiD model is to incorporate
the sequence of phases in the decoder to impose
structure during text generation

There are two sources of supervision to drive
the model: (1) multimodal dataset M = {I,T}
from Section 3, (2) unimodal textual recipes2 U

to learn phase sequences. Finer phases are learnt
using clustering followed by an FSM.
Clustering: K-Means clustering is performed on
the sentence embeddings with compositional n-
gram features (Pagliardini et al., 2018) on each
step of the recipe in U. Aligning with our intu-

2www.ffts.com/recipes.htm

www.ffts.com/recipes.htm
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ition, when k is 3, it is observed that these clusters
roughly indicate categories of desserts, drinks and
main course foods (pizza, quesadilla etc,). How-
ever, we need to find out finer categories of the
phases corresponding to the phases in the recipes.
We use k-means clustering to obtain the categories
of these phases. We experimented with different
number of phases P as shown in Table 2. For ex-
ample, let an example recipe comprise of 4 steps
i.e, a sequence of 4 images. At this point, each
recipe can be represented as a hard sequence of
phases r = 〈 p1, p2, p3, p4 〉.
FSM: The phases learnt through clustering are not
ground truth phases. We explore the usage of an
FSM to individually model hard and a softer repre-
sentation of the phase sequences by leveraging the
states in an FSM. We first describe how the hard
representation is modeled. The algorithm was
originally developed for building language mod-
els for limited token sets in grapheme to phoneme
prediction. The iterative algorithm starts with an
ergodic state for all phase types and uses entropy
to find the best state split that would maximize the
prediction. As opposed to phase sequences, each
recipe is now represented as a state sequence (de-
coded from FSM) i.e, r = 〈s1, s2, s3, s4〉 (hard
states). This is a hard representation of the se-
quence of states.

We next describe how a soft representation of
these states is modeled. Since the phases are learnt
in an unsupervised fashion and the ground truth of
the phases is not available, we explored a softer
representation of the states. We hypothesize that a
soft representation of the states might smooth the
irregularities of phases learnt. From the output of
the FSM, we obtain the state transition probabili-
ties from each state to every other state. Each state
si can be represented as 〈qij ∀ j ∈ S〉 (soft states),
where qij is the state transition probability from si
to sj and S is the total number of states. This is
the soft representation of state sequences.

The structure in the recipe is learnt as a se-
quence of phases and/or states (hard or soft). This
is the structural scaffold that we would like to in-
corporate in the baseline model. In SSiD model,
for each step in the recipe, we identify which
phase it is in using the clustering model and use
the phase sequence to decode state transitions
from the FSM. The state sequences are concate-
nated to the decoder in the hard version and the
state transition probabilities are concatenated in
the decoder in the soft version at every time step.

At this point, we have 2 dimensions, one is the
complexity of the phases (P) and the other is the

FST Complexity 1 20 40 60 80 100 120
20 Phases 11.27 11.60 12.31 13.71 12.32 12.51 12.36
40 Phases 12.03 12.44 11.48 12.58 12.50 13.91 11.82
60 Phases 11.13 11.18 12.74 12.26 12.47 12.98 11.47

Table 2: BLEU Scores for different number of phases
(P) and states(S)

complexity of the states in FSM (S). Comprehen-
sive results of searching this space is presented in
Table 2. We plan to explore the usage of hidden
markov model in place of FSM in future.

4.3 Scaffolding Structure in Loss (SSiL):
In addition to imposing structure via SSiD, we
explored measuring the deviation of the struc-
ture learnt through phase/state sequences from the
original structure. This leads to our next model
where the deviation of the structure in the gener-
ated output from that of the original structure is
reflected in the loss. The decoded steps are passed
through the clustering model to get phase se-
quences and then state transition probabilities are
decoded from FSM for the generated output. We
go a step further to investigate the divergence be-
tween the phases of generated and original steps.
This can also be viewed as hierarchical multi-
task learning (Sanh et al., 2018). The first task
is to decode each step in the recipe (which uses
a cross entropy criterion, L1). The second task
uses KL divergence between phase sequences of
decoded and original steps to penalize the model
(say, L2).When there are τ steps in a recipe, we ob-
tain o(sτ1) and g(sτ1) as the distributions of phases
comprising of soft states for the original and gen-
erated recipes respectively. We measure the KL
divergence(DKL) between these distributions:

DKL(o(s
τ
1)||g(sτ1)) =

τ∑
i=1

S∑
j=1

o(si[j])log
o(si[j])

g(si[j])

Each task optimizes different functions and we
minimize the combination of the two losses.∑

I,T∈I,T L1(I, T ) + α
∑

U∈U L2(U)

This combined loss is used to penalize the
model. Here, α is obtained from KL annealing
(Bowman et al., 2015) function that gradually in-
creases the weight of KL term from 0 to 1 during
train time.

5 Results and Discussion

The two dimensions explored in FSM are P and
S and exhaustive results are presented in Table
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Models Phenomena

Glocal Model
This is a simple recipe for making 
a delicious chicken salad.

You will need: a butter knife a 
plate of bread flour a little bit of 
salt a dash of pepper flakes a 
couple of tablespoons of olive oil 
a pinch of sugar. 

Add butter evenly on the pan. Put the chicken on the grill and 
set aside.

- Ingredients phase wrongly 
identified.

- Wrong ingredients.
- Improper conclusion.

SSiD Model
This is a simple recipe for making 
a delicious and easy dish. 

Ingredients: 4 pounds chicken 2 
tsp salt, ½ tsp sugar, marinara 
sauce, mozzarella cheese ( i 
used provolone ). Tools:  a knife, 
an oven for the chicken, tongs. 
Mix all ingredients in a bag.

Add butter evenly on the pan. Serve the baked chicken wings 
and enjoy the evening!

- Learnt majority structure (step 1)
+ Got ‘tongs’ right because of 

separate tools mention.
- The action of baking is not 

explicitly mentioned (before 
‘baked’ wings).

SSiL Model
You will need: 5 pounds of 
chicken wings, ½ cup all purpose 
flour, ½ tsp salt, 2 tsp of paprika, 
melted butter, silicon mat, baking 
pan.

Preheat oven to 450 F. Mix dry 
ingredients in the dry ziplock bag.

Place a mat on the baking pan 
and spread butter evenly on it.

Spread the chicken pieces on 
butter on the baking pan. Bake 
until crispy for 30 minutes. Serve 
and enjoy!

+ Global context of baking 
maintained in preheating.

+ Non-repetitive ingredients phase.
+ Referring expressions (baking 

pan -> it).
- Not mentioned tools (tongs).

Figure 3: Comparison of generated storyboards for Easy Oven Baked Crispy Chicken Wings

Models BLEU METEOR ROUGE-L
Glocal 10.74 0.25 0.31
SSiD (hard phases) 11.49 0.24 0.31
SSiD (hard states) 11.93 0.25 0.31
SSiD (soft phases) 13.91 0.29 0.32
SSiL (soft phases) 16.38 0.31 0.34

Table 3: Evaluation of storyboarding recipes

2. The BLEU score (Papineni et al., 2002) is
the highest when P is 40 and S is 100. Fixing
these values, we compare the models proposed
in Table 3. The models with hard phases and
hard states are not as stable as the one with soft
phases since backprop affects the impact of the
scaffolded phases. Upon manual inspection, a key
observation is that for SSiD model, most of the
recipes followed a similar structure. It seemed to
be conditioned on a global structure learnt from
all recipes rather than the current input. However,
SSiL model seems to generate recipe that is condi-
tioned on the structure of that particular example.
Human Evaluation: We have also performed
human evaluation by conducting user preference
study to compare the baseline with our best per-
forming SSiL model. We randomly sampled gen-
erated outputs of 20 recipes and asked 10 users
to answer two preferences: (1) overall recipe
based on images, (2) structurally coherent recipe.
Our SSiL model was preferred 61% and 72.5%
for overall and structural preferences respectively.
This shows that while there is a viable space to im-
prove structure, generating an edible recipe needs
to be explored to improve the overall preference.

5.1 Qualitative Analysis:
Figure 3 presents the generated text from the three
models with an analysis described below.
Coherence of Referring Expressions: Introduc-
ing referring expressions is a key aspect of co-

herence (Dale, 2006, 1992), as seen in the case
of ‘baking pan’ being referred as ‘it’ in the SSiL
model.
Context Maintenance: Maintaining overall con-
text explicitly affects generating each step. This
is seen in SSiL model where ‘preheating’ in the
second step is learnt from baking step that appears
later although the image does not show an oven.
Schema for Procedural Text: Explicit model-
ing of structure has enabled SSiD and SSiL mod-
els to conclude the recipe by generating words like
‘serve’ and ‘enjoy’. Lacking this structure, glocal
model talks about ‘setting aside’ at the end.
Precision of Entities and Actions: SSiD model
introduces ‘sugar’ in ingredients after generat-
ing ‘salt’. A brief manual examination revealed
that this co-occurrence is a common phenomenon.
SSiL model misses ‘tongs’ in the first step.

6 Conclusions

Our main focus in this paper is instilling structure
learnt from FSMs in neural models for sequential
procedural text generation with multimodal data.
We gather a dataset of 16k recipes where each step
has text and associated images. We setup a base-
line inspired from the best performing model in
ViST. We propose two ways of imposing struc-
ture from phases and states of a recipe derived
from FSM. The first model imposes structure on
the decoder and the second model imposes struc-
ture on the loss function by modeling it as a hierar-
chical multi-task learning problem. We show that
our proposed approach improves upon the baseline
and achieves a METEOR score of 0.31. We plan
to explore explicit evaluation of the latent struc-
ture learnt. We plan on exploring backpropable
variants as a scaffold for structure and also extend
the techniques to other how-to domains in future.
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