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Abstract

We introduce VAMPIRE,1 a lightweight pre-
training framework for effective text classi-
fication when data and computing resources
are limited. We pretrain a unigram docu-
ment model as a variational autoencoder on
in-domain, unlabeled data and use its inter-
nal states as features in a downstream classi-
fier. Empirically, we show the relative strength
of VAMPIRE against computationally expen-
sive contextual embeddings and other popular
semi-supervised baselines under low resource
settings. We also find that fine-tuning to in-
domain data is crucial to achieving decent per-
formance from contextual embeddings when
working with limited supervision. We accom-
pany this paper with code to pretrain and use
VAMPIRE embeddings in downstream tasks.

1 Introduction

An effective approach to semi-supervised learning
has long been a goal for the NLP community, as
unlabeled data tends to be plentiful compared to
labeled data. Early work emphasized using unla-
beled data drawn from the same distribution as the
labeled data (Nigam et al., 2000), but larger and
more reliable gains have been obtained by using
contextual embeddings trained with a language
modeling (LM) objective on massive amounts of
text from domains such as Wikipedia or news (Pe-
ters et al., 2018a; Devlin et al., 2019; Radford
et al., 2018; Howard and Ruder, 2018). The latter
approaches play to the strengths of high-resource
settings (e.g., access to web-scale corpora and
powerful machines), but their computational and
data requirements can make them less useful in
resource-limited environments. In this paper, we
instead focus on the low-resource setting (§2.1),

1VAriational Methods for Pretraining In Resource-limited
Environments

and develop a lightweight approach to pretraining
for semi-supervised text classification.

Our model, which we call VAMPIRE, com-
bines a variational autoencoder (VAE) approach to
document modeling (Kingma and Welling, 2013;
Miao et al., 2016; Srivastava and Sutton, 2017)
with insights from LM pretraining (Peters et al.,
2018a). By operating on a bag-of-words represen-
tation, we avoid the time complexity and difficulty
of training a sequence-to-sequence VAE (Bowman
et al., 2016; Xu et al., 2017; Yang et al., 2017)
while retaining the freedom to use a multi-layer
encoder that can learn useful representations for
downstream tasks. Because VAMPIRE ignores se-
quential information, it leads to models that are
much cheaper to train, and offers strong perfor-
mance when the amount of labeled data is small.
Finally, because VAMPIRE is a descendant of topic
models, we are able to explore model selection
by topic coherence, rather than validation-set per-
plexity, which results in better downstream classi-
fication performance (§6.1).

In order to evaluate the effectiveness of our
method, we experiment with four text classifica-
tion datasets. We compare our approach to a tra-
ditional semi-supervised baseline (self-training),
alternative representation learning techniques that
have access to the in-domain data, and the full-
scale alternative of using large language models
trained on out-of-domain data, optionally fine-
tuned to the task domain.

Our results demonstrate that effective semi-
supervised learning is achievable for limited-
resource settings, without the need for com-
putationally demanding sequence-based models.
While we observe that fine-tuning a pretrained
BERT model to the domain provides the best
results, this depends on the existence of such a
model in the relevant language, as well as GPUs
to fine-tune it. When this is not an option, our
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model offers equivalent or superior performance
to the alternatives with minimal computational re-
quirements, especially when working with limited
amounts of labeled data.

The major contributions of this paper are:

• We adapt variational document models
to modern pretraining methods for semi-
supervised text classification (§3), and high-
light the importance of appropriate criteria
for model selection (§3.2).

• We demonstrate experimentally that our
method is an efficient and effective approach
to semi-supervised text classification when
data and computation are limited (§5).

• We confirm that fine-tuning is essential when
using contextual embeddings for document
classification, and provide a summary of
practical advice for researchers wishing to
use unlabeled data in semi-supervised text
classification (§8).

• We release code to pretrain variational mod-
els on unlabeled data and use learned repre-
sentations in downstream tasks.2

2 Background

2.1 Resource-limited Environments
In this paper, we are interested in the low-resource
setting, which entails limited access to compu-
tation, labels, and out-of-domain data. Labeled
data can be obtained cheaply for some tasks, but
for others, labels may require expensive and time-
consuming human annotations, possibly from do-
main experts, which will limit their availability.

While there is a huge amount of unlabeled text
available for some languages, such as English, this
scale of data is not available for all languages. In-
domain data availability, of course, varies by do-
main. For many researchers, especially outside of
STEM fields, computation may also be a scarce re-
source, such that training contextual embeddings
from scratch, or even incorporating them into a
model could be prohibitively expensive.

Moreover, even when such pretrained models
are available, they inevitably come with poten-
tially undesirable biases baked in, based on the
data on which they were trained (Recasens et al.,
2013; Bolukbasi et al., 2016; Zhao et al., 2019).

2http://github.com/allenai/vampire

Particularly for social science applications, it may
be preferable to exclude such confounders by only
working with in-domain or curated data.

Given these constraints and limitations, we seek
an approach to semi-supervised learning that can
leverage in-domain unlabeled data, achieve high
accuracy with only a handful of labeled instances,
and can run efficiently on a CPU.

2.2 Semi-supervised Learning
Many approaches to semi-supervised learning
have been developed for NLP, including vari-
ants of bootstrapping (Charniak, 1997; Blum and
Mitchell, 1998; Zhou and Li, 2005; McClosky
et al., 2006), and representation learning using
generative models or word vectors (Mikolov et al.,
2013; Pennington et al., 2014). Contextualized
embeddings have recently emerged as a power-
ful way to use out-of-domain data (Peters et al.,
2018a; Radford, 2018), but training these large
models requires a massive amount of appropriate
data (typically on the order of hundreds of mil-
lions of words), and industry-scale computational
resources (hundreds of hours on multiple GPUs).3

There have also been attempts to leverage VAEs
for semi-supervised learning in NLP, mostly in the
form of sequence-to-sequence models (Xu et al.,
2017; Yang et al., 2017), which use sequence-
based encoders and decoders (see §3). These pa-
pers report strong performance, but there are many
open questions which necessitate further investi-
gation. First, given the reported difficulty of train-
ing sequence-to-sequence VAEs (Bowman et al.,
2016), it is questionable whether such an approach
is useful in practice. Moreover, it is unclear if such
complex models (which are expensive to train) are
actually required for good performance on tasks
such as text classification.

Here, we instead base our framework on neu-
ral document models (Miao et al., 2016; Srivastava
and Sutton, 2017; Card et al., 2018), which offer
both faster training and an explicit interpretation
in the form of topics, and explore their utility in
the semi-supervised setting.

3 Model

In this work, we assume that we have L docu-
ments, DL = {(xi, yi)}Li=1, with observed cat-

3For example, ULMFIT was trained on 100 million
words, and BERT used 3.3 billion. While many pretrained
models have been made available, they are unlikely to cover
every application, especially for rare languages.

http://github.com/allenai/vampire
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egorical labels y ∈ Y . We also assume access
to a larger set of U documents drawn from the
same distribution, but for which the labels are un-
observed, i.e,DU = {xi}U+L

i=L+1. Our primary goal
is to learn a probabilistic classifier, p(y | x).

Our approach heavily borrows from past work
on VAEs (Kingma and Welling, 2013; Miao et al.,
2016; Srivastava and Sutton, 2017), which we
adapt to semi-supervised text classification (see
Figure 1). We do so by pretraining the document
model on unlabeled data (§3.1), and then using
learned representations in a downstream classifier
(§3.3). The downstream classifier makes use of
multiple internal states of the pretrained document
model, as in Peters et al. (2018b). We also explore
how to best do model selection in a way that ben-
efits the downstream task (§3.2).

3.1 Unsupervised Pretraining
In order to learn useful representations, we ini-
tially ignore labels, and assume each document is
generated from a latent variable, z. The functions
learned in estimating this model then provide rep-
resentations which are used as features in super-
vised learning.

Using a variational autoencoder for approxi-
mate Bayesian inference, we simultaneously learn
an encoder, which maps from the observed text to
an approximate posterior q(z | x), and a decoder,
which reconstructs the text from the latent repre-
sentation. In practice, we instantiate both the en-
coder and decoder as neural networks and assume
that the encoder maps to a normally distributed
posterior, i.e., for document i,

q(zi | xi) = N (zi | fµ(xi), diag(fσ(xi))) (1)

xi ∼ p(xi | fd(zi)). (2)

Using standard principles of variational in-
ference, we derive a variational bound on the
marginal log-likelihood of the observed data,

log p(xi) ≥ B(xi) = Eq(zi|xi)[log p(xi | zi)]
−KL[q(zi | xi) ‖ p(z)].

(3)
Intuitively, the first term in the bound can be

thought of as a reconstruction loss, ensuring that
generated words are similar to the original docu-
ment. The second term, the KL divergence, en-
courages the variational approximation to be close
to the assumed prior, p(z), which we take to be a
spherical normal distribution.

Word Vectors

Encoder

MLP

labeled textPretrained 
VAE

VAMPIRE 
embedding

unlabeled text

Word Frequencies

σμ

VAE

Word Frequencies

MLP

MLP

Label

Figure 1: VAMPIRE involves pretraining a deep vari-
ational autoencoder (VAE; displayed on left) on unla-
beled text. The VAE, which consists entirely of feed-
forward networks, learns to reconstruct a word fre-
quency representation of the unlabeled text with a lo-
gistic normal prior, parameterized by µ and σ. Down-
stream, the pretrained VAE’s internal states are frozen
and concatenated to task-specific word vectors to im-
prove classification in the low-resource setting.

Using the reparameterization trick (Kingma
and Welling, 2013; Rezende et al., 2014), we re-
place the expectation with a single-sample approx-
imation,4 i.e.,

B(xi) ≈ log p(xi | z(s)i )− KL[q(zi | xi) ‖ p(z)]
(4)

z
(s)
i = fµ(xi) + fσ(xi) · ε(s), (5)

where ε(s) ∼ N (0, I) is sampled from an indepen-
dent normal. All parameters can then be optimized
simultaneously by performing stochastic gradient
ascent on the variational bound.

A powerful way of encoding and decoding text
is to use sequence models. That is, fµ(x) and
fσ(x) would map from a sequence of tokens to
a pair of vectors, µ and σ, and fd(z) would simi-
larly decode from z to a sequence of tokens, using
recurrent, convolutional, or attention-based net-
works. Some authors have adopted this approach
(Bowman et al., 2016; Xu et al., 2017; Yang et al.,
2017), but as discussed above (§2.2), it has a num-
ber of disadvantages.

In this paper, we adopt a more lightweight and
directly interpretable approach, and work with
word frequencies instead of word sequences. Us-
ing the same basic structure as Miao et al. (2016)

4We leave experimentation with multi-sample approxima-
tion (e.g., importance sampling) to future work.
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but employing a softmax in the decoder, we en-
code fµ(x) and fσ(x) with multi-layer feed for-
ward neural networks operating on an input vector
of word counts, ci:

ci = counts(xi) (6)

hi = MLP(ci) (7)

µi = fµ(xi) =Wµhi + bµ (8)

σi = fσ(xi) = exp(Wσhi + bσ) (9)

z
(s)
i = µi + σi · ε(s). (10)

For a decoder, we use the following form, which
reconstructs the input in terms of topics (coherent
distributions over the vocabulary):

θi = softmax(z(s)i ) (11)

ηi = softmax(b+Bθi) (12)

log p(xi | z(s)i ) =

V∑
j=1

cij · log ηij , (13)

where j ranges over the vocabulary.
By placing a softmax on z, we can interpret θ as

a distribution over latent topics, as in a topic model
(Blei et al., 2003), and B as representing positive
and negative topical deviations from a background
b. This form (essentially a unigram LM) allows
for much more efficient inference on z, compared
to sequence-based encoders and decoders.

3.2 Model Selection via Topic Coherence

Because our pretraining ignores document labels,
it is not obvious that optimizing it to convergence
will produce the best representations for down-
stream classification. When pretraining using a
LM objective, models are typically trained until
model fit stops improving (i.e., perplexity on vali-
dation data). In our case, however, θi has a natural
interpretation as the distribution (for document i)
over the latent “topics” learned by the model (B).
As such, an alternative is to use the quality of the
topics as a criterion for early stopping.

It has repeatedly been observed that different
types of topic models offer a trade-off between
perplexity and topic quality (Chang et al., 2009;
Srivastava and Sutton, 2017). Several methods
for automatically evaluating topic coherence have
been proposed (Newman et al., 2010; Mimno
et al., 2011), such as normalized pointwise mu-
tual information (NPMI), which Lau et al. (2014)
found to be among the most strongly correlated

with human judgement. As such, we consider us-
ing either log likelihood or NPMI as a stopping
criteria for VAMPIRE pretraining (§6.1), and eval-
uate them in terms of which leads to the better
downstream classifier.

NPMI measures the probability that two words
collocate in an external corpus (in our case, the
validation data). For each topic t in B, we col-
lect the top ten most probable words and compute
NPMI between all pairs:

NPMI(t) =
∑

i,j≤10; j 6=i

log
P (ti,tj)
P (ti)P (tj)

− logP (ti, tj)
(14)

We then arrive at a global NPMI for B by aver-
aging the NPMIs across all topics. We evaluate
NPMI at the end of each epoch during pretraining,
and stop training when NPMI has stopped increas-
ing for a pre-defined number of epochs.

3.3 Using a Pretrained VAE for Text
Classification

Kingma et al. (2014) proposed using the latent
variable of an unsupervised VAE as features in a
downstream model for classifying images. How-
ever, work on pretraining for NLP, such as Peters
et al. (2018a), found that LMs encode different in-
formation in different layers, each of which may
be more or less useful for certain tasks. Here,
for an n-layer MLP encoder on word counts ci,
we build on that idea, and use as representations
a weighted sum over θi and the internal states of
the MLP, h(k)

i , with weights to be learned by the
downstream classifier.5

That is, for any sequence-to-vector encoder,
fs2v(x), we propose to augment the vector rep-
resentations for each document by concatenating
them with a weighted combination of the inter-
nal states of our variational encoder (Peters et al.,
2018a). We can then train a supervised classifier
on the weighted combination,

ri = λ0θi +
n∑
k=1

λkh
(k)
i (15)

p(yi | xi) = fc([ri; fs2v(xi)]), (16)

where fc is a neural classifier and {λ0, . . . , λn}
are softmax-normalized trainable parameters.

5We also experimented with the joint training and com-
bined approaches discussed in Kingma et al. (2014), but
found that neither of these reliably improved performance
over our pretraining approach.
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3.4 Optimization

In all cases, we optimize models using Adam
(Kingma and Ba, 2014). In order to prevent diver-
gence during pretraining, we make use of a batch-
norm layer on the reconstruction of x (Ioffe and
Szegedy, 2015). We also use KL-annealing (Bow-
man et al., 2016), placing a scalar weight on the
KL divergence term in Eq. (3), which we gradu-
ally increase from zero to one. Because our model
consists entirely of feedforward neural networks,
it is easily parallelized, and can run efficiently on
either CPUs or GPUs.

4 Experimental Setup

We evaluate the performance of our approach
on four text classification tasks, as we vary the
amount of labeled data, from 200 to 10,000 in-
stances. In all cases, we assume the existence of
about 75,000 to 125,000 unlabeled in-domain ex-
amples, which come from the union of the unused
training data and any additional unlabeled data
provided by the corpus. Because we are working
with a small amount of labeled data, we run each
experiment with five random seeds, each with a
different sample of labeled training instances, and
report the mean performance on test data.

4.1 Datasets and Preprocessing

We experiment with text classification datasets
that span a variety of label types. The datasets we
use are the familiar AG News (Zhang et al., 2015),
IMDB (Maas et al., 2011), and YAHOO! Answers
datasets (Chang et al., 2008), as well as a dataset of
tweets labeled in terms of four HATESPEECH cat-
egories (Founta et al., 2018). Summary statistics
are presented in Table 1. In all cases, we either
use the official test set, or take a random stratified
sample of 25,000 documents as a test set. We also
sample 5,000 instances as a validation set.

We tokenize documents with spaCy, and use up
to 400 tokens for sequence encoding (fs2v(x)).
For VAMPIRE pretraining, we restrict the vocab-
ulary to the 30,000 most common words in the
dataset, after excluding tokens shorter than three
characters, those with digits or punctuation, and
stopwords.6 We leave the vocabulary for down-
stream classification unrestricted.

6http://snowball.tartarus.org/
algorithms/english/stop.txt

Dataset Label Type Classes Documents

AG topic 4 127600
HATESPEECH hatespeech 4 99996
IMDB sentiment 2 100000
YAHOO! topic 15 150015

Table 1: Datasets used in our experiments.

4.2 VAMPIRE Architecture
In order to find reasonable hyperparameters for
VAMPIRE, we utilize a random search strategy for
pretraining. For each dataset, we take the model
with the best NPMI for use in the downstream
classifiers. We detail sampling bounds and final
assignments for each hyperparameter in Table 5 in
Appendix A.1.

4.3 Downstream Classifiers
For all experiments we make use of the Deep Av-
eraging Network (DAN) architecture (Iyyer et al.,
2015) as our baseline sequence-to-vector encoder,
fs2v(x). That is, embeddings corresponding to
each token are summed and passed through a
multi-layer perceptron.

p(yi | xi) = MLP
(

1

|xi|
∑|xi|

j=1E(xi)j

)
, (17)

where E(x) converts a sequence of tokens to a se-
quence of vectors, using randomly initialized vec-
tors, off-the-shelf GLOVE embeddings (Penning-
ton et al., 2014), or contextual embeddings.

To incorporate the document representations
learned by VAMPIRE in a downstream classifier,
we concatenate them with the average of randomly
initialized trainable embeddings, i.e.,

p(yi | xi) = MLP
([
ri;

1

|xi|
∑|xi|

j=1E(xi)j

])
.

(18)

Preliminary experiments found that DANs with
one-layer MLPs and moderate dropout provide
more reliable performance on validation data than
more expressive models, such as CNNs or LSTMs,
with less hyperparameter tuning, especially when
working with few labeled instances (details in Ap-
pendix A.2).

4.4 Resources and Baselines
In these experiments, we consider baselines for
both low-resource and high-resource settings,
where the high-resource baselines have access to

http://snowball.tartarus.org/algorithms/english/stop.txt
http://snowball.tartarus.org/algorithms/english/stop.txt
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Figure 2: Learning curves for all datasets in the low-
resource setting, showing the mean (line) and one
standard deviation (bands) over five runs for VAM-
PIRE, self-training, and 840B-token GLOVE embed-
dings. Full results are in Table 2.

greater computational resources and a either mas-
sive amount of unlabeled data or a pretrained
model, such as ELMO or BERT.7

Low resource In the low-resource setting we as-
sume that computational resources are at a pre-
mium, so we are limited to lightweight approaches
such as VAMPIRE, which can run efficiently on
a CPU. As baselines, we consider a) a purely
supervised model, with randomly initialized 50-
dimensional embeddings and no access to unla-
beled data; b) the same model initialized with 300-
dimensional GLOVE vectors, pretrained on 840
billion words;8 c) 300-dimensional GLOVE vec-
tors trained on only in-domain data; and d) self-
training, which has access to the in-domain unla-
beled data. For self-training, we iterate over train-
ing a model, predicting labels on all unlabeled in-
stances, and adding to the training set all unlabeled
instances whose label is predicted with high confi-
dence, repeating this up to five times and using the
model with highest validation accuracy. On each
iteration, the threshold for a given label is equal
to the 90th percentile of predicted probabilities for
validation instances with the corresponding label.

7As discussed above, we consider these models to be rep-
resentative of the high-resource setting, both because they
were computationally intensive to train, and because they
were made possible by the huge amount of English text that
is available online.

8http://nlp.stanford.edu/projects/
glove/

High resource In the high-resource setting,
we assume access to plentiful computational re-
sources and massive amounts of out-of-domain
data, which may be indirectly accessed through
pretrained models. Specifically, we evaluate the
performance of a Transformer-based ELMO (Pe-
ters et al., 2018b) and BERT, both (a) off-the-
shelf with frozen embeddings and (b) after semi-
supervised fine-tuning to both unlabeled and la-
beled in-domain data. To perform semi-supervised
fine-tuning, we first use ELMO and BERT’s orig-
inal objectives to fine-tune to the unlabeled data.
To fine-tune ELMO to the labeled data, we aver-
age over the LM states and add a softmax clas-
sification layer. We obtain the best results ap-
plying slanted triangular learning rates and grad-
ual unfreezing (Howard and Ruder, 2018) to this
fine-tuning step. To fine-tune BERT to labeled
data, we feed the hidden state corresponding to the
[CLS] token of each instance to a softmax clas-
sification layer. We use AllenNLP9 to fine-tune
ELMO, and Pytorch-pretrained-BERT10 to fine-
tune BERT.

We also experiment with ELMO trained only
on in-domain data as an example of high-resource
LM pretraining methods, such as Dai and Le
(2015), when there is no out-of-domain data avail-
able. Specifically, we generate contextual word
representations with a Transformer-based ELMO.
During downstream classification, the resulting
vectors are frozen and concatenated to randomly
initialized word vectors prior to the summation in
Eq. (17).

5 Results

In the low-resource setting, we find that VAM-
PIRE achieves the highest accuracy of all low-
resource methods we consider, especially when
the amount of labeled data is small. Table 2 shows
the performance of all low-resource models on all
datasets as we vary the amount of labeled data, and
a subset of these are also shown in Figure 2 for
easy comparison.

In the high-resource setting, we find, not
surprisingly, that fine-tuning the pretrained
BERT model to in-domain data provides the best
performance. For both BERT and ELMO, we
find that using frozen off-the-shelf vectors results

9https://allennlp.org/elmo
10https://github.com/huggingface/

pytorch-pretrained-BERT

http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
https://allennlp.org/elmo
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Dataset Model 200 500 2500 10000

IMDB Baseline 68.5 (7.8) 79.0 (0.4) 84.4 (0.1) 87.1 (0.3)
Self-training 73.8 (3.3) 80.0 (0.7) 84.6 (0.2) 87.0 (0.4)
GLOVE (ID) 74.5 (0.8) 79.5 (0.4) 84.7 (0.2) 87.1 (0.4)

GLOVE (OD) 74.1 (1.2) 80.0 (0.2) 84.6 (0.3) 87.0 (0.6)
VAMPIRE 82.2 (2.0) 84.5 (0.4) 85.4 (0.4) 87.1 (0.4)

AG Baseline 68.8 (2.0) 77.3 (1.0) 84.4 (0.1) 87.5 (0.2)
Self-training 77.3 (1.7) 81.3 (0.8) 84.8 (0.2) 87.7 (0.1)
GLOVE (ID) 70.4 (1.2) 78.0 (1.0) 84.1 (0.3) 87.1 (0.2)

GLOVE (OD) 68.8 (5.7) 78.8 (1.1) 85.3 (0.3) 88.0 (0.3)
VAMPIRE 83.9 (0.6) 84.5 (0.4) 85.8 (0.2) 87.7 (0.1)

YAHOO! Baseline 54.5 (2.8) 63.0 (0.5) 69.5 (0.3) 73.6 (0.2)
Self-training 57.5 (2.0) 63.2 (0.6) 69.8 (0.3) 73.6 (0.2)
GLOVE (ID) 55.2 (2.3) 63.5 (0.3) 69.7 (0.3) 73.5 (0.3)

GLOVE (OD) 55.4 (2.4) 63.9 (0.3) 70.1 (0.5) 73.8 (0.4)
VAMPIRE 59.9 (0.9) 65.1 (0.3) 69.8 (0.3) 73.6 (0.2)

HATESPEECH Baseline 67.7 (1.8) 71.3 (0.2) 75.6 (0.4) 77.8 (0.2)
Self-training 68.5 (0.6) 71.3 (0.2) 75.5 (0.3) 78.1 (0.2)
GLOVE (ID) 69.7 (1.2) 71.9 (0.5) 76.0 (0.3) 78.3 (0.2)

GLOVE (OD) 69.7 (0.7) 72.2 (0.8) 76.1 (0.8) 77.6 (0.5)
VAMPIRE 74.1 (0.8) 74.4 (0.5) 76.2 (0.6) 78.0 (0.3)

Table 2: Test accuracies in the low-resource setting on four text classification datasets under varying levels of
labeled training data (200, 500, 2500, and 10000 documents). Each score is reported as an average over five seeds,
with standard deviation in parentheses, and the highest mean result in each setting shown in bold.
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Figure 3: High-resource methods (plus VAMPIRE) on
four datasets; ELMO performance benefits greatly
from training on (ID), or fine-tuning (FT) to, the in-
domain data (as does BERT; full results in Appendix
B). Key: FT (fine-tuned), FR (frozen), ID (in-domain).

in surprisingly poor performance, compared
to fine-tuning to the task domain, especially
for HATESPEECH and IMDB.11 For these two
datasets, an ELMO model trained only on in-
domain data offers far superior performance to
frozen off-the-shelf ELMO (see Figure 3). This
difference is smaller, however, for YAHOO! and

11See also Howard and Ruder (2018).

AG. (Please see Appendix B for full results).
These results taken together demonstrate that

although pretraining on massive amounts of web
text offers large improvements over purely su-
pervised models, access to unlabeled in-domain
data is critical, either for fine-tuning a pretrained
language model in the high-resource setting, or
for training VAMPIRE in the low-resource setting.
Similar findings have been reported by Yogatama
et al. (2019) for tasks such as natural language in-
ference and question answering.

6 Analysis

6.1 NPMI versus NLL as Stopping Criteria

To analyze the effectiveness of different stopping
criterion in VAMPIRE, we pretrain 200 VAMPIRE

models on IMDB: 100 selected via NPMI, and 100
selected via negative log likelihood (NLL) on val-
idation data. Interestingly, we observe that VAM-
PIRE NPMI and NLL values are negatively corre-
lated (ρ = –0.72; Figure 4A), suggesting that upon
convergence, trained models that better fit the data
also tend to have more coherent topics. We then
train 200 downstream classifiers with the same hy-
perparameters, on a fixed 200 document random
subset of the IMDB dataset, uniformly sampling
over the NPMI- and NLL-selected VAMPIRE mod-
els as additional features. In Figure 4B and Fig-
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Figure 4: Comparing NPMI and NLL as early stop-
ping criteria for VAMPIRE model selection. NPMI
and NLL are correlated measures of model fit, but
NPMI-selected VAMPIRE models have lower variance
on downtream classification performance with 200 la-
beled documents of IMDB. Accuracy is reported on the
validation data. See §6.1 for more details.

ure 4C, we observe that better pretrained VAMPIRE

models (according to either criterion) tend to pro-
duce better downstream performance. (ρ = 0.55
and ρ = –0.53, for NPMI and NLL respectively).

However, we also observe higher variance in ac-
curacy among the VAMPIRE models obtained us-
ing NLL as a stopping criterion (Figure 4D). Such
models selected via NLL have poor topic coher-
ence and downstream performance. As such, do-
ing model selection using NPMI is the preferred
alternative, and all VAMPIRE results in Table 2 are
based on pretrained models selected using this cri-
terion.

The experiments in Ding et al. (2018) provide
some insight into this behaviour. They find that
when training neural topic models, model fit and
NPMI initially tend to improve on each epoch. At
some point, however, perplexity continues to im-
prove, while NPMI starts to drop, sometimes dra-
matically. We also observe this phenomenon when
training VAMPIRE (see Appendix C). Using NPMI
as a stopping criterion, as we propose to do, helps
to avoid degenerate models that result from train-
ing too long.

In some preliminary experiments, we also ob-
serve cases where NPMI is artificially high be-
cause of redundancy in topics. Applying batch-
norm to the reconstruction markedly improves di-
versity of collocating words across topics, which
has also been noted by Srivastava and Sutton

IMDB YAHOO!

Horror Classics Food Obstetrics

giallo dunne cuisine obstetrics
horror cary peruvian vitro
gore abbott bengali endometriosis

lugosi musicals cajun fertility
zombie astaire potato contraceptive
dracula broadway carne pregnancy

bela irene idli birth
cannibal costello pancake ovarian
vampire sinatra tofu menstrual

lucio stooges gumbo prenatal

Table 3: Example topics learned by VAMPIRE in
IMDB and YAHOO! datasets. See Appendix D for more
examples.

(2017). Future work may explore assigning a word
diversity regularizer to the NPMI metric, so as to
encourage models that have both stronger coher-
ence and word diversity across topics.

6.2 Learned Latent Topics

In addition to being lightweight, one advantage of
VAMPIRE is that it produces document representa-
tions that can be explicitly interpreted in terms of
topics. Although the input we feed into the down-
stream classifier combines this representation with
internal states of the encoder, the topical interpre-
tation helps to summarize what the pretraining has
learned. Examples of topics learned by VAMPIRE

are provided in Table 3 and Appendix D.

6.3 Learned Scalar Layer Weights

Since the scalar weight parameters in ri are train-
able, we are able to investigate which layers of the
pretrained VAE the classifier tends to prefer. We
consistently find that the model tends to upweight
the first layer of the VAE encoder, h(1), and θ, and
downweight the other layers of the encoder. To
improve learning, especially under low resource
settings, we initialize the scalar weights applied to
the first encoder layer and θ with high values and
downweighted the intermediate layers, which in-
creases validation performance. However, we also
have observed that using a multi-layer encoder in
VAMPIRE leads to larger gains downstream.

6.4 Computational Requirements

An appealing aspect of VAMPIRE is its com-
pactness. Table 4 shows the computational re-
quirements involved in training VAMPIRE on a
single GPU or CPU, compared to training an
ELMO model from scratch on the same data on
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Model Parameters Time

VAMPIRE (GPU) 3.8M 7 min
VAMPIRE (CPU) 3.8M 22 min
ELMO (GPU) 159.2M 12 hr 35 min

Table 4: VAMPIRE is substantially more compact
than Transformer-based ELMO but is still competi-
tive under low-resource settings. Here, we display
the computational requirements for pretraining VAM-
PIRE and ELMO on in-domain unlabeled text from
the IMDB dataset. We report results on training
VAMPIRE (with hyperparameters listed in Appendix
A.1) and ELMO (with its default configuration) on
a GeForce GTX 1080 Ti GPU, and VAMPIRE on
a 2.60GHz Intel Xeon CPU. VAMPIRE uses about
750MB of memory on a GPU, while ELMO requires
about 8.5GB.

a GPU. It is possible to train VAMPIRE orders of
magnitude faster than ELMO, even without ex-
pensive hardware, making it especially suitable for
obtaining fast results when resources are limited.

7 Related Work

In addition to references given throughout, many
others have explored ways of enhancing perfor-
mance when working with limited amounts of la-
beled data. Early work on speech recognition
demonstrated the importance of pretraining and
fine-tuning deep models in the semi-supervised
setting (Yu et al., 2010). Chang et al. (2008) con-
sidered “dataless” classification, where the names
of the categories provide the only supervision.
Miyato et al. (2016) showed that adversarial pre-
training can offer large gains, effectively augment-
ing the amount of data available. A long line of
work in active learning similarly tries to maximize
performance when obtaining labels is costly (Set-
tles, 2012). Xie et al. (2019) describe novel data
augmentation techniques leveraging back transla-
tion and tf-idf word replacement. All of these ap-
proaches could be productively combined with the
methods proposed in this paper.

8 Recommendations

Based on our findings in this paper, we offer the
following practical advice to those who wish to do
effective semi-supervised text classification.

• When resources are unlimited, the best re-
sults can currently be obtained by using a pre-
trained model such as BERT, but fine-tuning

to in-domain data is critically important (see
also Howard and Ruder, 2018).

• When computational resources and annota-
tions are limited, but there is plentiful unla-
beled data, VAMPIRE offers large gains over
other low-resource approaches.

• Training a language model such as ELMO on
only in-domain data offers comparable or
somewhat better performance to VAMPIRE,
but may be prohibitively expensive, unless
working with GPUs.

• Alternatively, resources can be invested in
getting more annotations; with sufficient la-
beled data (tens of thousands of instances),
the advantages offered by additional unla-
beled data become negligible. Of course,
other NLP tasks may involve different trade-
offs between data, speed, and accuracy.

9 Conclusions

The emergence of models like ELMO and
BERT has revived semi-supervised NLP, demon-
strating that pretraining large models on massive
amounts of data can provide representations that
are beneficial for a wide range of NLP tasks. In
this paper, we confirm that these models are useful
for text classification when the number of labeled
instances is small, but demonstrate that fine-tuning
to in-domain data is also of critical importance. In
settings where BERT cannot easily be used, either
due to computational limitations, or because an
appropriate pretrained model in the relevant lan-
guage does not exist, VAMPIRE offers a compet-
itive lightweight alternative for pretraining from
unlabeled data in the low-resource setting. When
working with limited amounts of labeled data, we
achieve superior performance to baselines such
as self-training, or using word vectors pretrained
on out-of-domain data, and approach the perfor-
mance of ELMO trained only on in-domain data
at a fraction of the computational cost.
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A Hyperparameter Search

In this section, we describe the hyperparameter
search we used to choose model configurations,
and include plots illustrating the range of valida-
tion performance observed in each setting.

A.1 VAMPIRE Search
For the results presented in the paper, we varied
the hyperparameters of VAMPIRE across a number
of different dimensions, outlined in Table 5.

A.2 Classifier Search
To choose a baseline classifier for which we
experiment with all pretrained models, we per-
formed a mix of manual tuning and random search
over four basic classifiers: CNN, LSTM, Bag-of-
Embeddings (i.e., Deep Averaging Networks), and
Logistic Regression.

Figure 6 shows the distribution of validation
accuracies using 200 and 10,000 labeled in-
stances, respectively, for different classifiers on
the IMDB and AG datasets. Under the low-
resource setting, we observe that logistic regres-
sion and DAN based classifiers tend to lead to
more reliable validation accuracies. With enough
compute, CNN-based classifiers tend to produce
marginally higher validation accuracies, but the
probability is mostly centered below those of the
logistic regression and DAN classifiers. LSTM-
based classifiers tend to have extremely high vari-
ance under the low-resource setting. For this work,
we choose to experiment with the DAN classi-
fier, which comes with the richness of vector-
based representations, along with the reliability
that comes with having very few hyperparameters
to tune.

B Results in the High Resource Setting

Table 6 shows the results of all high-resource
methods (along with VAMPIRE) on all datasets,
as we vary the amount of labeled data. As can
be seen, training ELMO only on in-domain data
results in similar or better performance to using
an off-the-shelf ELMO or BERT model, without
fine-tuning it to in-domain data.

Except for one case in which it fails badly
(YAHOO! with 200 labeled instances), fine-tuning
BERT to the target domain achieves the best
performance in every setting. Though we per-
formed a substantial hyperparameter search under
this regime, we attribute the failure of fine-tuning
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Figure 5: An example learning curve when training
VAMPIRE on the IMDB dataset. If trained for too long,
we observe many cases in which NPMI (higher is bet-
ter) degrades while NLL (lower is better) continues to
decrease. To avoid selecting a model that has poor topic
coherence, we recommend performing model selection
with NPMI rather than NLL.

BERT under this setting to potential hyperparam-
eter decisions which could be improved with fur-
ther tuning. Other work has suggest that random
initializations have a significant effect on the fail-
ure cases of BERT, pointing to the brittleness of
fine-tuning (Phang et al., 2018).

The performance gap between fine-tuned
ELMO and frozen ELMO in AG News corpus is
much smaller than that of the other datasets, per-
haps because the ELMO model we used was pre-
trained on the Billion Words Corpus, which is a
news crawl. This dataset is also an example where
frozen ELMO tends to out-perform using VAM-
PIRE. We attribute the strength of frozen, pre-
trained ELMO under this setting as further evi-
dence of the importance of in-domain data for ef-
fective semi-supervised text classification.

C Further Details on NPMI vs. NLL as
Stopping Criteria

In the main paper, we note that we have observed
cases in which training VAMPIRE for too long re-
sults in NPMI degradation, while NLL continues
to improve. In Figure 5, we display example learn-
ing curves that point to this phenomenon.

D Additional Learned Topics

In Table 7 we display some additional topics
learned by VAMPIRE on the YAHOO! dataset.
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Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 60 trials per dataset

Search strategy uniform sampling

Model implementation http://github.com/allenai/vampire

Hyperparameter Search space IMDB AG YAHOO! HATESPEECH

number of epochs 50 50 50 50 50

patience 5 5 5 5 5

batch size 64 64 64 64 64

KL divergence annealing choice[sigmoid, linear, constant] linear linear linear constant

KL annealing sigmoid weight 1 0.25 N/A N/A N/A N/A

KL annealing sigmoid weight 2 15 N/A N/A N/A N/A

KL annealing linear scaling 1000 1000 1000 1000 N/A

VAMPIRE hidden dimension uniform-integer[32, 128] 80 81 118 125

Number of encoder layers choice[1, 2, 3] 2 2 3 3

Encoder activation choice[relu, tanh, softplus] tanh relu tanh softplus

Mean projection layers 1 1 1 1 1

Mean projection activation linear linear linear linear linear

Log variance projection layers 1 1 1 1 1

Log variance projection activation linear linear linear linear linear

Number of decoder layers 1 1 1 1 1

Decoder activation linear linear linear linear linear

z-dropout random-uniform[0, 0.5] 0.47 0.49 0.41 0.45

learning rate optimizer Adam Adam Adam Adam Adam

learning rate loguniform-float[1e-4, 1e-2] 0.00081 0.00021 0.00024 0.0040

update background frequency choice[True, False] False False False False

vocabulary size 30000 30000 30000 30000 30000

Dataset VAMPIRE NPMI

IMDB 0.131

AG 0.224

YAHOO! 0.475

HATESPEECH 0.139

Table 5: VAMPIRE search space, best assignments, and associated performance on the four datasets we consider in
this work.

http://github.com/allenai/vampire
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Dataset Model 200 500 2500 10000

IMDB ELMO (FR) 75.1 (1.4) 80.3 (1.1) 85.3 (0.1) 87.3 (0.3)
BERT (FR) 81.5 (1.0) 83.9 (0.4) 86.8 (0.3) 88.2 (0.3)
ELMO (ID) 81.7 (1.3) 84.5 (0.2) 86.3 (0.4) 88.0 (0.4)

VAMPIRE 82.2 (2.0) 84.5 (0.4) 85.4 (0.4) 87.1 (0.4)
ELMO (FT) 86.4 (0.6) 87.9 (0.4) 90.0 (0.4) 91.6 (0.2)
BERT (FT) 88.1 (0.7) 89.4 (0.7) 91.4 (0.1) 93.1 (0.1)

AG ELMO (FR) 84.5 (0.5) 85.7 (0.5) 88.3 (0.2) 89.4 (0.3)
BERT (FR) 84.6 (1.1) 85.7 (0.7) 88.0 (0.4) 89.0 (0.3)
ELMO (ID) 84.5 (0.6) 85.8 (0.8) 87.9 (0.2) 89.2 (0.2)

VAMPIRE 83.9 (0.6) 84.5 (0.4) 85.8 (0.2) 87.7 (0.1)
ELMO (FT) 85.2 (0.5) 86.6 (0.4) 88.6 (0.2) 89.5 (0.1)
BERT (FT) 87.1 (0.6) 88.0 (0.4) 90.1 (0.5) 91.9 (0.1)

YAHOO! ELMO (FR) 54.3 (1.6) 64.2 (0.6) 71.2 (1.3) 74.1 (0.3)
BERT (FR) 57.0 (1.3) 64.2 (0.5) 70.0 (0.3) 73.8 (0.2)
ELMO (ID) 60.9 (1.7) 66.9 (0.9) 72.8 (0.5) 75.6 (0.1)

VAMPIRE 59.9 (0.9) 65.1 (0.3) 69.8 (0.3) 73.6 (0.2)
ELMO (FT) 60.5 (1.9) 66.1 (0.7) 71.7 (0.7) 75.8 (0.3)
BERT (FT) 45.3 (7.5) 69.2 (1.6) 76.9 (0.6) 81.0 (0.1)

HATESPEECH ELMO (FR) 70.5 (1.7) 72.4 (0.9) 76.0 (0.5) 78.3 (0.2)
BERT (FR) 75.1 (0.6) 76.3 (0.3) 77.8 (0.4) 79.0 (0.2)
ELMO (ID) 73.3 (0.8) 74.1 (0.8) 77.2 (0.3) 78.9 (0.2)

VAMPIRE 74.1 (0.8) 74.4 (0.5) 76.2 (0.6) 78.0 (0.3)
ELMO (FT) 73.9 (0.6) 75.4 (0.4) 78.1 (0.3) 78.7 (0.1)
BERT (FT) 76.2 (1.8) 78.3 (1.0) 79.8 (0.4) 80.2 (0.3)

Table 6: Results in the high-resources setting.

YAHOO!

Canine Care Networking Multiplayer Gaming Harry Potter

training wireless multiplayer dumbledore
obedience homepna massively longbottom

schutzhund network rifle hogwarts
housebreaking verizon cheating malfoy

iliotibial phone quake weasley
crate blackberry warcraft rubeus

ligament lan runescape philosopher
orthopedic telephone socom albus

fracture bluetooth fortress hufflepuffs
gait broadband duel trelawney

Nutrition Baseball Sexuality Religion

nutritional baseball homophobia islam
obesity sox heterosexuality jesus
weight yankees orientation isaiah

bodybuilding rodriguez transsexuality semitism
anorexia gehrig cultures christian

diet cardinals transgender baptist
malnutrition astros polyamory jewish

nervosa babe gay prophet
gastric hitter feminism commandments

watchers sosa societal god

Table 7: Example topics learned by VAMPIRE in the YAHOO! dataset.
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Figure 6: Probability densities of supervised classification accuracy in low-resource (200 labeled instances; left)
and high-resource (10K labeled instances; right) settings for IMDB and AG datasets using randomly initialized
trainable embeddings. Each search consists of 300 trials over 5 seeds and varying hyperparameters. We experiment
with four different classifiers: Logistic Regression, LSTM-based classifier, Deep Averaging Network, and a CNN-
based Classifier. We choose to use the Deep Averaging Network for all classifier baselines, due to its reliability,
expressiveness, and low-maintenance.


