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Abstract

Named entity recognition (NER) is one of the
best studied tasks in natural language process-
ing. However, most approaches are not ca-
pable of handling nested structures which are
common in many applications. In this paper
we introduce a novel neural network architec-
ture that first merges tokens and/or entities into
entities forming nested structures, and then la-
bels each of them independently. Unlike pre-
vious work, our merge and label approach
predicts real-valued instead of discrete seg-
mentation structures, which allow it to com-
bine word and nested entity embeddings while
maintaining differentiability. We evaluate our
approach using the ACE 2005 Corpus, where
it achieves state-of-the-art F1 of 74.6, further
improved with contextual embeddings (BERT)
to 82.4, an overall improvement of close to
8 F1 points over previous approaches trained
on the same data. Additionally we compare
it against BiLSTM-CRFs, the dominant ap-
proach for flat NER structures, demonstrating
that its ability to predict nested structures does
not impact performance in simpler cases.1

1 Introduction

The task of nested named entity recognition
(NER) focuses on recognizing and classifying en-
tities that can be nested within each other, such as
“United Kingdom” and “The Prime Minister of the
United Kingdom” in Figure 1. Such entity struc-
tures, while very commonly occurring, cannot be
handled by the predominant variant of NER mod-
els (McCallum and Li, 2003; Lample et al., 2016),
which can only tag non-overlapping entities.

A number of approaches have been proposed
for nested NER. Lu and Roth (2015) introduced
a hypergraph representation which can represent

1Code available at https://github.com/
fishjh2/merge_label

overlapping mentions, which was further im-
proved by Muis and Lu (2017), by assigning tags
between each pair of consecutive words, prevent-
ing the model from learning spurious structures
(overlapping entity structures which are gramat-
ically impossible). More recently, Katiyar and
Cardie (2018) built on this approach, adapting
an LSTM (Hochreiter and Schmidhuber, 1997)
to learn the hypergraph directly, and Wang and
Lu (2018) introduced a segmental hypergraph ap-
proach, which is able to incorporate a larger num-
ber of span based features, by encoding each span
with an LSTM.

Our approach decomposes nested NER into two
stages. First tokens are merged into entities (Level
1 in Figure 1), which are merged with other to-
kens or entities in higher levels. These merges are
encoded as real-valued decisions, which enables
a parameterized combination of word embeddings
into entity embeddings at different levels. These
entity embeddings are used to label the entities
identified. The model itself consists of feedfor-
ward neural network layers and is fully differen-
tiable, thus it is straightforward to train with back-
propagation.

Unlike methods such as Katiyar and Cardie
(2018), it does not predict entity segmentation at
each layer as discrete 0-1 labels, thus allowing
the model to flexibly aggregate information across
layers. Furthermore inference is greedy, without
attempting to score all possible entity spans as in
Wang and Lu (2018), which results in faster de-
coding (decoding requires simply a single forward
pass of the network).

To test our approach on nested NER, we eval-
uate it on the ACE 2005 corpus (LDC2006T06)
where it achieves a state-of-the-art F1 score of
74.6. This is further improved with contextual em-
beddings (Devlin et al., 2018) to 82.4, an overall
improvement of close to 8 F1 points against the

https://github.com/fishjh2/merge_label
https://github.com/fishjh2/merge_label
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Figure 1: Trained model’s representation of nested entities, after thresholding the merge values, M (see section
2.1). Note that the merging of “, to” is a mistake by the model.

previous best approach trained on the same data,
(Wang and Lu, 2018). Our approach is also 60
times faster than its closest competitor. Addition-
ally, we compare it against BiLSTM-CRFs(Huang
et al., 2015), the dominant flat NER paradigm, on
Ontonotes (LDC2013T19) and demonstrate that
its ability to predict nested structures does not im-
pact performance in flat NER tasks as it achieves
comparable results to the state of the art on this
dataset.

2 Network Architecture

2.1 Overview

The model decomposes nested NER into two
stages. Firstly, it identifies the boundaries of the
named entities at all levels of nesting; the tensor M
in Figure 2, which is composed of real values be-
tween 0 and 1 (these real values are used to infer
discrete split/merge decisions at test time, giving
the nested structure of entities shown in Figure 1).
We refer to this as predicting the “structure” of
the NER output for the sentence. Secondly, given
this structure, it produces embeddings for each en-
tity, by combining the embeddings of smaller en-
tities/tokens from previous levels (i.e. there will
be an embedding for each rectangle in Figure 1).
These entity embeddings are used to label the en-
tities identified.

An overview of the architecture used to pre-
dict the structure and labels is shown in Figure
2. The dimensions of each tensor are shown in
square brackets in the figure. The input tensor, X ,
holds the word embeddings of dimension e, for ev-
ery word in the input of sequence length, s. The
first dimension, b, is the batch size. The Static
Layer updates the token embeddings using con-
textual information, giving tensor Xs of the same
dimension, [b, s, e].

Next, for u repetitions, we go through a series of
building the structure using the Structure Layer,
and then use this structure to continue updating
the individual token embeddings using the Update

Figure 2: Model architecture overview

Layer, giving an output Xu.
The updated token embeddings Xu are passed

through the Structure Layer one last time, to give
the final entity embeddings, T and structure, M .
A feedforward Output Layer then gives the pre-
dictions of the label of each entity.

The structure is represented by the tensor M ,
of dimensions [b, s − 1, L]. M holds, for every
pair of adjacent words (s − 1 given input length
s) and every output level (L levels), a value be-
tween 0 and 1. A value close to 0 denotes that
the two (adjacent) tokens/entities from the previ-
ous level are likely to be merged on this level to
form an entity; nested entities emerge when en-
tities from lower levels are used. Note that for
each individual application of the Structure Layer,
we are building multiple levels (L) of nested enti-
ties. That is, within each Structure Layer there is a
loop of length L. By building the structure before
the Update Layer, the updates to the token embed-
dings can utilize information about which entities
each token is in, as well as neighbouring entities,
as opposed to just using information about neigh-
bouring tokens.
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2.2 Preliminaries

Before analysing each of the main layers of the
network, we introduce two building blocks, which
are used multiple times throughout the architec-
ture. The first one is the Unfold operators.
Given that we process whole news articles in one
batch (often giving a sequence length (s) of 500
or greater) we do not allow each token in the se-
quence to consider every other token. Instead, we
define a kernel of size k around each token, simi-
lar to convolutional neural networks (Kim, 2014),
allowing it to consider the k/2 prior tokens and the
k/2 following tokens.

Figure 3: Unfold Operators for the passage “... yester-
day. The President of France met with ...”. Each row
in the matrices corresponds to the words “The”, “Pres-
ident”, ”of” and “France” (top to bottom).

The unfold operators create kernels transform-
ing tensors holding the word embeddings of shape
[b, s, e] to shape [b, s, k, e]. unfold[from] simply
tiles the embedding x of each token k times, and
unfold[to] generates the k/2 token embeddings ei-
ther side, as shown in Figure 3, for a kernel size
k of 4. The first row of the unfold[to] tensor holds
the two tokens before and the two tokens after the
word “The”, the second row the two before and
after “President” etc. As we process whole arti-
cles, the unfold operators allow tokens to consider
tokens from previous/following sentences.

The second building block is the Embed Up-
date layer, shown in Figure 4. This layer is used
to update embeddings within the model, and as
such, can be thought of as equivalent in function
to the residual update mechanism in Transformer
(Vaswani et al., 2017). It is used in each of the
Static Layer, Update Layer and Structure Layer
from the main network architecture in Figure 2.

It takes an input I ′ of size [b, s, k, in], formed
using the unfold ops described above, where the
last dimension in varies depending on the point
in the architecture at which the layer is used.
It passes this input through the feedforward NN

Figure 4: Embed Update layer

FFEU , giving an output of dimension [b, s, k, e+
1] (the network broadcasts over the last three di-
mensions of the input tensor). The output is split
into two. Firstly, a tensor E′ of shape [b, s, k, e],
which holds, for each word in the sequence, k pre-
dictions of an updated word vector based on the
k/2 words either side. Secondly, a weighting ten-
sor C ′ of shape [b, s, k, 1], which is scaled between
0 and 1 using the sigmoid function, and denotes
how “confident” each of the k predictions is about
its update to the word embedding. This works sim-
ilar to an attention mechanism, allowing each to-
ken to focus on updates from the most relevant
neighbouring tokens.2 The output, U is then a
weighted average of E′:

U = sum2(sigmoid(C ′) ∗ E′)

where sum2 denotes summing across the sec-
ond dimension of size k. U therefore has dimen-
sions [b, s, e] and contains the updated embedding
for each word.

During training we initialize the weights of the
network using the identity function. As a result,
the default behaviour of FFEU prior to training is
to pass on the word embedding unchanged, which
is then updated during via backpropagation. An
example of the effect of the identity initialization
is provided in the supplementary materials.

2.3 Static Layer

The static layer is a simple preliminary layer to up-
date the embeddings for each word based on con-
textual information, and as such, is very similar to
a Transformer (Vaswani et al., 2017) layer. Fol-
lowing the unfold ops, a positional encoding P of

2The difference being that the weightings are generated
using a sigmoid rather than a softmax layer, allowing the at-
tention values to be close to one for multiple tokens.
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dimension e (we use a learned encoding) is added,
giving tensor Is:

Is = concat(Unfold[from](X), Unfold[to](X)+P )

Is is then passed through the Embed Update
layer. In our experiments, we use a single static
layer. There is no merging of embeddings into en-
tities in the static layer.

Figure 5: Static Layer

2.4 Structure Layer
The Structure Layer is responsible for three tasks.
Firstly, deciding which token embeddings should
be merged at each level, expressed as real values
between 0 and 1, and denoted M . Secondly, given
these merge values M , deciding how the separate
token embeddings should be combined in order to
give the embeddings for each entity, T . Finally, for
each token and entity, providing directional vec-
tors D to the k/2 tokens either side, which are
used to update each token embedding in the Up-
date Layer based on its context. Intuitively, the
directional vectors D can be thought of as encod-
ing relations between entities - such as the relation
between an organization and its leader, or that be-
tween a country and its capital city (see Section
6.2 for an analysis of these relation embeddings).

Figure 6 shows a minimal example of the cal-
culation of D, M and T , with word embedding
and directional vector dimensions e = d = 2, and
kernel size, k = 4. We pass the embeddings (X)
of each pair of adjacent words through a feedfor-
ward NN FFS to give directions D [b, s-1, d] and
merge values M [b, s-1, 1] between each pair. If
FFS predicts M(1,2) to be close to 0, this indicates
that tokens 1 and 2 are part of the same entity on
this level. The unfold[to] op gives, for each word
(we show only the unfolded tensors for the word
“Kingdom” in Figure 6 for simplicity), D and M
for pairs of words up to k/2 either side.

Figure 6: Calculation of merging weight, directions
and entities in Structure Layer

By taking both the left and right cumulative
sum (cumsum) of the resulting two tensors from
the center out (see grey dashed arrows in Fig-
ure 6 for direction of the two cumsum ops), we
get directional vectors and merge values from the
word “Kingdom” to the words before and after it
in the phrase, D′

3,i and M ′
3,i for i = (1, 2, 4, 5).

Note that we take the inverse of vectors D(1,2)

and D(2,3) prior to the cumsum, as we are inter-
ested in the directions from the token “Kingdom”
backwards to the tokens “United” and “The”. The
values M ′

3,i are converted to weights W ′ of di-
mension [b, s, k, 1] using the formula W ′ =
max(0, 1 −M ′)3, with the max operation ensur-
ing the model puts a weight of zero on tokens in
separate entities (see the reduction of the value of
1.7 in M ′ in Figure 6 to a weighting of 0.0). The
weights are normalized to sum to 1, and multiplied
with the unfolded token embeddings X ′ to give the
entity embeddings T , of dimension [b, s, e]

T =
W ′

sum2(W ′)
∗X ′

Consequently, the embeddings at the end of level
1 for the words “The”, “United” and “Kingdom”

3We use the notation D′ to denote the unfolded version of
tensor D, i.e. D′ = Unfold[to](D)
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(T 1
1 , T 1

2 and T 1
3 respectively) are all now close to

equal, and all have been formed from a weighted
average of the three separate token embeddings. If
M(1,2) and M(2,3) were precisely zero, and M(3,4)
was precisely 1.0, then all three would be iden-
tical. In addition, on higher levels, the directions
from other words to each of these three tokens will
also be identical. In other words, the use of “direc-
tions”4 allows the network to represent entities as
a single embedding in a fully differentiable fash-
ion, whilst keeping the sequence length constant.

Figure 6 shows just a single level from within
the Structure Layer. The embeddings T are then
passed onto the next level, allowing progressively
larger entities to be formed by combining smaller
entities from the previous levels.

Figure 7: Structure Layer

The full architecture of the Structure Layer is
shown in Figure 7. The main difference to Figure
6 is the additional use of Embed Update Layer,
to decide how individual token/entity embeddings
are combined together into a single entity. The
reason for this is that if we are joining the words
“The”, “United” and “Kingdom” into a single en-
tity, it makes sense that the joint vector should
be based largely on the embeddings of “United”
and “Kingdom”, as “The” should add little infor-
mation. The embeddings are unfolded (using the
unfold[from] op) to shape [b, s, k, e] and concate-
nated with the directions between words, D′, to
give the tensor of shape [b, s, k, e + d]. This is
passed through the Embed Update layer, giving,

4We use the term “directions” as we inverse the vectors to
get the reverse direction, and cumsum them to get directions
between tokens multiple steps away.

for each word, a weighted and updated embed-
ding, ready to be combined into a single entity
(for unimportant words like “The”, this embed-
ding will have been reduced to close to zero). We
use this tensor in place of tensor X in Figure 6,
and multiply with the weights W ′ to give the new
entity embeddings, T .

There are four separate outputs from the Struc-
ture Layer. The first, denoted by T , is the en-
tity embeddings from each of the levels concate-
nated together, giving a tensor of size [b, s, e,
L]. The second output, R , is a weighted aver-
age of the embeddings from different layers, of
shape [b, s, k, e]. This will be used in the place
of the unfold[to] tensor described above as an input
the the Update Layer. It holds, for each token in
the sequence, embeddings of entities up to k/2 to-
kens either side. The third output, D , will also be
used by the Update Layer. It holds the directions
of each token/entity to the k/2 tokens/entities ei-
ther side. It is formed using the cumsum op, as
shown in Figure 6. Finally, the fourth output, M ,
stores the merge values for every level. It is used
in the loss function, to directly incentivize the cor-
rect merge decisions at the correct levels.

2.5 Update Layer
The Update Layer is responsible for updating the
individual word vectors, using the contextual in-
formation derived from outputs R and D of the
Structure Layer. It concatenates the two outputs
together, along with the output of the unfold[from]
op, X ′

s, and with an article theme embedding A
tensor, giving tensor Z of dimension [b, s, k, (e*2
+ d + a)]. The article theme embedding is formed
by passing every word in the article through a
feedforward NN, and taking a weighted average
of the outputs, giving a tensor of dimension [b, a].
This is then tiled5 to dimension [b, s, k, a], giv-
ing tensor A. A allows the network to adjust its
contextual understanding of each token based on
whether the article is on finance, sports, etc. Z is
then passed through an Embed Update layer, giv-
ing an output Xu of shape [b, s, e].

Xu = Embed Update(concat(X ′
s, R,D,A))

We therefore update each word vector using
four pieces of information. The original word em-
bedding, a direction to a different token/entity, the

5Tiling refers to simply repeating the tensor across both
the sequence length s and kernel size k dimensions
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embedding of that different token/entity, and the
article theme.

Figure 8: Update Layer

The use of directional vectors D in the Update
Layer can be thought of as an alternative to the po-
sitional encodings in Transformer (Vaswani et al.,
2017). That is, instead of updating each token em-
bedding using neighbouring tokens embeddings
with a positional encoding, we update using neigh-
bouring token embeddings, and the directions to
those tokens.

3 Implementation Details

3.1 Data Preprocessing

3.1.1 ACE 2005
ACE 2005 is a corpus of around 180K tokens, with
7 distinct entity labels. The corpus labels include
nested entities, allowing us to compare our model
to the nested NER literature. The dataset is not
pre-tokenized, so we carry out sentence and word
tokenization using NLTK.

3.1.2 OntoNotes
OntoNotes v5.0 is the largest corpus available for
NER, comprised of around 1.3M tokens, and 19
different entity labels. Although the labelling of
the entities is not nested in OntoNotes, the corpus
also includes labels for all noun phrases, which
we train the network to identify concurrently. For
training, we copy entities which are not contained
within a larger nested entity onto higher levels, as
shown in Figure 9.

3.1.3 Labelling
For both datasets, during training, we replace all
“B-” labels with their corresponding “I-” label. At
evaluation, all predictions which are the first word
in a merged entity have the “B-” added back on.
As the trained model’s merging weights, M , can
take any value between 0 and 1, we have to set a

Figure 9: OntoNotes Labelling

cutoff at eval time when deciding which words are
in the same entity. We perform a grid search over
cutoff values using the dev set, with a value of 0.75
proving optimal.

3.2 Loss function
The model is trained to predict the correct merge
decisions, held in the tensor M of dimension [b, s-
1, L] and the correct class labels given these deci-
sions, C. The merge decisions are trained directly
using the mean absolute error (MAE):

MAEM =
sum(|M − M̂ |)

(b ∗ s ∗ L)

This is then weighted by a scalar wM , and added
to the usual Cross Entropy (CE) loss from the pre-
dictions of the classes, CEC , giving a final loss
function of the form:

Loss = (wM ∗MAEM ) + CEC

In experiments we set the weight on the merge
loss, wM to 0.5.

3.3 Evaluation
Following previous literature, for both the ACE
and OntoNotes datasets, we use a strict F1 mea-
sure, where an entity is only considered correct if
both the label and the span are correct.

3.3.1 ACE 2005
For the ACE corpus, the default metric in the liter-
ature (Wang et al., 2018; Ju et al., 2018; Wang and
Lu, 2018) does not include sequential ordering of
nested entities (as many architectures do not have
a concept of ordered nested outputs). As a result,
an entity is considered correct if it is present in the
target labels, regardless of which layer the model
predicts it on.

3.3.2 OntoNotes
NER models evaluated on OntoNotes are trained
to label the 19 entities, and not noun phrases (NP).
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To provide as fair as possible a comparison, we
consequently flatten all labelled entities into a sin-
gle column. As 96.5% of labelled entities in
OntoNotes do not contain a NP nested inside, this
applies to only 3.5% of the dataset.

Figure 10: OntoNotes Targets

The method used to flatten the targets is shown
in Figure 10. The OntoNotes labels include a
named entity (TIME), in the second column, with
the NP “twenty-four” minutes nested inside. Con-
sequently, we take the model’s prediction from the
second column as our prediction for this entity.
This provides a fair comparison to existing NER
models, as all entities are included, and if any-
thing, disadvantages our model, as it not only has
to predict the correct entity, but do so on the cor-
rect level. That said, the NP labels provide ad-
ditional information during training, which may
give our model an advantage over flat NER mod-
els, which do not have access to these labels.

3.4 Training and HyperParameters
We performed a small amount of hyperparameter
tuning across dropout, learning rate, distance em-
bedding size d, and number of update layers u. We
set dropout at 0.1, the learning rate to 0.0005, d
to 200, and u to 3. For full hyperparameter de-
tails see the supplementary materials. The num-
ber of levels, L, is set to 3, with a kernel size k
of 10 on the first level, 20 on the second, and 30
on the third (we increase the kernel size gradually
for computational efficiency as first level entities
are extremely unlikely to be composed of more
than 10 tokens, whereas higher level nested enti-
ties may be larger). Training took around 10 hours
for OntoNotes, and around 6 hours for ACE 2005,
on an Nvidia 1080 Ti.

For experiments without language model (LM)
embeddings, we used pretrained Glove embed-
dings (Pennington et al., 2014) of dimension 300.

Following (Strubell et al., 2017), we added a
“CAP features” embedding of dimension 20, de-
noting if each word started with a capital letter,
was all capital letters, or had no capital letters. For
the experiments with LM embeddings, we used
the implementations of the BERT (Devlin et al.,
2018) and ELMO (Peters et al., 2018) models
from the Flair (Akbik et al., 2018) project6. We
do not finetune the BERT and ELMO models, but
take their embeddings as given.

4 Results

4.1 ACE 2005

On the ACE 2005 corpus, we begin our analysis of
our model’s performance by comparing to models
which do not use the POS tags as additional fea-
tures, and which use non-contextual word embed-
dings. These are shown in the top section of Table
1. The previous state-of-the-art F1 of 72.2 was set
by Ju et al. (2018), using a series of stacked BiL-
STM layers, with CRF decoders on top of each
of them. Our model improves this result with an
F1 of 74.6 (avg. over 5 runs with std. dev. of
0.4). This also brings the performance into line
with Wang et al. (2018) and Wang and Lu (2018),
which concatenate embeddings of POS tags with
word embeddings as an additional input feature.

Model Pr. Rec. F1

Multigraph + MS (Muis and Lu, 2017) 69.1 58.1 63.1
RNN + hyp (Katiyar and Cardie, 2018) 70.6 70.4 70.5
BiLSTM-CRF stacked (Ju et al., 2018) 74.2 70.3 72.2
LSTM + forest [POS] (Wang et al., 2018) 74.5 71.5 73.0
Segm. hyp [POS] (Wang and Lu, 2018) 76.8 72.3 74.5
Merge and Label 75.1 74.1 74.6

LM embeddings

Merge and Label [ELMO] 79.7 78.0 78.9
Merge and Label [BERT] 82.7 82.1 82.4

LM + OntoNotes

DyGIE (Luan et al., 2019) 82.9

Table 1: ACE 2005

Given the recent success on many tasks us-
ing contextual word embeddings, we also evalu-
ate performance using the output of pre-trained
BERT (Devlin et al., 2018) and ELMO (Peters
et al., 2018) models as input embeddings. This
leads to a significant jump in performance to 78.9
with ELMO, and 82.4 with BERT (both avg. over

6https://github.com/zalandoresearch/flair/
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5 runs with 0.4 and 0.3 std. dev. respectively),
an overall increase of 8 F1 points from the pre-
vious state-of-the-art. Finally, we report the con-
currently published result of Luan et al. (2019),
in which they use ELMO embeddings, and addi-
tional labelled data (used to train the coreference
part of their model and the entity boundaries) from
the larger OntoNotes dataset.

A secondary advantage of our architecture rela-
tive to those models which require construction of
a hypergraph or CRF layer is its decoding speed,
as decoding requires only a single forward pass
of the network. As such it achieves a speed of
9468 words per second (w/s) on an Nvidia 1080
Ti GPU, relative to a reported speed of 157 w/s
for the closest competitor model of Wang and Lu
(2018), a sixty fold advantage.

4.2 OntoNotes
As mentioned previously, given the caveats that
our model is trained to label all NPs as well as en-
tities, and must also predict the correct layer of an
entity, the results in Table 2 should be seen as in-
dicative comparisons only. Using non-contextual
embeddings, our model achieves a test F1 of
87.59. To our knowledge, this is the first time that
a nested NER architecture has performed com-
parably to BiLSTM-CRFs (Huang et al., 2015)
(which have dominated the named entity literature
for the last few years) on a flat NER task.

Given the larger size of the OntoNotes dataset,
we report results from a single iteration, as op-
posed to the average of 5 runs as in the case of
ACE05.

Model F1

BiLSTM-CRF (Chiu and Nichols, 2016) 86.28
ID-CNN (Strubell et al., 2017) 86.84
BiLSTM-CRF (Strubell et al., 2017) 86.99
Merge and Label 87.59

LM embeddings or extra data

BiLSTM-CRF lex (Ghaddar and Langlais, 2018) 87.95
BiLSTM-CRF with CVT (Clark et al., 2018) 88.81
Merge and Label [BERT] 89.20
BiLSTM-CRF Flair (Akbik et al., 2018) 89.71

Table 2: OntoNotes NER

We also see a performance boost from using
BERT embeddings, pushing the F1 up to 89.20.
This falls slightly short of the state-of-the-art on
this dataset, achieved using character-based Flair
(Akbik et al., 2018) contextual embeddings.

5 Ablations

To better understand the results, we conducted
a small ablation study. The affect of including
the Static Layer in the architecture is consistent
across both datasets, yielding an improvement of
around 2 F1 points; the updating of the token em-
beddings based on context seems to allow better
merge decisions for each pair of tokens. Next, we
look at the method used to update entity embed-
dings prior to combination into larger entities in
the Structure Layer. In the described architec-
ture, we use the Embed Update mechanism (see
Figure 7), allowing embeddings to be changed de-
pendent on which other embeddings they are about
to be combined with. We see that this yields a sig-
nificant improvement on both tasks of around 4 F1
points, relative to passing each embedding through
a linear layer.

The inclusion of an “article theme” embedding,
used in the Update Layer, has little effect on the
ACE05 data. but gives a notable improvement for
OntoNotes. Given that the distribution of types
of articles is similar for both datasets, we suggest
this is due to the larger size of the OntoNotes set
allowing the model to learn an informative article
theme embedding without overfitting.

Next, we investigate the impact of allowing the
model to attend to tokens in neighbouring sen-
tences (we use a set kernel size of 30, allowing
each token to consider up to 15 tokens prior and 15
after, regardless of sentence boundaries). Ignoring
sentence boundaries boosts the results on ACE05
by around 4 F1 points, whilst having a smaller af-
fect on OntoNotes. We hypothesize that this is
due to the ACE05 task requiring the labelling of
pronominal entities, such as “he” and “it”, which
is not required for OntoNotes. The coreference
needed to correctly label their type is likely to re-
quire context beyond the sentence.

6 Discussion

6.1 Entity Embeddings

As our architecture merges multi-word entities, it
not only outputs vectors of each word, but also
for all entities - the tensor T . To demonstrate
this, Table 3 shows the ten closest entity vectors in
the OntoNotes test data to the phrases “the United
Kingdom”, “Arab Foreign Ministers” and “Israeli
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the United Kingdom Arab Foreign Ministers Israeli Prime Minister Ehud Barak
the United States Palestinian leaders Italian President Francesco Cossiga
the Tanzania United Republic Yemeni authorities French Foreign Minister Hubert Vedrine
the Soviet Union Palestinian security officials Palestinian leader Yasser Arafat
the United Arab Emirates Israeli officials Iraqi leader Saddam Hussein
the Hungary Republic Canadian auto workers Likud opposition leader Ariel Sharon
Myanmar Palestinian sources UN Secretary General Kofi Annan
Shanghai many Jewish voters Russian President Vladimir Putin
China Lebanese Christian lawmakers Syrian Foreign Minister Faruq al - Shara
Syria Israeli and Palestinian negotiators PLO leader Arafat
the Kyrgystan Republic A Canadian bank Libyan leader Muammar Gaddafi

Table 3: Entity Embeddings Nearest Neighbours

ACE05 OntoNotes

Static Layer
with 74.6 87.59
without 73.1 85.22

Embed Combination
Linear 70.2 83.96
Embed Update 74.6 87.59

Article Embedding
with 74.5 87.59
without 74.6 85.60

Sentence boundaries
with 70.8 86.30
without 74.6 87.59

Table 4: Architecture Ablations

Prime Minister Ehud Barak”.7

Given that the OntoNotes NER task considers
countries and cities as GPE (Geo-Political Enti-
ties), the nearest neighbours in the left hand col-
umn are expected. The nearest neighbours of
“Arab Foreign Ministers” and “Israeli Prime Min-
ister Ehud Barak” are more interesting, as there
is no label for groups of people or jobs for the
task.8 Despite this, the model produces good
embedding-based representations of these com-
plex higher level entities.

6.2 Directional Embeddings

The representation of the relationship between
each pair of words/entities as a vector is primar-
ily a mechanism used by the model to update the
word/entity vectors. However, the resulting vec-
tors, corresponding to output D of the Structure
Layer, may also provide useful information for

7Note that we exclude from the 10 nearest neighbours
identical entities from higher levels. I.e. if “the United King-
dom” is kept as a three token entity, and not merged into
a larger entity on higher levels, we do not report the same
phrase from all levels in the nearest neighbours.

8The phrase “Israeli Prime Minister Ehud Barak” would
have “Israeli” labelled as NORP, and “Ehud Barak” labelled
as PERSON in the OntoNotes corpus.

downstream tasks such as knowledge base popu-
lation.

To demonstrate the directional embeddings, Ta-
ble 5 shows the ten closest matches for the di-
rection between “the president” and “the People’s
Bank of China”. The network has clearly picked
up on the relationship of an employee to an organ-
isation.

the president → the People’s Bank of China
the chairman → the SEC
Vice Minister → the Ministry of Foreign Affairs
Chairman → the People’s Association of Taiwan
Deputy Chairman → the TBAD Women’s Division
Chairman → the KMT
Vice President → the Military Commission of the CCP
vice-chairman → the CCP
Associate Justices→ the Supreme Court of the United States
Chief Editor →Taiwan’s contemporary monthly
General Secretary → the Communist Party of China

Table 5: Directional Embeddings Nearest Neighbours

Table 5 also provides further examples of the
network merging and providing intuitive embed-
dings for multi-word entities.

7 Conclusion

We have presented a novel neural network archi-
tecture for smoothly merging token embeddings in
a sentence into entity embeddings, across multiple
levels. The architecture performs strongly on the
task of nested NER, setting a new state-of-the-art
F1 score by close to 8 F1 points, and is also com-
petitive at flat NER. Despite being trained only for
NER, the architecture provides intuitive embed-
dings for a variety of multi-word entities, a step
which we suggest could prove useful for a variety
of downstream tasks, including entity linking and
coreference resolution.
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A Supplemental Material

A.1 HyperParameters
In addition to the hyperparameters recorded in the
main paper, there are a large number of additional
hyperparameters which we kept constant through-
out experiments. The feedforward NN in the Static
Layer, FFs, has two hidden layers each of dimen-
sion 200. The NN in the Embed Update layer,
FFEU has two hidden layers, each of dimension
320. The output NN has one hidden layer of di-
mension 200. Aside from FFEU , which is ini-
tialized using the identity function as described in
Supplementary section A.2, all parameters of net-
works are initialized from the uniform distribution
between -0.1 and 0.1. The article theme size, a, is
set to 50. All network layers use the SELU acti-
vation function of (Klambauer et al., 2017). The
kernel size k for the Static Layer is set to 6, allow-
ing each token to attend the 3 tokens either side.

On the OntoNotes Corpus, we train for 60
epochs, and half the learning rate every 12 epochs.
On ACE 2005, we train for 150 epochs, and half
the learning rate every 30 epochs. We train with
a maximum batch dimension of 900 tokens. Arti-
cles longer than length 900 are split and processed
in separate batches. We train using the Adam Op-
timizer, and, in addition to the dropout of 0.1, we
apply a dropout to the Glove/LM embeddings of
0.2.

A.2 Identity initialization
Figure 11 gives a minimum working example of
identity initialization of FFEU . The embedding
for “The” is [1.1, 0.5], and that for “President” is
[1.1, -0.3]. Through the unfold ops, we’ll end up
with the two embeddings concatenated together.
Figure 11 shows FFEU as having just one layer
with no activation function to demonstrate the ef-
fect of the identity initialization. The first two
dimensions of the output are the embedding for
“The” with no changes. The final output (in light
green) is the weighting.

Figure 11: Update mechanism

In reality, the zeros in the weights tensor are

initialized to very small random numbers (we use
a uniform initialization between -0.01 and 0.01),
so that during training FFEU learns to update the
embedding for “The” using the information that it
is one step before the word “President”.

A.3 Formation of outputs R and D in
Structure Layer

Outputs R and D of the Structure Layer have
dimensions [b,s, k, e] and [b, s, k, d] respectively.
These outputs are a weighted average of the direc-
tional and embedding outputs from the L levels of
the structure layer. We use the weights, W ′, (see
Figure 6) to form the weighted average:

D =
L∑
l=1

W ′
lDl

In the case of the weighted average for the em-
bedding tensor, R, we use the weights from the
next level.

R =
L∑
l=1

W ′
l+1Rl

As a result, when updating, each token “sees”
information from tokens/entities on other levels
dependent on whether or not they are in the same
entity. For the intuition behind this, we use the ex-
ample phrase “The United Kingdom government”
from Figure 6. The model should output merge
values M which group the tokens “The United
Kingdom” on the first level, and then group all
the tokens on the second level. If this is the case,
then for the token “United”, R and D will hold
the embedding of/directions to the tokens “The”
and “Kingdom” in their disaggregated (unmerged)
form. However, for the token “government”, R
and D will hold embeddings of/ directions to the
combined entity “the United Kingdom” in each
of the three slots for “The”, “United” and “King-
dom”. Because “government” is not in the same
entity as “The United Kingdom” on the first level,
it “sees” the aggregated embedding of this entity.

Intuitively, this allows the token “government”
to update in the model based on the information
that it has a country one step to the left of it, as
opposed to having three separate tokens, one, two
and three steps to the left respectively. Note that
as with the entity merging, there are no hard deci-
sions during training, with this effect based on the
real valued merge tensor M , to allow differentia-
bility.


