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Abstract

Unseen words, also called out-of-vocabulary
words (OOVs), are difficult for machine trans-
lation. In neural machine translation, byte-pair
encoding can be used to represent OOVs, but
they are still often incorrectly translated. We
improve the translation of OOVs in NMT us-
ing easy-to-obtain monolingual data. We look
for OOVs in the text to be translated and trans-
late them using simple-to-construct bilingual
word embeddings (BWEs). In our MT exper-
iments we take the 5−best candidates, which
is motivated by intrinsic mining experiments.
Using all five of the proposed target language
words as queries we mine target-language sen-
tences. We then back-translate, forcing the
back-translation of each of the five proposed
target-language OOV-translation-candidates to
be the original source-language OOV. We
show that by using this synthetic data to fine-
tune our system the translation of OOVs can be
dramatically improved. In our experiments we
use a system trained on Europarl and mine sen-
tences containing medical terms from mono-
lingual data.

1 Introduction

Neural machine translation (NMT) systems
achieved a breakthrough in translation quality
recently, by learning an end-to-end system
(Sutskever et al., 2014; Bahdanau et al., 2015).
However, NMT systems have low quality when
translating out-of-vocabulary words (OOVs),
especially because they have a fixed modest
sized vocabulary due to memory limitations. By
splitting words into subword units the problem of
representing OOVs can be solved (Sennrich et al.,
2016b) but their translation is still problematic
because by definition source-side OOVs were not
seen in the training parallel data together with
their translations. In this work, we evaluate a
simple approach for improving the translation of

OOVs using bilingual word embeddings (BWEs),
which we hope will trigger more research on this
interesting problem.

In previous approaches, to include words in the
target sentence for which the translation is un-
known the token unk is often used which can
be handled by later steps. In many cases, such
as named entities, it is possible to just copy the
source token to the target side instead of translat-
ing it. Gulcehre et al. (2016) proposed a pointer
network based (Vinyals et al., 2015) system which
can learn when to translate and when to copy. On
the other hand, it is not possible to always copy
when the translation is unknown. If the alignment
of the unk tokens to the source are known it is
possible to translate source words using a large
dictionary as a post-processing step. Although
NMT systems do not rely on word alignments ex-
plicitly, it is possible to learn and output word
alignments (Luong et al., 2015). It is also possi-
ble to use lexically-constrained decoders (Post and
Vilar, 2018; Hasler et al., 2018) in order to force
the network to output certain words or sequences.
This way alignments are not needed and the sys-
tem can decide the position of the constraints in
the output. The disadvantage of the above meth-
ods is that the translation of words needed to be
decided either as a pre- or post-processing step
without the context which makes the translation
of some words, such as polysemous words, dif-
ficult. In addition, lexically-constrained decoders
require the target words to be observed in context
at training time, or they will usually not be placed
properly. In contrast, we fine-tune NMT systems
for better translation of problematic words on the
sentence level and are thus able to exploit the con-
text instead of handling the problem on the word
level.

In our approach, we rely on bilingual word em-
beddings (BWEs) which can be built using large
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monolingual data and a cheap bilingual signal.
BWEs can easily cover a very large vocabulary.
Given the sentences to translate we look for source
language words not included in the parallel train-
ing set of our MT system (OOVs). We translate
OOVs using BWE based dictionaries taking n-
best candidates as opposed to previous work (e.g.,
(Luong et al., 2015)) where only the best trans-
lation is used during post-processing. In our ex-
periments we take the 5−best predictions of our
BWEs, and retrieve sentences containing these
target-language predictions from a monolingual
corpus. As was shown before, NMT systems can
be quickly and effectively fine-tuned using just a
few sentences (Farajian et al., 2017, 2018; Wue-
bker et al., 2018). Based on the 5−best transla-
tions of OOVs we mine sentences from target lan-
guage monolingual data and generate a synthetic
parallel corpus using back-translation (Sennrich
et al., 2016a). We force the source-language trans-
lation of each OOV-translation-candidate to be the
original OOV. We show that by using this synthetic
data to fine-tune our system the translation of un-
seen words can be dramatically improved, despite
the presence of wrong translations of each OOV
in the synthetic data. We test our system on the
translation of English medical terms to German
and show significant improvements using our ap-
proach. In this paper, we study a domain adapta-
tion task in order to show the advantages clearly,
but our approach does not focus on this domain
adaptation and it can also be directly applied gen-
erally with no modification (e.g., to an in-domain
task).

2 Approach

In order to fine-tune an NMT system we aim to
generate a synthetic parallel corpus containing the
translations of source OOVs on the target side.
Our approach relies on a dictionary containing
source-target word translations. We mine target
language sentences using the n−best translations
of OOVs from topic specific monolingual data.
We back-translate these sentences and run a (fine-
tuning) training step of the NMT system on the
generated corpus. Even though many word trans-
lation candidates in the dictionary are incorrect,
we show in our experiments that the NMT system
can effectively filter out the noise in the synthetic
corpus using the context.

2.1 Word Translation

To translate source language words we use a com-
bination of BWE based cosine and orthographic
similarity. BWEs represent source and target lan-
guage words in a joint space and can be built by
training monolingual spaces and projecting them
to the common space. Initially, a small seed lex-
icon was used as the bilingual signal to learn a
linear mapping (Mikolov et al., 2013) which was
further improved by applying orthogonal transfor-
mations only (Xing et al., 2015). Recently, various
techniques were developed to build BWEs without
any bilingual signal (Conneau et al., 2018; Artetxe
et al., 2018). In the work of Conneau et al. (2018)
adversarial training is employed to generate an ini-
tial seed lexicon of frequent words which is then
used for orthogonal mapping. Even though BWEs
in general are of good quality the translation of
various words types, such as named entities and
rare words, could be further improved by using or-
thographic similarity (Braune et al., 2018; Riley
and Gildea, 2018; Artetxe et al., 2019). Similarly
to (Braune et al., 2018), we combine the BWE
based cosine and orthographic similarity of word
pairs to get the translations of source words. We
generate a dictionary of source-target word pairs
by taking the top n most similar target words for
each source using both similarity measures. We
define orthographic similarity as one minus nor-
malized Levenshtein distance. Since orthographic
similarity of close words are higher than their co-
sine, we weight the former with 0.2 (we found this
value to work well on a different task and did not
tune it further).

To build monolingual embeddings we use fast-
Text’s skipgram model (Bojanowski et al., 2017)
with dimension size 300 and minimum word fre-
quency 3. For building unsupervised BWEs we
use MUSE as the implementation of (Conneau
et al., 2018). Note that we use unsupervised BWEs
due to their good performance on the En-De lan-
guage pair (see (Conneau et al., 2018)). But ac-
quiring a small lexicon including frequent words
is cheap for language pairs where unsupervised
mapping has a lower performance than supervised
mapping, and could be considered in future work.

2.2 NMT Fine-Tuning

We mine target language sentences from a mono-
lingual corpus which contains the translations of
source OOVs. Since the source sentences needed
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UFAL UFAL+orth EU+UFAL EU+UFAL+orth
n P@n R@n F1@n P@n R@n F1@n P@n R@n F1@n P@n R@n F1@n

1 58.19 13.58 22.02 58.13 25.28 35.24 68.65 37.56 48.55 69.59 41.87 52.28
5 44.46 26.10 32.89 50.05 43.82 46.73 54.33 48.46 51.22 51.13 51.71 51.41

10 35.80 29.84 32.55 41.04 47.64 44.09 42.94 53.41 47.61 44.45 56.34 49.70
20 29.54 33.58 31.43 34.43 50.16 40.83 36.42 58.78 44.98 37.42 61.30 46.47

Table 1: Quality of the mining procedure using different sizes of n−best translations. We use only sentences from
UFAL or both EU and UFAL to build BWEs. We compare cosine only and cosine combined with orthography.

to be translated are available before running the
decoder, it is possible to get a list of OOVs from
them by using the word vocabulary of the parallel
training data. We translate the OOVs of our de-
velopment and test data using the dictionaries de-
scribed above by taking n−best translations. We
present experiments with different n values in our
intrinsic experiments. These source words tend to
be noisy, especially in the medical domain, thus
we apply a filtering step by ignoring those words
containing non-letter characters as more than one
third of their characters. In addition, we also filter
out translations that are stopwords. We then use
the set of target language words to mine all sen-
tences that contain any of them from the monolin-
gual data. We filter out sentences longer than 50
tokens, since they tend to be listings of medical
terms, and back-translate the rest to generate syn-
thetic parallel data. We force the back-translation
of each of the proposed target-language OOV-
translation-candidates to be the original source-
language OOV.

In our experiments we use an encoder-decoder
NMT system (Sennrich et al., 2017) with atten-
tion, 500 dimensional embedding layer, 1024 di-
mensional GRU layer and we use Adam with a
learning rate of 0.0001 to train the network. We
apply word segmentation with BPE using 50K
merge operations to the English text, and a linguis-
tically informed pipeline to the target-side Ger-
man text (Huck et al., 2017b). It is important to
understand that OOVs for us are words, and we
handle both the dictionary based OOV translation
and sentence mining on the word level. BPEs
are only used when using NMT to translate. We
train two systems, one each for the forward and
backward directions. We describe the used data in
Section 3. During back-translation we force the
OOV-translation-candidates to be back-translated
to the original source-language OOV by changing
the OOV-translation-candidate to a special token
on the target side before translation and then sub-

stituting the special token in the source-language
back-translated output with the original OOV. This
way, we make sure the MT system sees the OOV
and each of its OOV-translation-candidates in the
correct target-language context for the particular
OOV-translation-candidate being considered.

Finally, to improve the OOV translation of the
forward system, we fine-tune it on the gener-
ated parallel data. We run only one training step
over the whole synthetic corpus similarly to (Fara-
jian et al., 2018), which makes the system learn
newly seen words while not overwriting impor-
tant knowledge previously learned from the truly
parallel data the system was originally trained on.
Since we mine target sentences based on mul-
tiple OOV-translation-candidates for each given
OOV the system is tuned on different transla-
tions and their relevant contexts. This helps the
network to correctly translate polysemous words,
because the input context (which often disam-
biguates a polysemous word) will usually be most
similar to the target-language context of the cor-
rect OOV-translation-candidate. Furthermore, this
also makes our approach robust against incorrect
OOV-translation-candidates in the used dictionary,
since they are often used in very different contexts
compared to the context of the source OOV we are
translating.

3 Experiments

We translate medical English sentences to Ger-
man. To train the baseline NMT system we
used the Europarl v7 (EU) parallel dataset con-
taining 1.9M sentence pairs (Koehn, 2005). As
medical data, we took 3.1M sentences from ti-
tles of medical Wikipedia articles, medical term-
pairs, patents and documents from the European
Medicines Agency which are part of the UFAL
Medical Corpus (UFAL). Since the corpus is par-
allel, we split it and used even sentences for En-
glish and odd ones for German. We built BWEs
not only on the monolingual medical data but on
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Acc1 Acc5

fr
eq (Braune et al., 2018) 38.6 47.4

EU+UFAL+orth 25.9 40.6
ra

re (Braune et al., 2018) 26.3 28.2
EU+UFAL+orth 17.5 28.8

Table 2: Medical bilingual lexicon induction results
showing the quality of the BWE based dictionaries us-
ing 1-best and 5-best translations.

the concatenation of all Europarl data and the
monolingual medical data to improve the quality
of BWEs (Hangya et al., 2018). We only mined
sentences from the monolingual medical German
corpus. The testing of our approach was done on
the medical Health In My Language (HimL) cor-
pora (Haddow et al., 2017) containing 1.9K sen-
tence pairs in both development and test sets. All
corpora were tokenized and truecased using Moses
scripts (Koehn et al., 2007).

We ran two sets of experiments. First we show
the translation quality of our dictionaries by look-
ing at the OOVs and their translations using HimL
development data. Then we show translation qual-
ity improvements on the HimL test data.

3.1 OOV Translation

The quality of our proposed method is highly de-
pendent on that of the used dictionaries, since in
order to mine useful sentences OOVs first needed
to be translated correctly. Since we lack the gold
translations of the OOVs, we measure the qual-
ity of the mined target language sentences us-
ing parallel data by following the approach pre-
sented for the fine-tuning of the NMT system. We
translate source OOVs from the HimL develop-
ment data using the n−best translations resulting
a set of target language words. We mine sen-
tences from the target side containing any of these
translations. For each mined sentence we check
if its source side pair contains the corresponding
OOV, meaning that the correct translation of the
OOV was contained by translation candidates, or
not which means that the sentence was mined due
to the translation of a different OOV. In addition,
we also measure the number of missed sentences,
i.e., in case a source sentence contains an OOV
but its target reference was not mined due to no
correct translation of the OOV in the candidates.
We show precision, recall and F1 scores indicating
how precisely would our system mine sentences
from the target side for the OOVs and the ratio of

Cochrane NHS24
baseline 22.4 20.2

copy 23.4 20.5
fine-tuned 27.2 22.5

Table 3: BLEU scores on the HimL test sets comparing
the baseline systems and our OOV specific fine-tuning.

OOVs covered. We use dictionaries with different
number of n−best translations built using only the
medical sentences of UFAL or both Europarl and
medical sentences in case of EU+UFAL. We also
compare dictionaries using only cosine similarity
with combined cosine and orthography (+orth).

We present results in Table 1. By comparing
dictionaries it can be seen that by using the addi-
tional EU data to build embeddings the translation
performance could be improved. As it was shown
in (Hangya et al., 2018) as well, the use of ad-
ditional general knowledge monolingual embed-
dings have higher quality. In addition, although
the parallelism in the EU data is not exploited ex-
plicitly, it effects mapping due to higher mono-
lingual space isomorphism (Søgaard et al., 2018).
Using orthographic similarity in addition to co-
sine further improves quality since a lot of medical
terms have similar surface forms across languages.

The precision using the most similar translation
of OOVs indicates good dictionary quality for all
setups. On the other hand, it misses a lot of OOVs.
By increasing translation candidates recall could
be improved to the detriment of precision. Look-
ing at F1 scores we found that 5−best translations
gives best results 3 out of 4 times, thus we chose
this value for the MT experiments.

We also compare the quality of our best dictio-
nary (EU+UFAL+orth) to previous work by run-
ning bilingual lexicon induction using the test lex-
icons of Braune et al. (2018) containing frequent
and rare medical words respectively. Accuracies
of 1-best and 5-best translations in Table 2 show
comparable word translation quality to previous
work, although we do not employ any task specific
steps in contrast to Braune et al. (2018). Note that
our dictionary does not contain some of the rare
words of the test lexicons which we ignore during
evaluation.

3.2 Machine Translation

We present the improvements of our approach in
terms of translation quality in the following. As
the baseline, we used the English to German NMT
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source regular nosebleeds
reference regelmäßige Nasenbluten
baseline Regelmäßige Misskredite (discredits)

fine-tuned Regelmäßige Nasenbluten
source dizziness or lightheadedness
reference Schwindel oder Benommenheit
baseline Schwindelerregend (dizzying) oder zurückhaltend (reluctant).
fine-tuned Schwindel oder Schwächegefühl (feeling of faintness)

source A coronary angioplasty may not be technically possible [. . . ]
reference Eine Koronarangioplastie ist wahrscheinlich technisch nicht möglich [. . . ]
baseline Ein Herzinfarkt (heart attack) ist vielleicht technisch nicht möglich [. . . ]
fine-tuned Eine koronare Angioplastie ist möglicherweise nicht technisch möglich [. . . ]
source Four different alpha blockers were tested (alfuzosin, tamsulosin, doxazosin and silodosin).
reference Vier verschiedene Alphablocker wurden getestet (Alfuzosin, Tamsulosin, Doxazosin und Silodosin).
baseline Vier verschiedene Alphablocker wurden getestet (alfuzos, tasuloin, doxasa und silodosin).
fine-tuned Vier unterschiedliche Alphablocker wurden untersucht (Alfuzosin, Tamsulosin, Doxazosin und Tigecyclin).

Table 4: Example translations comparing the baseline with our fine-tuned model. OOVs and their translations are
highlighted in bold. For convenience, we provide the English meaning of a selected set of German translations
(small font in parentheses).

system detailed earlier without fine-tuning, i.e.,
trained only on Europarl data. We also compare
our system to an approach which simply copies
source OOVs to the target side. Similarly to our
back-translation approach, we change OOVs to a
special token on the source side before transla-
tion which we substitute with the original OOV
on the target side. If multiple OOVs appear in a
sentence we use the order as they appear on the
source side. Based on the experiments in the pre-
vious section, we used the EU+UFAL+orth dic-
tionary with 5−best translations resulting in 95K
mined target sentences from the monolingual cor-
pus. We present case-sensitive BLEU scores cal-
culated with the mteval-v13a.pl script from
the Moses toolkit on the two parts of HimL test set
separately: Cochrane and NHS24.

Results are in Table 3. The performance of the
baseline system is poor on both parts of the test
set due to the many OOVs in the source sentences
which were not seen in the parallel Europarl. The
system is also out of domain which causes an ad-
ditional detriment. (Cf. Huck et al. (2017a, 2018)
for descriptions of state-of-the-art health domain
translation systems that are trained on large in-
domain parallel data.) A simple source-to-target
OOV token copying strategy improves over the
baseline, but not by a large margin. The fine-
tuned system, by contrast, performs considerably
better, achieving an increase of +4.8 and +2.3
BLEU points on Cochrane and NHS24, respec-
tively. By looking at examples (Table 4) we see
that, on top of the domain adaptation effect of

the back-translated data, the translation of OOVs
is improved, especially of medical terminology,
showing the effectiveness of the approach.

4 Conclusions

Although OOVs can be represented in NMT sys-
tems, translation is difficult. In this paper we pro-
posed a method for better translation of OOVs.
Our approach relies on bilingual word embeddings
based dictionaries which are simple to construct
but cover a large vocabulary. We mine target-
language sentences containing the 5−best trans-
lations of OOVs according to our BWEs. We then
back-translate. Using this noisy synthetic paral-
lel data we fine-tune the initial NMT system. We
showed the performance of our approach on the
translation of medical terms using a system trained
on Europarl parallel data. Our results showed
that having both source OOVs and their transla-
tions in the sentence pairs results in improvements
in BLEU. Our method of term mining followed
by back-translation and fine-tuning can easily be
applied to any NMT task including non-domain-
adaptation tasks.
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