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Abstract

Word embeddings typically represent differ-
ent meanings of a word in a single conflated
vector. Empirical analysis of embeddings of
ambiguous words is currently limited by the
small size of manually annotated resources
and by the fact that word senses are treated
as unrelated individual concepts. We present
a large dataset based on manual Wikipedia an-
notations and word senses, where word senses
from different words are related by semantic
classes. This is the basis for novel diagnos-
tic tests for an embedding’s content: we probe
word embeddings for semantic classes and an-
alyze the embedding space by classifying em-
beddings into semantic classes. Our main find-
ings are: (i) Information about a sense is gen-
erally represented well in a single-vector em-
bedding — if the sense is frequent. (ii) A clas-
sifier can accurately predict whether a word
is single-sense or multi-sense, based only on
its embedding. (iii) Although rare senses are
not well represented in single-vector embed-
dings, this does not have negative impact on an
NLP application whose performance depends
on frequent senses.

1 Introduction

Word embeddings learned by methods like
Word2vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014) have had a big impact on
natural language processing (NLP) and informa-
tion retrieval (IR). They are effective and effi-
cient for many tasks. More recently, contextual-
ized embeddings like ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) have further im-
proved performance. To understand both word
and contextualized embeddings, which still rely on
word/subword embeddings at their lowest layer,
we must peek inside the blackbox embeddings.
Given the importance of word embeddings, at-
tempts have been made to construct diagnostic

tools to analyze them. However, the main tool
for analyzing their semantic content is still look-
ing at nearest neighbors of embeddings. Nearest
neighbors are based on full-space similarity ne-
glecting the multifacetedness property of words
(Gladkova and Drozd, 2016) and making them un-
stable (Wendlandt et al., 2018).

As an alternative, we propose diagnostic clas-
sification of embeddings into semantic classes
as a probing task to reveal their meaning con-
tent. We will refer to semantic classes as S-
classes. We use S-classes such as food, drug
and 1iving-thing to define word senses. S-
classes are frequently used for semantic analysis,
e.g., by Kohomban and Lee (2005), Ciaramita and
Altun (2006) and Izquierdo et al. (2009) for word
sense disambiguation, but have not been used for
analyzing embeddings.

Analysis based on S-classes is only promising if
we have high-quality S-class annotations. Existing
datasets are either too small to train embeddings,
e.g., SemCor (Miller et al., 1993), or artificially
generated (Yaghoobzadeh and Schiitze, 2016).
Therefore, we build WIKI-PSE, a WIKlIpedia-
based resource for Probing Semantics in word Em-
beddings. We focus on common and proper nouns,
and use their S-classes as proxies for senses.
For example, “lamb” has the senses food and
living—-thing.

Embeddings do not explicitly address ambigu-
ity; multiple senses of a word are crammed into a
single vector. This is not a problem in some appli-
cations (Li and Jurafsky, 2015); one possible ex-
planation is that this is an effect of sparse coding
that supports the recovery of individual meanings
from a single vector (Arora et al., 2018). But am-
biguity has an adverse effect in other scenarios,
e.g., Xiao and Guo (2014) see the need of filter-
ing out embeddings of ambiguous words in depen-
dency parsing.
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We present the first comprehensive empirical
analysis of ambiguity in word embeddings. Our
resource, WIKI-PSE, enables novel diagnostic
tests that help explain how (and how well) embed-
dings represent multiple meanings. !

Our diagnostic tests show: (i) Single-vector em-
beddings can represent many non-rare senses well.
(i1) A classifier can accurately predict whether a
word is single-sense or multi-sense, based only on
its embedding. (iii) In experiments with five com-
mon datasets for mention, sentence and sentence-
pair classification tasks, the lack of representation
of rare senses in single-vector embeddings has lit-
tle negative impact — this indicates that for many
common NLP benchmarks only frequent senses
are needed.

2 Related Work

S-classes (semantic classes) are a central concept
in semantics and in the analysis of semantic phe-
nomena (Yarowsky, 1992; Ciaramita and Johnson,
2003; Senel et al., 2018). They have been used
for analyzing ambiguity by Kohomban and Lee
(2005), Ciaramita and Altun (2006), and Izquierdo
et al. (2009), inter alia. There are some datasets
designed for interpreting word embedding dimen-
sions using S-classes, e.g., SEMCAT (Senel et al.,
2018) and HyperLex (Vulic et al., 2017). The
main differentiator of our work is our probing ap-
proach using supervised classification of word em-
beddings. Also, we do not use WordNet senses
but Wikipedia entity annotations since WordNet-
tagged corpora are small.

In this paper, we probe word embeddings with
supervised classification. Probing the layers of
neural networks has become very popular. Con-
neau et al. (2018) probe sentence embeddings
on how well they predict linguistically moti-
vated classes. Hupkes et al. (2018) apply di-
agnostic classifiers to test hypotheses about the
hidden states of RNNs. Focusing on embed-
dings, Kann et al. (2019) investigate how well
sentence and word representations encode infor-
mation necessary for inferring the idiosyncratic
frame-selectional properties of verbs. Similar to
our work, they employ supervised classification.
Tenney et al. (2019) probe syntactic and seman-
tic information learned by contextual embeddings
(Melamud et al., 2016; McCann et al., 2017; Pe-

'WIKI-PSE is available publicly at https:
//github.com/yyaghoobzadeh/WIKI-PSE.

ters et al., 2018; Devlin et al., 2018) compared
to non-contextualized embeddings. They do not,
however, address ambiguity, a key phenomenon
of language. While the terms “probing” and “di-
agnosing” come from this literature, similar prob-
ing experiments were used in earlier work, e.g.,
Yaghoobzadeh and Schiitze (2016) probe for lin-
guistic properties in word embeddings using syn-
thetic data and also the task of corpus-level fine-
grained entity typing (Yaghoobzadeh and Schiitze,
2015).

We use our new resource WIKI-PSE for ana-
lyzing ambiguity in the word embedding space.
Word sense disambiguation (WSD) (Agirre and
Edmonds, 2007; Navigli, 2009) and entity link-
ing (EL) (Bagga and Baldwin, 1998; Mihalcea and
Csomai, 2007) are related to ambiguity in that they
predict the context-dependent sense of an ambigu-
ous word or entity. In our complementary ap-
proach, we analyze directly how multiple senses
are represented in embeddings. While WSD and
EL are important, they conflate (a) the evalua-
tion of the information content of an embedding
with (b) a model’s ability to extract that informa-
tion based on contextual clues. We mostly focus
on (a) here. Also, in contrast to WSD datasets,
WIKI-PSE is not based on inferred sense tags and
not based on artificial ambiguity, i.e., pseudowords
(Gale et al., 1992; Schiitze, 1992), but on real
senses marked by Wikipedia hyperlinks. There
has been work in generating dictionary definitions
from word embeddings (Noraset et al., 2017; Bosc
and Vincent, 2018; Gadetsky et al., 2018). Gadet-
sky et al. (2018) explicitly adress ambiguity and
generate definitions for words conditioned on their
embeddings and selected contexts. This also con-
flates (a) and (b).

Some prior work also looks at how ambiguity
affects word embeddings. Arora et al. (2018) posit
that a word embedding is a linear combination of
its sense embeddings and that senses can be ex-
tracted via sparse coding. Mu et al. (2017) ar-
gue that sense and word vectors are linearly re-
lated and show that word embeddings are intersec-
tions of sense subspaces. Working with synthetic
data, Yaghoobzadeh and Schiitze (2016) evaluate
embedding models on how robustly they represent
two senses for low vs. high skewedness of senses.
Our analysis framework is novel and complemen-
tary, with several new findings.

Some believe that ambiguity should be elimi-
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m1: due to its tartness, it is often combined it with sweeter
juices, such as @apple@ or grape.

m?2: @apple@ is rumored to be working on a smartwatch
which may be called an “iwatch”.

m3: a clic app was released for @apple@ ‘s iOS devices in

August.
food organization
(ml) (m2, m3)
Figure 1: Example of how we build WIKI-PSE.

There are three sentences linking “apple” to differ-
ent entities. There are two mentions (msq,mg) with
the organization sense (S-class) and one mention
(mq) with the food sense (S-class).

nated from embeddings, i.e., that a separate em-
bedding is needed for each sense (Schiitze, 1998;
Huang et al., 2012; Neelakantan et al., 2014; Li
and Jurafsky, 2015; Camacho-Collados and Pile-
hvar, 2018). This can improve performance on
contextual word similarity, but a recent study
(Dubossarsky et al., 2018) questions this finding.
WIKI-PSE allows us to compute sense embed-
dings; we will analyze their effect on word em-
beddings in our diagnostic classifications.

3 WIKI-PSE Resource

We want to create a resource that allows us to
probe embeddings for S-classes. Specifically, we
have the following desiderata:

(1) We need a corpus that is S-class-annotated at
the token level, so that we can train sense embed-
dings as well as conventional word embeddings.
(i1) We need a dictionary of the corpus vocabulary
that is S-class-annotated at the type level. This
gives us a gold standard for probing embeddings
for S-classes.

(iii) The resource must be large so that we have
a training set of sufficient size that lets us com-
pare different embedding learners and train com-
plex models for probing.

We now describe WIKI-PSE, a Wikipedia-
driven resource for Probing Semantics in Embed-
dings, that satisfies our desiderata.

WIKI-PSE consists of a corpus and a corpus-
based dataset of word/S-class pairs: an S-class is
assigned to a word if the word occurs with that S-

location, person, organization, art, event, broad-
cast_program, title, product, living_thing, people-
ethnicity, language, broadcast_network, time,
religion-religion, award, internet-website, god,
education-educational_degree, food, computer-
programming_language, metropolitan_transit-
transit_line, transit, finance-currency, disease,
chemistry, body_part, finance-stock _exchange,
law, medicine-medical_treatment,  medicine-
drug, broadcast-tv_channel, medicine-symptom,
biology, visual_art-color

Table 1: S-classes in WIKI-PSE sorted by frequency.

class in the corpus. There exist sense annotated
corpora like SemCor (Miller et al., 1993), but due
to the cost of annotation, those corpora are usually
limited in size, which can hurt the quality of the
trained word embeddings — an important factor for
our analysis.

In this work, we propose a novel and scalable
approach to building a corpus without depend-
ing on manual annotation except in the form of
Wikipedia anchor links.

WIKI-PSE is based on the English Wikipedia
(2014-07-07).  Wikipedia is suitable for our
purposes since it contains nouns — proper and
common nouns — disambiguated and linked to
Wikipedia pages via anchor links. To find more
abstract meanings than Wikipedia pages, we an-
notate the nouns with S-classes. We make use of
the 113 FIGER types? (Ling and Weld, 2012), e.g.,
person and person/author.

Since we use distant supervision from knowl-
edge base entities to their mentions in Wikipedia,
the annotation contains noise. For example, “Karl
Marx” is annotated with person/author,
person/politician and person and so is
every mention of him based on distant supervi-
sion which is unlikely to be true. To reduce
noise, we sacrifice some granularity in the S-
classes. We only use the 34 parent S-classes in
the FIGER hierarchy that have instances in WIKI-
PSE; see Table 1. For example, we leave out
person/author and person/politician
and just use person. By doing so, mentions of
nouns are rarely ambiguous with respect to S-class
and we still have a reasonable number of S-classes
(i.e., 34).

The next step is to aggregate all S-classes a sur-
face form is annotated with. Many surface forms

2We follow the mappings in https://github.com/
xiaoling/figer to first find the corresponding Freebase
topic of a Wikipedia page and then map it to FIGER types.
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are used for referring to more than one Wikipedia
page and, therefore, possibly to more than one S-
class. So, by using these surface forms of nouns?,
and their aggregated derived S-classes, we build
our dataset of words and S-classes. See Figure 1
for “apple” as an example.

We differentiate linked mentions by enclosing
them with “@”, e.g., “apple” — “@apple@”. If
the mention of a noun is not linked to a Wikipedia
page, then it is not changed, e.g., its surface form
remains “apple”. This prevents conflation of S-
class-annotated mentions with unlinked mentions.

For the corpus, we include only sentences with
at least one annotated mention resulting in 550
million tokens — an appropriate size for embed-
ding learning. By lowercasing the corpus and set-
ting the minimum frequency to 20, the vocabu-
lary size is ~=500,000. There are ~276,000 anno-
tated words in the vocabulary, each with >= 1 S-
classes. In total, there are ~343,000 word/S-class
pairs, i.e., words have 1.24 S-classes on average.

For efficiency, we select a subset of words
for WIKI-PSE. We first add all multiclass words
(those with more than one S-class) to the dataset,
divided randomly into train and test (same size).
Then, we add a random set with the same size
from single-class words, divided randomly into
train and test (same size). The resulting train and
test sets have the size of 44,250 each, with an equal
number of single and multiclass words. The aver-
age number of S-classes per word is 1.75.

4 Probing for Semantic Classes in Word
Embeddings

We investigate embeddings by probing: Is the in-
formation we care about available in a word w’s
embedding? Specifically, we probe for S-classes:
Can the information whether w belongs to a spe-
cific S-class be obtained from its embedding? The
probing method we use should be: (i) simple with
only the word embedding as input, so that we do
not conflate the quality of embeddings with other
confounding factors like quality of context repre-
sentation (as in WSD); (ii) supervised with enough
training data so that we can learn strong and non-
linear classifiers to extract meanings from embed-
dings; (iii) agnostic to the model architecture that
the word embeddings are trained with.
WIKI-PSE, introduced in §3, provides a text
corpus and annotations for setting up probing

3Linked multiwords are treated as single tokens.

methods satisfying (i) — (iii). We now describe the
other elements of our experimental setup: word
and sense representations, probing tasks and clas-
sification models.

4.1 Representations of Words and Senses

We run word embedding models like WORD2VEC
on WIKI-PSE to get embeddings for all words in
the corpus, including special common and proper
nouns like “@apple@”".

We also learn an embedding for each S-class
of a word, e.g., one embedding for “@apple@-
food” and one for “@apple@-organization”. To
do this, each annotated mention of a noun (e.g.,
“@apple@”) is replaced with a word/S-class to-
ken corresponding to its annotation (e.g., with
“@apple@-food” or “@apple@-organization”).
These word/S-class embeddings correspond to
sense embeddings in other work.

Finally, we create an alternative word embed-
ding for an ambiguous word like “@apple@” by
aggregrating its word/S-class embeddings by sum-
ming them: @ = ), oywe, where 0 is the aggre-
gated word embedding and the w, are the word/S-
class embeddings. We consider two aggregations:

e For uniform sum, written as unif>, we set
a; = 1. So a word is represented as the sum
of its sense (or S-class) embeddings; e.g., the
representation of “apple” is the sum of its or-
ganization and food S-class vectors.

o For weighted sum, written as wght3., we set
a; = freq(we,)/ >, freq(we;), ie., the rel-
ative frequency of word/S-class w,, in men-
tions of the word w. So a word is represented
as the weighted sum of its sense (or S-class)
embeddings; e.g., the representation of “ap-
ple” is the weighted sum of its organization
and food S-class vectors where the organiza-
tion vector receives a higher weight since it is
more frequent in our corpus.

unif>: is common in multi-prototype embed-
dings, cf. (Rothe and Schiitze, 2017). wghtX is
also motivated by prior work (Arora et al., 2018).
Aggregation allows us to investigate the reason for
poor performance of single-vector embeddings. Is
it a problem that a single-vector representation is
used as the multi-prototype literature claims? Or
are single-vectors in principle sufficient, but the
way sense embeddings are aggregated in a single-
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Figure 2: A 2D embedding space with three S-classes
(food, organization and event). A line divides positive
and negative regions of each S-class. Each of the seven
R; regions corresponds to a subset of S-classes.

vector representation (through an embedding algo-
rithm, through unifY or through wght3’) is critical.

4.2 Probing Tasks

The first task is to probe for S-classes. We train,
for each S-class, a binary classifier that takes an
embedding as input and predicts membership in
the S-class. An ambiguous word like “@apple@”
belongs to multiple S-classes, so each of several
different binary classifiers should diagnose it as
being in its S-class. How well this type of prob-
ing for S-classes works in practice is one of our
key questions: can S-classes be correctly encoded
in embedding space?

Figure 2 shows a 2D embedding space: each
point is assigned to a subset of the three S-classes,
e.g., “@apple@” is in the region “+food N +orga-
nization N -event” and “@google @ in the region
“-food N +organization N -event”.

The second probing task predicts whether an
embedding represents an unambiguous (i.e., one
S-class) or an ambiguous (i.e., multiple S-classes)
word. Here, we do not look for any specific mean-
ing in an embedding, but assess whether it is an en-
coding of multiple different meanings or not. High
accuracy of this classifier would imply that am-
biguous and unambiguous words are distinguish-
able in the embedding space.

4.3 Classification Models

Ideally, we would like to have linearly separable
spaces with respect to S-classes — presumably em-
beddings from which information can be effec-
tively extracted by such a simple mechanism are
better. However, this might not be the case consid-
ering the complexity of the space: non-linear mod-
els may detect S-classes more accurately. Nearest
neighbors computed by cosine similarity are fre-
quently used to classify and analyze embeddings,

so we consider them as well. Accordingly, we ex-
periment with three classifiers: (i) logistic regres-
sion (LR); (ii) multi-layer perceptron (MLP) with
one hidden and a final ReL U layer; and (iii) KNN:
K-nearest neighbors.

5 Experiments

Learning embeddings. Our method is agnostic to
the word embedding model. Therefore, we experi-
ment with two popular similar embedding models:
(i) SkipGram (henceforth SKIP) (Mikolov et al.,
2013), and (ii) Structured SkipGram (henceforth
SSKIP) (Ling et al., 2015). SSKIP models word or-
der while SKIP is a bag-of-words model. We use
WANG2VEC (Ling et al., 2015) with negative sam-
pling for training both models on WIKI-PSE. For
each model, we try four embedding sizes: {100,
200, 300, 400} using identical hyperparameters:
negatives=10, iterations=5, window=>5.

emb size | In | LR KNN MLP
100 1] .723 738 173

SKIP 200 2| .7740 734 786

word 300 3| .745 730 187

400 4 | 747 727 786

100 51 .681 727 152

SKIP 200 6| .695 721 156

wght 300 7 .699 728 752
400 8 | 702 711 153

100 9 | .787 .783 .830

SKIP 200 | 10 | .797 773 .833
unify 300 | 11 | .800 .765  .832
400 | 12 | .801 758  .834

100 | 13 | 737 749 785
SSKIP 200 | 14 | 754 745 793
word 300 | 15 | 760 741 97
400 | 16 | .762 737  .790
100 | 17 | .699 733 .762
SSKIP 200 | 18 | 710 726  .764
weht3 300 | 19 | 714 718 767
400 | 20 | 717 712 763
100 | 21 | .801 .783  .834
SSKIP 200 | 22 | 809 767  .840
unify 300 | 23 | 812 755 @ .842
400 | 24 | 814 747 844

-2 - -

random | -

Table 2: F} for S-class prediction. emb: embedding,
unifX (resp. wghtX)): uniform (resp. weighted) sum of
word/S-classes. In: line number. Bold: best F} result
per column and embedding model (SKIP and SSKIP).

5.1 S-class Prediction

Table 2 shows results on S-class prediction for
word, unif> and wght>. embeddings trained using
SKIP and SSKIP. Random is a simple baseline that
randomly assigns to a test example each S-class
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Figure 3: Results of S-class prediction as a function of two important factors: dominance-level and number of

S-classes

according to its prior probability (i.e., proportion
in train).

We train classifiers with Scikit-learn (Pedregosa
et al., 2011). Each classifier is an independent bi-
nary predictor for one S-class. We use the global
metric of micro F; over all test examples and
over all S-class predictions. We see the following
trends in our results.

MLP is consistently better than LR or KNN.
Comparing MLP and LR reveals that the space is
not linearly separable with respect to the S-classes.
This means that linear classifiers are insufficient
for semantic probing: we should use models for
probing that are more powerful than linear.

Higher dimensional embeddings perform better
for MLP and LR, but worse for KNN. We do fur-
ther analysis by counting the number £ of unique
S-classes in the top 5 nearest neighbors for word
embeddings; k is 1.42 times larger for embeddings
of dimensionality 400 than 200. Thus, more di-
mensions results in more diverse neighborhoods
and more randomness. We explain this by the
increased degrees of freedom in a higher dimen-
sional space: idiosyncratic properties of words can
also be represented given higher capacity and so
similarity in the space is more influenced by id-
iosyncracies, not by general properties like seman-
tic classes. Similarity datasets tend to only test
the majority sense of words (Gladkova and Drozd,
2016), and that is perhaps why similarity results
usually do not follow the same trend (i.e., higher
dimensions improve results). See Table 6 in Ap-
pendix for results on selected similarity datasets.

SSKIP performs better than SKIP. The differ-
ence between the two is that SSKIP models word

order. Thus, we conclude that modeling word
order is important for a robust representation.
This is in line with the more recent FASTTEXT
model with word order that outperforms prior
work (Mikolov et al., 2017).

We now compare word embeddings, unif2:, and
wght>. Recall that the sense vectors of a word
have equal weight in unif® and are weighted ac-
cording to their frequency in wght¥. The results
for word embeddings (e.g., line 1) are between
those of unif (e.g., line 9) and wghtX: (e.g., line
5). This indicates that their weighting of sense
vectors is somewhere between the two extremes
of unif> and wghtX. Of course, word embeddings
are not computed as an explicit weighted sum of
sense vectors, but there is evidence that they are
implicit frequency-based weighted sums of mean-
ings or concepts (Arora et al., 2018).

The ranking unif> > word embeddings >
wght3 indicates how well individual sense vec-
tors are represented in the aggregate word vectors
and how well they can be “extracted” by a classi-
fier in these three representations. Our prediction
task is designed to find all meanings of a word,
including rare senses. unifY is designed to give
relatively high weight to rare senses, so it does
well on the prediction task. wght¥ and word em-
beddings give low weights to rare senses and very
high weights to frequent senses, so the rare senses
can be “swamped” and difficult to extract by clas-
sifiers from the embeddings.

Public embeddings. To give a sense on how
well public embeddings, trained on much larger
data, do on S-class prediction in WIKI-PSE, we
use 300d GLOVE embeddings trained on 6B to-
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emb || LR KNN MLP
word g1 .605 715
wght> 652 640  .667
unify 766 709 767
GLOVE(6B) 667 638  .685
FASTTEXT(Wiki) || .699  .599 .697

Table 3: F) for S-class prediction on the subset of
WIKI-PSE whose vocabulary is shared with GLOVE
and FASTTEXT. Apart from using a subset of WIKI-
PSE, this is the same setup as in Table 2, but here we
compare word, wght>:, and unif> with public GLOVE
and FASTTEXT.

kens* from Wikipedia and Gigaword and FAST-
TEXT Wikipedia word embeddings.”> We create a
subset of the WIKI-PSE dataset by keeping only
single-token words that exist in the two embedding
vocabularies. The size of the resulting dataset is
13,000 for train and test each; the average number
of S-classes per word is 2.67.

Table 3 shows results and compares with our
different SSKIP 300d embeddings. There is a
clear performance gap between the two off-the-
shelf embedding models and unif¥, indicating that
training on larger text does not necessarily help for
prediction of rare meanings. This table also con-
firms Table 2 results with respect to comparison of
learning model (MLP, LR, KNN) and embedding
model (word, wght3>, unif}:). Overall, the perfor-
mance drops compared to the results in Table 2.
Compared to the WIKI-PSE dataset, this subset
has fewer (13,000 vs. 44,250) training examples,
and a larger number of labels per example (2.67
vs. 1.75). Therefore, it is a harder task.

5.1.1 Analysis of Important Factors

We analyze the performance with respect to multi-
ple factors that can influence the quality of the rep-
resentation of S-class s in the embedding of word
w: dominance, number of S-classes, frequency
and typicality. We discuss the first two here and
the latter two in the Appendix §A. These factors
are similar to those affecting WSD systems (Pile-
hvar and Navigli, 2014). We perform this analy-
sis for MLP classifier on SSKIP 400d embeddings.
We compute the recall for various conditions.®
Dominance of the S-class s for word w is de-
fined as the percentage of the occurrences of w
where its labeled S-class is s. Figure 3a shows

*https://nlp.stanford.edu/projects/glove/
Shttps:/fasttext.cc/docs/en/pretrained-vectors.html

SPrecision for these cases is not defined. This is similarly
applied in WSD (Pilehvar and Navigli, 2014).

for each dominance level what percentage of S-
classes of that level were correctly recognized by
their binary classifier. For example, 0.9 or 90%
of S-classes of words with dominance level 0.3
were correctly recognized by the corresponding S-
class’s binary classifier for unifX ((a), red curve).
Not surprisingly, more dominant meanings are
represented and recognized better.

We also see that word embeddings represent
non-dominant meanings better than wght3J, but
worse than unif>.. For word embeddings, the per-
formance drops sharply for dominance <0.3. For
wght3:, the sharp drops happens earlier, at domi-
nance <0.4. Even for unif¥, there is a (less sharp)
drop — this is due to other factors like frequency
and not due to poor representation of less domi-
nant S-classes (which all receive equal weight for
unif}?).

The number of S-classes of a word can influ-
ence the quality of meaning extraction from its
embedding. Figure 3b confirms our expectation: It
is easier to extract a meaning from a word embed-
ding that encodes fewer meanings. For words with
only one S-class, the result is best. For ambiguous
words, performance drops but this is less of an is-
sue for unif>.. For word embeddings (word), per-
formance remains in the range 0.6-0.7 for more
than 3 S-classes which is lower than unifX but
higher than wghtX by around 0.1.

5.2 Ambiguity Prediction

We now investigate if a classifier can predict
whether a word is ambiguous or not, based on
the word’s embedding. We divide the WIKI-PSE
dataset into two groups: unambiguous (i.e., one
S-class) and ambiguous (i.e., multiple S-classes).
LR, KNN and MLP are trained on the training set
and applied to the words in test. The only input
to a classifier is the embedding; the output is bi-
nary: one S-class or multiple S-classes. We use
SSKIP word embeddings (dimensionality 400) and
L2-normalize all vectors before classification. As
a baseline, we use the word frequency as single
feature (FREQUENCY) for LR classifier.

model LR KNN MLP
FREQUENCY | 64.8 - -

word 779 | 72.1 81.2
wght> 769 | 69.2 81.1
unif> 96.2 | 722 97.1

Table 4: Accuracy for predicting ambiguity
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Figure 4: Accuracy of word embedding and FRE-
QUENCY for predicting ambiguity as a function of
number of S-classes, using MLP classifier.

Table 4 shows overall accuracy and Figure 4 ac-
curacy as a function of number of S-classes. Accu-
racy of standard word embeddings is clearly above
the baselines, e.g., 81.2% for MLP and 77.9% for
LR compared to 64.8% for FREQUENCY. The
figure shows that the decision becomes easier with
increased ambiguity (e.g., ~100% for 6 or more
S-classes). It makes sense that a highly ambigu-
ous word is more easily identifiable than a two-
way ambiguous word. MLP accuracy for unifd is
close to 100%. We can again attribute this to the
fact that rare senses are better represented in unif>
than in regular word embeddings, so the ambiguity
classification is easier.

KNN results are worse than LR and MLP. This
indicates that similarity is not a good indicator of
degree of ambiguity: words with similar degrees
of ambiguity do not seem to be neighbors of each
other. This observation also points to an expla-
nation for why the classifiers achieve such high
accuracy. We saw before that S-classes can be
identified with high accuracy. Imagine a multi-
layer architecture that performs binary classifica-
tion for each S-class in the first layer and, based on
that, makes the ambiguity decision based on the
number of S-classes found. LR and MLP seem to
approximate this architecture. Note that this can
only work if the individual S-classes are recogniz-
able, which is not the case for rare senses in regu-
lar word embeddings.

In Appendix §C, we show top predictions for
ambiguous and unambiguous words.

5.3 NLP Application Experiments

Our primary goal is to probe meanings in word
embeddings without confounding factors like con-
textual usage. However, to give insights on how
our probing results relate to NLP tasks, we evalu-
ate our embeddings when used to represent word
tokens.” Note that our objective here is not to im-
prove over other baselines, but to perform analy-
sis.

We select mention, sentence and sentence-pair
classification datasets. For mention classifica-
tion, we adapt Shimaoka et al. (2017)’s setup:®
training, evaluation (FIGER dataset) and imple-
mentation. The task is to predict the contex-
tual fine-grained types of entity mentions. We
lowercase the dataset to match the vocabularies
of GLOVE(6B), FASTTEXT(Wiki) and our embed-
dings. For sentence and sentence-pair classifica-
tions, we use the SentEval® (Conneau and Kiela,
2018) setup for four datasets: MR (Pang and
Lee, 2005) (positive/negative sentiment predic-
tion for movie reviews) , CR (Hu and Liu, 2004)
(positive/negative sentiment prediction for prod-
uct reviews), SUBJ (Pang and Lee, 2004) (sub-
jectivity/objectivity prediction) and MRPC (Dolan
et al., 2004) (paraphrase detection). We average
embeddings to encode a sentence.

emb MC CR MR SUBJ MRPC
word 646 704 714 89.2 71.3
wght® 654 723 720 894 71.5
unify 61.6 69.1 68.8 879 71.3
GLOVE(6B) 58.1 757 752 913 72.5
FASTTEXT(Wiki) | 55.5 76.7 752 91.2 71.6

Table 5: Performance of the embedding models on five
NLP tasks

Table 5 shows results. For MC, performance of
embeddings is ordered: wghtX > word > unifX.
This is the opposite of the ordering in Table 2
where unif)) was the best and wght}: the worst.
The models with more weight on frequent mean-
ings perform better in this task, likely because
the dominant S-class is mostly what is needed.
In an error analysis, we found many cases where
mentions have one major sense and some minor
senses; e.g., unifY predicts “Friday” to be “lo-
cation” in the context “the U.S. Attorney’s Of-

"For the embeddings used in this experiment, if there are
versions with and without “@”’s, then we average the two;
e.g., “apple” is the average of “apple” and “@apple@”.

8hittps://github.com/shimaokasonse/NFGEC

*https://github.com/facebookresearch/SentEval
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fice announced Friday”. Apart from the major S-
class “time”, “Friday” is also a mountain (“Friday
Mountain”). unif}: puts the same weight on “lo-
cation” and “time”. wghtX puts almost no weight
on “location” and correctly predicts “time”. Re-
sults for the four other datasets are consistent: the
ordering is the same as for MC.

6 Discussion and Conclusion

We quantified how well multiple meanings are
represented in word embeddings. We did so by de-
signing two probing tasks, S-class prediction and
ambiguity prediction. We applied these probing
tasks on WIKI-PSE, a large new resource for anal-
ysis of ambiguity and word embeddings. We used
S-classes of Wikipedia anchors to build our dataset
of word/S-class pairs. We view S-classes as corre-
sponding to senses.

A summary of our findings is as follows. (i)
We can build a classifier that, with high accu-
racy, correctly predicts whether an embedding rep-
resents an ambiguous or an unambiguous word.
(ii) We show that semantic classes are recogniz-
able in embedding space — a novel result as far
as we know for a real-world dataset — and much
better with a nonlinear classifier than a linear one.
(iii) The standard word embedding models learn
embeddings that capture multiple meanings in a
single vector well — if the meanings are frequent
enough. (iv) Difficult cases of ambiguity — rare
word senses or words with numerous senses — are
better captured when the dimensionality of the em-
bedding space is increased. But this comes at
a cost — specifically, cosine similarity of embed-
dings (as, e.g., used by KNN, §5.2) becomes less
predictive of S-class. (v) Our diagnostic tests show
that a uniform-weighted sum of the senses of a
word w (i.e., unif}) is a high-quality representa-
tion of all senses of w — even if the word embed-
ding of w is not. This suggests again that the main
problem is not ambiguity per se, but rare senses.
(vi) Rare senses are badly represented if we use
explicit frequency-based weighting of meanings
(i.e., wghtX)) compared to word embedding learn-
ing models like SkipGram.

To relate these findings to sentence-based appli-
cations, we experimented with a number of pub-
lic classification datasets. Results suggest that
embeddings with frequency-based weighting of
meanings work better for these tasks. Weighting
all meanings equally means that a highly domi-

nant sense (like “time” for “Friday”) is severely
downweighted. This indicates that currently used
tasks rarely need rare senses — they do fine if they
have only access to frequent senses. However, to
achieve high-performance natural language under-
standing at the human level, our models also need
to be able to have access to rare senses — just like
humans do. We conclude that we need harder NLP
tasks for which performance depends on rare as
well as frequent senses. Only then will we be able
to show the benefit of word representations that
represent rare senses accurately.
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Figure 5: Results of word, uniform and weighted word/S-class embeddings for two other important factors: fre-

quency and typicality of S-class.

A Analysis of important factor: more
analysis

Frequency is defined as the absolute frequency
of s in occurrences of w. Frequency is impor-
tant to get good representations and the assump-
tion is that more frequency means better results.
In Figure 5a, prediction performance is shown for
a varying frequency-level. Due to rounding, each
level in x includes frequencies [z — 5,z + 5. As
expected higher frequency means better results.
All embeddings have high performance when fre-
quency is more than 20, emphasizing that embed-
dings can indeed represent a meaning well if it is
not too rare. For low frequency word/S-class es,
the uniform sum performs clearly better than the
other models. This shows that word and weighted
word/S-class embeddings are not good encodings
for rare meanings.

Typicality of a meaning for a word is important.
We define the typicality of S-class s for word w as
its average compatibility level with other classes
of w. We use Pearson correlation between S-
classes in the training words and assign the com-
patibility level of S-classes based on that. In Fig-
ure S5b, we see that more positive typicality leads
to better results in general. Each level in x axis
represents [z — 0.05, x + 0.05]. The S-classes that
have negative typicality are often the frequent ones
like “person” and “location” and that is why the
performance is relatively good for them.

B What does happen when classes of a
word become balanced?

Here, we analyze the space of word embeddings
with multiple semantic classes as the class dis-

250

245

240

235

230

225

220

avg num of neighbor senses

215

21
000 005 010 015 020 025 030 035

dominance

040 045

Figure 6: The average number of unique semantic
classes in the nearest neighbors of words with two
classes, in different dominance level.

tribution gets more balanced. In Figure 6, we
show that for two-class words, the average num-
ber of unique classes in the top five nearest neigh-
bors increases as the dominance level increases.
The dominance-level of 0.4 is basically where
the two classes are almost equally frequent. As
the two classes move towards equal importance,
their word embeddings move towards a space with
more diversity.

C Ambiguity prediction examples

In Table 7, we show some example predicted am-
biguous and unambiguous words based on the
word embeddings.

D Supersense experiment

To confirm our results in another dataset, we try
supersense annotated Wikipedia of UKP (Flekova
and Gurevych, 2016). We use their published 200-
dimensional word embeddings. A similar process
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model | size | MEN MTurk RW  SimLex999 WS353 Google MSR

SKIP 100 | 0.633  0.589  0.283 0.276 0.585 0.386  0.317
SKIP 200 | 0.675 0.613  0.286 0.306 0.595 0473  0.382
SKIP 300 | 0.695 0.624  0.279 0.325 0.626 0.495  0.405
SKIP 400 | 0.708  0.630  0.268 0.334 0.633 0.506 0416
SSKIP | 100 | 0.598 0.555 0.313 0.272 0.559 0375  0.349
SSKIP | 200 | 0.629 0.574 0.310 0.306 0.592 0464 0413
SSKIP | 300 | 0.645 0.588  0.300 0.324 0.606 0.486  0.430
SSKIP | 400 | 0.655 0576  0.291 0.340 0.616 0491 0431

Table 6: Similarity and analogy results of our word embeddings on a set of datasets (Jastrzebski et al., 2017).
The table shows the Spearmans correlation between the models similarities and human judgments. Size is the
dimensionality of the embeddings. Except for RW dataset, results improve by increasing embeddings size.

word | frequency | senses | likelihood

@liberty @ 554 event, organization, location, product, art, person 1.0

@aurora@ 879 organization, location, product, god, art, person, 1.0
broadcast_program

@arcadia@ 331 event, organization, location, product, art, person, 1.0
living_thing

@brown@ 590 food, event, title, organization, visual_art-color, 1.0
person, art, location, people-ethnicity, living_thing

@marshall @ 1070 art, location, title, organization, person 1.0

@green@ 783 food, art, organization, visual_art-color, location, 1.0

internet-website, metropolitan_transit-transit_line,
religion-religion, person, living_thing

@howard @ 351 person, title, organization, location 1.0
@lucas@ 216 art, person, organization, location 1.0
@smith@ 355 title, organization, person, product, art, location, 1.0
broadcast_program
@taylor@ 367 art, location, product, organization, person 1.0
@tom_cibulec@ 47 person 0.0
@judd_winick @ 113 person 0.0
@roger_reijners @ 26 person 0.0
@patrick rafter@ 175 person 0.0
@nasser-hussain @ 82 person 0.0
@sam_wyche@ 76 person, event 0.0
@lovie_smith@ 116 person 0.0
@calliostomatidae @ 431 living_thing 0.0
@joe_girardi @ 147 person 0.0
@old_world@ 91 location, living_thing 0.0

Table 7: The top ten ambiguous words followed by the top unambiguous words based on our model prediction in
Section 5.3. Each line is a word followed by its frequency in the corpus, its dataset senses and finally our ambiguity
prediction likelihood to be ambiguous.
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model | norm? | LR KNN MLP

MAJORITY - 50.0 - -
FREQUENCY - 67.3 - -
word embedding | yes 70.1 654 724
word embedding | no 723 654  73.0

Table 8: Ambiguity prediction accuracy for the super-
sense dataset. Norm: L2-normalizing the vectors.

as our WIKI-PSE is applied on the annotated cor-
pus to build word/S-class dataset. Here, the S-
classes are the supersenses. We consider NOUN
categories of words and build datasets for our anal-
ysis by aggregating the supersenses a word anno-
tated with in the corpus. Number of supersenses is
26 and train and test size: 27874. In Table 8, we
show the results of ambiguity prediction. As we
see, we can predict ambiguity using word embed-
dings with accuracy of 73%.
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