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Abstract

Contextual embeddings represent a new gener-
ation of semantic representations learned from
Neural Language Modelling (NLM) that ad-
dresses the issue of meaning conflation ham-
pering traditional word embeddings. In this
work, we show that contextual embeddings
can be used to achieve unprecedented gains
in Word Sense Disambiguation (WSD) tasks.
Our approach focuses on creating sense-level
embeddings with full-coverage of WordNet,
and without recourse to explicit knowledge of
sense distributions or task-specific modelling.
As a result, a simple Nearest Neighbors (k-
NN) method using our representations is able
to consistently surpass the performance of pre-
vious systems using powerful neural sequenc-
ing models. We also analyse the robustness
of our approach when ignoring part-of-speech
and lemma features, requiring disambiguation
against the full sense inventory, and revealing
shortcomings to be improved. Finally, we ex-
plore applications of our sense embeddings for
concept-level analyses of contextual embed-
dings and their respective NLMs.

1 Introduction

Word Sense Disambiguation (WSD) is a core
task of Natural Language Processing (NLP) which
consists in assigning the correct sense to a word
in a given context, and has many potential ap-
plications (Navigli, 2009). Despite breakthroughs
in distributed semantic representations (i.e. word
embeddings), resolving lexical ambiguity has re-
mained a long-standing challenge in the field. Sys-
tems using non-distributional features, such as It
Makes Sense (IMS, Zhong and Ng, 2010), remain
surprisingly competitive against neural sequence
models trained end-to-end. A baseline that simply
chooses the most frequent sense (MFS) has also
proven to be notoriously difficult to surpass.

Several factors have contributed to this limited
progress over the last decade, including lack of
standardized evaluation, and restricted amounts of
sense annotated corpora. Addressing the eval-
uation issue, Raganato et al. (2017a) has intro-
duced a unified evaluation framework that has al-
ready been adopted by the latest works in WSD.
Also, even though SemCor (Miller et al., 1994)
still remains the largest manually annotated cor-
pus, supervised methods have successfully used
label propagation (Yuan et al., 2016), semantic
networks (Vial et al., 2018) and glosses (Luo
et al., 2018b) in combination with annotations to
advance the state-of-the-art. Meanwhile, task-
specific sequence modelling architectures based
on BiLSTMs or Seq2Seq (Raganato et al., 2017b)
haven’t yet proven as advantageous for WSD.

Until recently, the best semantic representations
at our disposal, such as word2vec (Mikolov et al.,
2013) and fastText (Bojanowski et al., 2017), were
bound to word types (i.e. distinct tokens), con-
verging information from different senses into the
same representations (e.g. ‘play song’ and ‘play
tennis’ share the same representation of ‘play’).
These word embeddings were learned from un-
supervised Neural Language Modelling (NLM)
trained on fixed-length contexts. However, by
recasting the same word types across different
sense-inducing contexts, these representations be-
came insensitive to the different senses of poly-
semous words. Camacho-Collados and Pilehvar
(2018) refer to this issue as the meaning confla-
tion deficiency and explore it more thoroughly in
their work.

Recent improvements to NLM have allowed for
learning representations that are context-specific
and detached from word types. While word em-
bedding methods reduced NLMs to fixed repre-
sentations after pretraining, this new generation
of contextual embeddings employs the pretrained
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NLM to infer different representations induced by
arbitrarily long contexts. Contextual embeddings
have already had a major impact on the field, driv-
ing progress on numerous downstream tasks. This
success has also motivated a number of iterations
on embedding models in a short timespan, from
context2vec (Melamud et al., 2016), to GPT (Rad-
ford et al., 2018), ELMo (Peters et al., 2018), and
BERT (Devlin et al., 2019).

Being context-sensitive by design, contextual
embeddings are particularly well-suited for WSD.
In fact, Melamud et al. (2016) and Peters et al.
(2018) produced contextual embeddings from the
SemCor dataset and showed competitive results on
Raganato et al. (2017a)’s WSD evaluation frame-
work, with a surprisingly simple approach based
on Nearest Neighbors (k-NN). These results were
promising, but those works only produced sense
embeddings for the small fraction of WordNet
(Fellbaum, 1998) senses covered by SemCor, re-
sorting to the MFS approach for a large number
of instances. Lack of high coverage annotations
is one of the most pressing issues for supervised
WSD approaches (Le et al., 2018).

Our experiments show that the simple k-NN
w/MFS approach using BERT embeddings suf-
fices to surpass the performance of all previous
systems. Most importantly, in this work we intro-
duce a method for generating sense embeddings
with full-coverage of WordNet, which further im-
proves results (additional 1.9% F1) while forgo-
ing MFS fallbacks. To better evaluate the fitness
of our sense embeddings, we also analyse their
performance without access to lemma or part-of-
speech features typically used to restrict candi-
date senses. Representing sense embeddings in the
same space as any contextual embeddings gener-
ated from the same pretrained NLM eases intro-
spections of those NLMs, and enables token-level
intrinsic evaluations based on k-NN WSD perfor-
mance. We summarize our contributions1 below:

• A method for creating sense embeddings for
all senses in WordNet, allowing for WSD
based on k-NN without MFS fallbacks.

• Major improvement over the state-of-the-art
on cross-domain WSD tasks, while exploring
the strengths and weaknesses of our method.

• Applications of our sense embeddings for
concept-level analyses of NLMs.

1Code and data: github.com/danlou/lmms

2 Language Modelling Representations

Distributional semantic representations learned
from Unsupervised Neural Language Modelling
(NLM) are currently used for most NLP tasks. In
this section we cover aspects of word and contex-
tual embeddings, learned from from NLMs, that
are particularly relevant for our work.

2.1 Static Word Embeddings

Word embeddings are distributional semantic rep-
resentations usually learned from NLM under one
of two possible objectives: predict context words
given a target word (Skip-Gram), or the inverse
(CBOW) (word2vec, Mikolov et al., 2013). In
both cases, context corresponds to a fixed-length
window sliding over tokenized text, with the tar-
get word at the center. These modelling objectives
are enough to produce dense vector-based repre-
sentations of words that are widely used as pow-
erful initializations on neural modelling architec-
tures for NLP. As we explained in the introduc-
tion, word embeddings are limited by meaning
conflation around word types, and reduce NLM
to fixed representations that are insensitive to con-
texts. However, with fastText (Bojanowski et al.,
2017) we’re not restricted to a finite set of repre-
sentations and can compositionally derive repre-
sentations for word types unseen during training.

2.2 Contextual Embeddings

The key differentiation of contextual embeddings
is that they are context-sensitive, allowing the
same word types to be represented differently ac-
cording to the contexts in which they occurr. In
order to be able to produce new representations
induced by different contexts, contextual embed-
dings employ the pretrained NLM for inferences.
Also, the NLM objective for contextual embed-
dings is usually directional, predicting the previ-
ous and/or next tokens in arbitrarily long contexts
(usually sentences). ELMo (Peters et al., 2018)
was the first implementation of contextual embed-
dings to gain wide adoption, but it was shortly af-
ter followed by BERT (Devlin et al., 2019) which
achieved new state-of-art results on 11 NLP tasks.
Interestingly, BERT’s impressive results were ob-
tained from task-specific fine-tuning of pretrained
NLMs, instead of using them as features in more
complex models, emphasizing the quality of these
representations.

https://github.com/danlou/lmms
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3 Word Sense Disambiguation (WSD)

There are several lines of research exploring dif-
ferent approaches for WSD (Navigli, 2009). Su-
pervised methods have traditionally performed
best, though this distinction is becoming increas-
ingly blurred as works in supervised WSD start
exploiting resources used by knowledge-based ap-
proaches (e.g. Luo et al., 2018a; Vial et al., 2018).
We relate our work to the best-performing WSD
methods, regardless of approach, as well as meth-
ods that may not perform as well but involve pro-
ducing sense embeddings. In this section we in-
troduce the components and related works that are
most relevant for our approach.

3.1 Sense Inventory, Attributes and Relations
The most popular sense inventory is WordNet,
a semantic network of general domain concepts
linked by a few relations, such as synonymy and
hypernymy. WordNet is organized at different ab-
straction levels, which we describe below. Follow-
ing the notation used in related works, we repre-
sent the main structure of WordNet, called synset,
with lemma#POS , where lemma corresponds to
the canonical form of a word, POS corresponds to
the sense’s part-of-speech (noun, verb, adjective
or adverb), and # further specifies this entry.

• Synsets: groups of synonymous words that
correspond to the same sense, e.g. dog1n.

• Lemmas: canonical forms of words, may be-
long to multiple synsets, e.g. dog is a lemma
for dog1n and chase1v, among others.

• Senses: lemmas specifed by sense (i.e.
sensekeys), e.g. dog%1:05:00::, and domes-
tic dog%1:05:00:: are senses of dog1n.

Each synset has a number of attributes, of which
the most relevant for this work are:

• Glosses: dictionary definitions, e.g. dog1n has
the definition ‘a member of the genus Ca...’.

• Hypernyms: ‘type of’ relations between
synsets, e.g. dog1n is a hypernym of pug1n.

• Lexnames: syntactical and logical groupings,
e.g. the lexname for dog1n is noun.animal.

In this work we’re using WordNet 3.0, which
contains 117,659 synsets, 206,949 unique senses,
147,306 lemmas, and 45 lexnames.

3.2 WSD State-of-the-Art

While non-distributional methods, such as Zhong
and Ng (2010)’s IMS, still perform competitively,
there are have been several noteworthy advance-
ments in the last decade using distributional rep-
resentations from NLMs. Iacobacci et al. (2016)
improved on IMS’s performance by introducing
word embeddings as additional features.

Yuan et al. (2016) achieved significantly im-
proved results by leveraging massive corpora to
train a NLM based on an LSTM architecture. This
work is contemporaneous with Melamud et al.
(2016), and also uses a very similar approach for
generating sense embeddings and relying on k-NN
w/MFS for predictions. Although most perfor-
mance gains stemmed from their powerful NLM,
they also introduced a label propagation method
that further improved results in some cases. Cu-
riously, the objective Yuan et al. (2016) used for
NLM (predicting held-out words) is very evoca-
tive of the cloze-style Masked Language Model
introduced by Devlin et al. (2019). Le et al. (2018)
replicated this work and offers additional insights.

Raganato et al. (2017b) trained neural sequenc-
ing models for end-to-end WSD. This work re-
frames WSD as a translation task where sequences
of words are translated into sequences of senses.
The best result was obtained with a BiLSTM
trained with auxilliary losses specific to parts-of-
speech and lexnames. Despite the sophisticated
modelling architecture, it still performed on par
with Iacobacci et al. (2016).

The works of Melamud et al. (2016) and Pe-
ters et al. (2018) using contextual embeddings for
WSD showed the potential of these representa-
tions, but still performed comparably to IMS.

Addressing the issue of scarce annotations, re-
cent works have proposed methods for using re-
sources from knowledge-based approaches. Luo
et al. (2018a) and Luo et al. (2018b) combine in-
formation from glosses present in WordNet, with
NLMs based on BiLSTMs, through memory net-
works and co-attention mechanisms, respectively.
Vial et al. (2018) follows Raganato et al. (2017b)’s
BiLSTM method, but leverages the semantic net-
work to strategically reduce the set of senses re-
quired for disambiguating words.

All of these works rely on MFS fallback. Addi-
tionally, to our knowledge, all also perform disam-
biguation only against the set of admissible senses
given the word’s lemma and part-of-speech.
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3.3 Other methods with Sense Embeddings
Some works may no longer be competitive with
the state-of-the-art, but nevertheless remain rel-
evant for the development of sense embeddings.
We recommend the recent survey of Camacho-
Collados and Pilehvar (2018) for a thorough
overview of this topic, and highlight a few of the
most relevant methods. Chen et al. (2014) initial-
izes sense embeddings using glosses and adapts
the Skip-Gram objective of word2vec to learn and
improve sense embeddings jointly with word em-
beddings. Rothe and Schütze (2015)’s AutoEx-
tend method uses pretrained word2vec embed-
dings to compose sense embeddings from sets
of synonymous words. Camacho-Collados et al.
(2016) creates the NASARI sense embeddings us-
ing structural knowledge from large multilingual
semantic networks.

These methods represent sense embeddings in
the same space as the pretrained word embed-
dings, however, being based on fixed embedding
spaces, they are much more limited in their abil-
ity to generate contextual representations to match
against. Furthermore, none of these methods (or
those in §3.2) achieve full-coverage of the +200K
senses in WordNet.

4 Method

Figure 1: Illustration of our k-NN approach for WSD,
which relies on full-coverage sense embeddings repre-
sented in the same space as contextualized embeddings.
For simplification, we label senses as synsets. Grey
nodes belong to different lemmas (see §5.3).

Our WSD approach is strictly based on k-NN
(see Figure 1), unlike any of the works referred
previously. We avoid relying on MFS for lemmas
that do not occur in annotated corpora by gen-
erating sense embeddings with full-coverage of
WordNet. Our method starts by generating sense

embeddings from annotations, as done by other
works, and then introduces several enhancements
towards full-coverage, better performance and in-
creased robustness. In this section, we cover each
of these techniques.

4.1 Embeddings from Annotations
Our set of full-coverage sense embeddings is boot-
strapped from sense-annotated corpora. Sentences
containing sense-annotated tokens (or spans) are
processed by a NLM in order to obtain contextual
embeddings for those tokens. After collecting all
sense-labeled contextual embeddings, each sense
embedding is determined by averaging its corre-
sponding contextual embeddings. Formally, given
n contextual embeddings ~c for some sense s:

~vs =
1

n

n∑
i=1

~ci, dim(~vs) = 1024

In this work we use pretrained ELMo and BERT
models to generate contextual embeddings. These
models can be identified and replicated with the
following details:

• ELMo: 1024 (2x512) embedding dimen-
sions, 93.6M parameters. Embeddings from
top layer (2).

• BERT: 1024 embedding dimensions, 340M
parameters, cased. Embeddings from sum of
top 4 layers ([-1,-4])2.

BERT uses WordPiece tokenization that doesn’t
always map to token-level annotations (e.g. ‘mul-
tiplication’ becomes ‘multi’, ‘##plication’). We
use the average of subtoken embeddings as the
token-level embedding. Unless specified other-
wise, our LMMS method uses BERT.

4.2 Extending Annotation Coverage
As many have emphasized before (Navigli, 2009;
Camacho-Collados and Pilehvar, 2018; Le et al.,
2018), the lack of sense annotations is a major lim-
itation of supervised approaches for WSD. We ad-
dress this issue by taking advantage of the seman-
tic relations in WordNet to extend the annotated
signal to other senses. Semantic networks are of-
ten explored by knowledge-based approaches, and
some recent works in supervised approaches as
well (Luo et al., 2018a; Vial et al., 2018). The

2This was the configuration that performed best out of the
ones on Table 7 of Devlin et al. (2018).
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guiding principle behind these approaches is that
sense-level representations can be imputed (or im-
proved) from other representations that are known
to correspond to generalizations due to the net-
work’s taxonomical structure. Vial et al. (2018)
leverages relations in WordNet to reduce the sense
inventory to a minimal set of entries, making the
task easier to model while maintaining the ability
to distinguish senses. We take the inverse path of
leveraging relations to produce representations for
additional senses.

On §3.1 we covered synsets, hypernyms and
lexnames, which correspond to increasingly ab-
stract generalizations. Missing sense embeddings
are imputed from the aggregation of sense embed-
dings at each of these abstraction levels. In or-
der to get embeddings that are representative of
higher-level abstractions, we simply average the
embeddings of all lower-level constituents. Thus,
a synset embedding corresponds to the average
of all of its sense embeddings, a hypernym em-
bedding corresponds to the average of all of its
synset embeddings, and a lexname embedding
corresponds to the average of a larger set of synset
embeddings. All lower abstraction representations
are created before next-level abstractions to ensure
that higher abstractions make use of lower gener-
alizations. More formally, given all missing senses
in WordNet ŝ ∈ W , their synset-specific sense
embeddings Sŝ, hypernym-specific synset embed-
dings Hŝ, and lexname-specific synset embed-
dings Lŝ, the procedure has the following stages:

(1) if |Sŝ| > 0, ~vŝ =
1

|Sŝ|
∑

~vs, ∀~vs ∈ Sŝ

(2) if |Hŝ| > 0, ~vŝ =
1

|Hŝ|
∑

~vsyn, ∀~vsyn ∈ Hŝ

(3) if |Lŝ| > 0, ~vŝ =
1

|Lŝ|
∑

~vsyn, ∀~vsyn ∈ Lŝ

In Table 1 we show how much coverage extends
while improving both recall and precision.

F1 / P / R (without MFS)

Source Coverage BERT ELMo

SemCor 16.11% 68.9 / 72.4 / 65.7 63.0 / 66.2 / 60.1

+ synset 26.97% 70.0 / 72.6 / 70.0 63.9 / 66.3 / 61.7

+ hypernym 74.70% 73.0 / 73.6 / 72.4 67.2 / 67.7 / 66.6

+ lexname 100% 73.8 / 73.8 / 73.8 68.1 / 68.1 / 68.1

Table 1: Coverage of WordNet when extending to in-
creasingly abstract representations along with perfor-
mance on the ALL test set of Raganato et al. (2017a).

4.3 Improving Senses using the Dictionary
There’s a long tradition of using glosses for WSD,
perhaps starting with the popular work of Lesk
(1986), which has since been adapted to use distri-
butional representations (Basile et al., 2014). As
a sequence of words, the information contained
in glosses can be easily represented in seman-
tic spaces through approaches used for generating
sentence embeddings. There are many methods
for generating sentence embeddings, but it’s been
shown that a simple weighted average of word em-
beddings performs well (Arora et al., 2017).

Our contextual embeddings are produced from
NLMs using attention mechanisms, assigning
more importance to some tokens over others, so
they already come ‘pre-weighted’ and we embed
glosses simply as the average of all of their contex-
tual embeddings (without preprocessing). We’ve
also found that introducing synset lemmas along-
side the words in the gloss helps induce better con-
textualized embeddings (specially when glosses
are short). Finally, we make our dictionary em-
beddings (~vd) sense-specific, rather than synset-
specific, by repeating the lemma that’s specific to
the sense, alongside the synset’s lemmas and gloss
words. The result is a sense-level embedding, de-
termined without annotations, that is represented
in the same space as the sense embeddings we de-
scribed in the previous section, and can be triv-
ially combined through concatenation or average
for improved performance (see Table 2).

Our empirical results show improved perfor-
mance by concatenation, which we attribute
to preserving complementary information from
glosses. Both averaging and concatenating repre-
sentations (previously L2 normalized) also serves
to smooth possible biases that may have been
learned from the SemCor annotations. Note that
while concatenation effectively doubles the size of
our embeddings, this doesn’t equal doubling the
expressiveness of the distributional space, since
they’re two representations from the same NLM.
This property also allows us to make predic-
tions for contextual embeddings (from the same
NLM) by simply repeating those embeddings
twice, aligning contextual features against sense
and dictionary features when computing cosine
similarity. Thus, our sense embeddings become:

~vs =

[
||~vs||2
||~vd||2

]
, dim(~vs) = 2048
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Configurations LMMS1024 LMMS2048 LMMS2348

Embeddings
Contextual (d=1024) 7 7 7 7 7

Dictionary (d=1024) 7 7 7 7 7

Static (d=300) 7 7 7

Operation
Average 7

Concatenation 7 7 7 7

Perf. (F1 on ALL)
Lemma & POS 73.8 58.7 75.0 75.4 73.9 58.7 75.4

Token (Uninformed) 42.7 6.1 36.5 35.1 64.4 45.0 66.0

Table 2: Overview of the different performance of various setups regarding choice of embeddings and combination
strategy. All results are for the 1-NN approach on the ALL test set of Raganato et al. (2017a). We also show results
that ignore the lemma and part-of-speech features of the test sets to show that the inclusion of static embeddings
makes the method significantly more robust to real-world scenarios where such gold features may not be available.

4.4 Morphological Robustness

WSD is expected to be performed only against the
set of candidate senses that are specific to a target
word’s lemma. However, as we’ll explain in §5.3,
there are cases where it’s undesirable to restrict the
WSD process.

We leverage word embeddings specialized for
morphological representations to make our sense
embeddings more resilient to the absence of
lemma features, achieving increased robustness.
This addresses a problem arising from the suscep-
tibility of contextual embeddings to become en-
tirely detached from the morphology of their cor-
responding tokens, due to interactions with other
tokens in the sentence.

We choose fastText (Bojanowski et al., 2017)
embeddings (pretrained on CommonCrawl),
which are biased towards morphology, and avoid
Out-of-Vocabulary issues as explained in §2.1. We
use fastText to generate static word embeddings
for the lemmas (~vl) corresponding to all senses,
and concatenate these word embeddings to our
previous embeddings. When making predictions,
we also compute fastText embeddings for tokens,
allowing for the same alignment explained in
the previous section. This technique effectively
makes sense embeddings of morphologically
related lemmas more similar. Empirical results
(see Table 2) show that introducing these static
embeddings is crucial for achieving satisfactory
performance when not filtering candidate senses.
Our final, most robust, sense embeddings are thus:

~vs =

||~vs||2||~vd||2
||~vl||2

 , dim(~vs) = 2348

5 Experiments

Our experiments centered on evaluating our so-
lution on Raganato et al. (2017a)’s set of cross-
domain WSD tasks. In this section we compare
our results to the current state-of-the-art, and pro-
vide results for our solution when disambiguating
against the full set of possible senses in WordNet,
revealing shortcomings to be improved.

5.1 All-Words Disambiguation

In Table 3 we show our results for all tasks of Ra-
ganato et al. (2017a)’s evaluation framework. We
used the framework’s scoring scripts to avoid any
discrepancies in the scoring methodology. Note
that the k-NN referred in Table 3 always refers to
the closest neighbor, and relies on MFS fallbacks.

The first noteworthy result we obtained was that
simply replicating Peters et al. (2018)’s method
for WSD using BERT instead of ELMo, we were
able to significantly, and consistently, surpass the
performance of all previous works. When using
our method (LMMS), performance still improves
significantly over the previous impressive results
(+1.9 F1 on ALL, +3.4 F1 on SemEval 2013). In-
terestingly, we found that our method using ELMo
embeddings didn’t outperform ELMo k-NN with
MFS fallback, suggesting that it’s necessary to
achieve a minimum competence level of embed-
dings from sense annotations (and glosses) before
the inferred sense embeddings become more use-
ful than MFS.

In Figure 2 we show results when considering
additional neighbors as valid predictions, together
with a random baseline considering that some tar-
get words may have less senses than the number
of accepted neighbors (always correct).
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Model Senseval2 Senseval3 SemEval2007 SemEval2013 SemEval2015 ALL
(n=2,282) (n=1,850) (n=455) (n=1,644) (n=1,022) (n=7,253)

MFS† (Most Frequent Sense) 65.6 66.0 54.5 63.8 67.1 64.8
IMS† (2010) 70.9 69.3 61.3 65.3 69.5 68.4

IMS + embeddings† (2016) 72.2 70.4 62.6 65.9 71.5 69.6
context2vec k-NN† (2016) 71.8 69.1 61.3 65.6 71.9 69.0

word2vec k-NN (2016) 67.8 62.1 58.5 66.1 66.7 -
LSTM-LP (Label Prop.) (2016) 73.8 71.8 63.5 69.5 72.6 -

Seq2Seq (Task Modelling) (2017b) 70.1 68.5 63.1* 66.5 69.2 68.6*
BiLSTM (Task Modelling) (2017b) 72.0 69.1 64.8* 66.9 71.5 69.9*

ELMo k-NN (2018) 71.5 67.5 57.1 65.3 69.9 67.9
HCAN (Hier. Co-Attention) (2018a) 72.8 70.3 -* 68.5 72.8 -*
BiLSTM w/Vocab. Reduction (2018) 72.6 70.4 61.5 70.8 71.3 70.8

BERT k-NN 76.3 73.2 66.2 71.7 74.1 73.5
LMMS2348 (ELMo) 68.1 64.7 53.8 66.9 69.0 66.2
LMMS2348 (BERT) 76.3 75.6 68.1 75.1 77.0 75.4

Table 3: Comparison with other works on the test sets of Raganato et al. (2017a). All works used sense annotations
from SemCor as supervision, although often different pretrained embeddings. † - reproduced from Raganato et al.
(2017a); * - used as a development set; bold - new state-of-the-art (SOTA); underlined - previous SOTA.
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Figure 2: Performance gains with LMMS2348 when ac-
cepting additional neighbors as valid predictions.

5.2 Part-of-Speech Mismatches
The solution we introduced in §4.4 addressed
missing lemmas, but we didn’t propose a solution
that addressed missing POS information. Indeed,
the confusion matrix in Table 4 shows that a large
number of target words corresponding to verbs are
wrongly assigned senses that correspond to adjec-
tives or nouns. We believe this result can help mo-
tivate the design of new NLM tasks that are more
capable of distinguishing between verbs and non-
verbs.

WN-POS NOUN VERB ADJ ADV

NOUN 96.95% 1.86% 0.86% 0.33%

VERB 9.08% 70.82% 19.98% 0.12%

ADJ 4.50% 0% 92.27% 2.93%

ADV 2.02% 0.29% 2.60% 95.09%

Table 4: POS Confusion Matrix for Uninformed Sense
Matching on the ALL testset using LMMS2348.

5.3 Uninformed Sense Matching

WSD tasks are usually accompanied by auxilliary
parts-of-speech (POSs) and lemma features for re-
stricting the number of possible senses to those
that are specific to a given lemma and POS. Even if
those features aren’t provided (e.g. real-world ap-
plications), it’s sensible to use lemmatizers or POS
taggers to extract them for use in WSD. However,
as is the case with using MFS fallbacks, this filter-
ing step obscures the true impact of NLM repre-
sentations on k-NN solutions.

Consequently, we introduce a variation on
WSD, called Uninformed Sense Matching (USM),
where disambiguation is always performed against
the full set of sense embeddings (i.e. +200K vs.
a maximum of 59). This change makes the task
much harder (results on Table 2), but offers some
insights into NLMs, which we cover briefly in
§5.4.

5.4 Use of World Knowledge

It’s well known that WSD relies on various types
of knowledge, including commonsense and se-
lectional preferences (Lenat et al., 1986; Resnik,
1997), for example. Using our sense embed-
dings for Uninformed Sense Matching allows us
to glimpse into how NLMs may be interpreting
contextual information with regards to the knowl-
edge represented in WordNet. In Table 5 we show
a few examples of senses matched at the token-
level, suggesting that entities were topically un-
derstood and this information was useful to dis-
ambiguate verbs. These results would be less con-
clusive without full-coverage of WordNet.
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Marlon? Brando? played Corleone? in Godfather?
person1

n person1
n act3v syndicate1n movie1n location1

n

womanizer1n group1n make42v mafia1
n telefilm1

n here1n

bustle1n location1
n emote1v person1

n final cut1n there1n

act3v: play a role or part; make42v : represent fictiously, as in a play, or pretend to be or act like; emote1v: give expression or
emotion to, in a stage or movie role.

Serena? Williams played Kerber? in Wimbledon?

person1
n professional tennis1n play1v person1

n win1
v tournament1n

therefore1r tennis1n line up6v group1n romp3v world cup1n

reef1
n singles1n curl5v take orders2v carry38

v elimination tournament1n

play1
v: participate in games or sport; line up6

v: take one’s position before a kick-off; curl5v: play the Scottish game of
curling.

David Bowie? played Warszawa? in Tokyo
person1

n person1
n play14v poland1n originate in1

n tokyo1n

amati2n folk song1n play6v location1
n in1

r japan1
n

guarnerius3n fado1n riff2
v here1n take the field2v japanese1a

play14
v : perform on a certain location; play6

v: replay (as a melody); riff2
v : play riffs.

Table 5: Examples controlled for syntactical changes to show how the correct sense for ‘played’ can be induced
accordingly with the mentioned entities, suggesting that disambiguation is supported by world knowledge learned
during LM pretraining. Words with ? never occurred in SemCor. Senses shown correspond to the top 3 matches in
LMMS1024 for each token’s contextual embedding (uninformed). For clarification, below each set of matches are
the WordNet definitions for the top disambiguated senses of ‘played’.

6 Other Applications

Analyses of conventional word embeddings have
revealed gender or stereotype biases (Bolukbasi
et al., 2016; Caliskan et al., 2017) that may have
unintended consequences in downstream applica-
tions. With contextual embeddings we don’t have
sets of concept-level representations for perform-
ing similar analyses. Word representations can
naturally be derived from averaging their contex-
tual embeddings occurring in corpora, but then
we’re back to the meaning conflation issue de-
scribed earlier. We believe that our sense em-
beddings can be used as representations for more
easily making such analyses of NLMs. In Figure
3 we provide an example that showcases mean-
ingful differences in gender bias, including for
lemmas shared by different senses (doctor: PhD
vs. medic, and counselor: therapist vs. sum-
mer camp supervisor). The bias score for a given
synset s was calculated as following:

bias(s) = sim(~vman1
n
, ~vs)− sim(~vwoman1

n
, ~vs)

Besides concept-level analyses, these sense em-
beddings can also be useful in applications that
don’t rely on a particular inventory of senses. In
Loureiro and Jorge (2019), we show how similari-
ties between matched sense embeddings and con-
textual embeddings are used for training a classi-
fier that determines whether a word that occurs in
two different sentences shares the same meaning.

−0.050 −0.025 0.000 0.025 0.050

doctor4
n

programmer1
n

counselor2
n

doctor1
n

teacher1
n

florist1n

counselor1
n

receptionist1n

nurse1
n

LMMS1024

LMMS2048

Figure 3: Examples of gender bias found in the sense
vectors. Positive values quantify bias towards man1

n,
while negative values quantify bias towards woman1

n.

7 Future Work

In future work we plan to use multilingual re-
sources (i.e. embeddings and glosses) for im-
proving our sense embeddings and evaluating on
multilingual WSD. We’re also considering ex-
ploring a semi-supervised approach where our
best embeddings would be employed to automat-
ically annotate corpora, and repeat the process
described on this paper until convergence, itera-
tively fine-tuning sense embeddings. We expect
our sense embeddings to be particularly useful
in downstream tasks that may benefit from rela-
tional knowledge made accessible through linking
words (or spans) to commonsense-level concepts
in WordNet, such as Natural Language Inference.
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8 Conclusion

This paper introduces a method for generating
sense embeddings that allows a clear improvement
of the current state-of-the-art on cross-domain
WSD tasks. We leverage contextual embeddings,
semantic networks and glosses to achieve full-
coverage of all WordNet senses. Consequently,
we’re able to perform WSD with a simple 1-NN,
without recourse to MFS fallbacks or task-specific
modelling. Furthermore, we introduce a variant
on WSD for matching contextual embeddings to
all WordNet senses, offering a better understand-
ing of the strengths and weaknesses of representa-
tions from NLM. Finally, we explore applications
of our sense embeddings beyond WSD, such as
gender bias analyses.
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