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Abstract

Current neural network-based conversational
models lack diversity and generate boring re-
sponses to open-ended utterances. Priors such
as persona, emotion, or topic provide addi-
tional information to dialog models to aid re-
sponse generation, but annotating a dataset
with priors is expensive and such annotations
are rarely available. While previous methods
for improving the quality of open-domain re-
sponse generation focused on either the un-
derlying model or the training objective, we
present a method of filtering dialog datasets
by removing generic utterances from training
data using a simple entropy-based approach
that does not require human supervision. We
conduct extensive experiments with different
variations of our method, and compare dialog
models across 17 evaluation metrics to show
that training on datasets filtered this way re-
sults in better conversational quality as chat-
bots learn to output more diverse responses.

1 Introduction

Current open-domain neural conversational mod-
els (NCM) are trained on pairs of source and tar-
get utterances in an effort to maximize the likeli-
hood of each target given the source (Vinyals and
Le, 2015). However, real-world conversations are
much more complex, and a plethora of suitable tar-
gets (responses) can be adequate for a given in-
put. We propose a data filtering approach where
the “most open-ended” inputs - determined by cal-
culating the entropy of the distribution over tar-
get utterances - are excluded from the training set.
We show that dialog models can be improved us-
ing this simple unsupervised method which can
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be applied to any conversational dataset. We con-
duct several experiments to uncover how some of
the current open-domain dialog evaluation meth-
ods behave with respect to overfitting and random
data. Our software for filtering dialog data and au-
tomatic evaluation using 17 metrics is released on
GitHub under an MIT license'?.

2 Background

Most open-domain NCMs are based on neural net-
work architectures developed for machine trans-
lation (MT, Sutskever et al. (2014); Cho et al.
(2014); Vaswani et al. (2017)). Conversational
data differs from MT data in that targets to the
same source may vary not only grammatically but
also semantically (Wei et al., 2017; Tandon et al.,
2017): consider plausible replies to the question
What did you do today?. Dialog datasets also con-
tain generic responses, e.g2. yes, no and i don’t
know, that appear in a large and diverse set of con-
texts (Mou et al., 2016; Wu et al., 2018). Follow-
ing the approach of modeling conversation as a se-
quence to sequence (seg2sedqg, Sutskever et al.
(2014)) transduction of single dialog turns, these
issues can be referred to as the one-to-many, and
many-to-one problem. seqg2seq architectures
are not suited to deal with the ambiguous nature
of dialogs since they are inherently deterministic,
meaning that once trained they cannot output dif-
ferent sequences to the same input. Consequently
they tend to produce boring and generic responses

"https://github.com/ricsinaruto/
Seg2seqgChatbots

https://github.com/ricsinaruto/
dialog-eval
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(Lietal.,2016a; Wei et al.,2017; Shao et al., 2017,
Zhang et al., 2018a; Wu et al., 2018).

Previous approaches to the one-to-many, many-
to-one problem can be grouped into three cat-
egories. One approach involves feeding extra
information to the dialog model such as dialog
history (Serban et al., 2016; Xing et al., 2018),
categorical information like persona (Li et al.,
2016b; Joshi et al., 2017; Zhang et al., 2018b),
mood/emotion (Zhou et al., 2018; Li et al., 2017c¢),
and topic (Xing et al., 2017; Liu et al., 2017; Ba-
heti et al., 2018), or through knowledge-bases (Di-
nan et al., 2019; Ghazvininejad et al., 2018; Zhu
et al., 2017; Moghe et al., 2018). A downside
to these approaches is that they require annotated
datasets which are not always available, or might
be smaller in size. Augmenting the model itself,
with e.g. latent variable sampling (Serban et al.,
2017b; Zhao et al., 2017, 2018; Gu et al., 2019;
Park et al., 2018; Shen et al., 2018b; Gao et al.,
2019), or improving the decoding process (Shao
et al., 2017; Kulikov et al., 2018; Mo et al., 2017;
Wang et al., 2018) is also a popular approach.
Sampling provides a way to generate more diverse
responses, however such models are more likely
to output ungrammatical or irrelevant responses.
Finally, directly modifying the loss function (Li
et al., 2016a), or training by reinforcement (Li
et al., 2016d; Serban et al., 2017a; Li et al., 2016c¢;
Lipton et al., 2018; Lewis et al., 2017) or adver-
sarial learning (Li et al., 2017b; Ludwig, 2017;
Olabiyi et al., 2018; Zhang et al., 2018c) has also
been proposed, but this is still an open research
problem, as it is far from trivial to construct ob-
jective functions that capture conversational goals
better than cross-entropy loss.

Improving dataset quality through filtering is
frequently used in the machine learning literature
(Sedoc et al., 2018; Ghazvininejad et al., 2018;
Wojciechowski and Zakrzewicz, 2002) and data
distillation methods in general are used both in
machine translation and dialog systems (Axelrod
et al., 2011; Li et al., 2017a). Xu et al. (2018b)
introduced coherence for measuring the similar-
ity between contexts and responses, and then fil-
tered out pairs with low coherence. This improves
datasets from a different aspect and could be com-
bined with our present approach. However, natural
conversations allow many adequate responses that
are not similar to the context, thus it is not intu-
itively clear why filtering these should improve di-

alog models. Our experiments also further support
that cross-entropy is not an adequate loss function
(shown qualitatively by Csaky (2019) and Tandon
et al. (2017)), by showing that many automatic
metrics continue to improve after the validation
loss reaches its minimum and starts increasing.
However, we found that the metrics steadily im-
prove even after we can be certain that the model
overfitted (not just according to the loss function).
Further research is required, to determine whether
this indicates that overfitted model responses are
truly better or if it’s a shortcoming of the metrics
that they prefer such models.

Currently, there is no well-defined automatic
evaluation method (Liu et al., 2016), and while
some metrics that correlate more with human
judgment have been proposed recently (Li et al.,
2017b; Lowe et al.,, 2017; Tao et al., 2018),
they are harder to measure than simpler auto-
matic metrics like perplexity or BLEU (Papineni
et al., 2002). Furthermore, even human evalua-
tion has its downsides, like high variance, high
cost, and difficulty of replicating experimental
setups (Zhang et al., 2018b; Tao et al., 2018).
Some works resort to human evaluations (Krause
et al., 2017; Fang et al., 2018), others use auto-
matic metrics only (Olabiyi et al., 2018; Xing and
Fernandez, 2018; Kandasamy et al., 2017; Sha-
lyminov et al., 2018; Xu et al., 2018b), and some
use both (Shen et al., 2018a; Xu et al., 2018a; Ba-
heti et al., 2018; Ram et al., 2018). While exten-
sive human evaluation of the methods presented
here is left for future work, we do conduct an es-
pecially thorough automatic evaluation both at the
validation loss minimum and of overfitted models.
We believe our experiments also shed light on the
limitations of frequently used automatic metrics.

3 Methods

3.1 Intuition

We approach the one-to-many, many-to-one prob-
lem from a relatively new perspective: instead of
adding more complexity to NCMs, we reduce the
complexity of the dataset by filtering out a fraction
of utterance pairs that we assume are primarily re-
sponsible for generic/uninteresting responses. Of
the 72 000 unique source utterances in the Dai-
lyDialog dataset (see Section 4.1 for details), 60
000 occur with a single target only. For these it
seems straightforward to maximize the conditional
probability P(T'|S), S and T' denoting a specific
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source and target utterance. However, in the case
of sources that appear with multiple targets (one-
to-many), models are forced to learn some “aver-
age” of observed responses (Wu et al., 2018).

The entropy of response distribution of an utter-
ance s is a natural measure of the amount of “con-
fusion” introduced by s. For example, the context
What did you do today? has high entropy, since it
is paired with many different responses in the data,
but What color is the sky? has low entropy since
it’s observed with few responses. The many-to-
one scenario can be similarly formulated, where a
diverse set of source utterances are observed with
the same target (e.g. I don’t know has high en-
tropy). While this may be a less prominent issue
in training NCMs, we shall still experiment with
excluding such generic targets, as dialog models
tend to generate them frequently (see Section 2).

3.2 Clustering Methods and Filtering

We refer with IDENTITY to the following entropy
computation method. For each source utterance s
in the dataset we calculate the entropy of the con-
ditional distribution T'|S = s, i.e. given a dataset
D of source-target pairs, we define the target en-
tropy of s as

Hg(s,D)=— > p(tils)logy p(tils) (1)
(S,ti)GD

Similarly, source entropy of a target utterance is

HSI‘C(t7D):_ Z p(5i|t)log2p(si|t) (2)
(Si,t)GD

The probabilities are based on the observed rela-
tive frequency of utterance pairs in the data.

For the purposes of this entropy-based filter-
ing, we considered the possibility of also includ-
ing some form of similarity measure between ut-
terances that would allow us to detect whether a
set of responses is truly diverse, as in the case of
a question like What did you do today?, or diverse
only on the surface, such as in the case of a ques-
tion like How old are you? (since answers to the
latter are semantically close). Measuring the en-
tropy of semantic clusters as opposed to individual
utterances may improve our method by reducing
data sparsity. For example How are you? can ap-
pear in many forms, like How are you <name>?
(see Section 4.2). While the individual forms have
low entropy (because they have low frequency),

we may decide to filter them all if together they
form a high-entropy cluster.

To this end we performed the filtering based not
only on the set of all utterances, as in the case
of IDENTITY, but also on clusters of utterances
established by clustering their vector representa-
tions using the Mean Shift algorithm (Fukunaga
and Hostetler, 1975). Source and target utterances
are clustered separately. In the AVG-EMBEDDING
setup the representation R(U) of utterance U is
computed by taking the average word embed-
ding weighted by the smooth inverse frequency
RU) = |—(1]| Y owel % of words (Arora
etal.,2017), where F(w) and p(w) are the embed-
ding and the probability? of word w respectively.
We also experiment with SENT2VEC*, a more so-
phisticated sentence embedding approach, which
can be thought of as an extension of word2vec to
sentences (Pagliardini et al., 2018).

The target entropy of a source cluster c; is

=3 pleiles) loga pleiles) 3

c;eC

Htgt(csv C) =

where C' is the set of all clusters and p(c;|cs) is
the conditional probability of observing an utter-
ance from cluster ¢ after an utterance from cluster
s. In the context of these methods, the entropy
of an utterance will mean the entropy of its clus-
ter. Note that IDENTITY is a special case of this
cluster-based entropy computation method, since
in IDENTITY a “cluster” is comprised of multiple
examples of one unique utterance. Thus a target
cluster’s entropy is computed similarly to Equa-
tion 2, but using clusters as in Equation 3.
Entropy values obtained with each of these
methods were used to filter dialog data in three
ways. The SOURCE approach filters utterance
pairs in which the source utterance has high en-
tropy, TARGET filters those with a high entropy
target, and finally the BOTH strategy filters all ut-
terance pairs that are filtered by either SOURCE or
TARGET. Some additional techniques did not yield
meaningful improvement and were excluded from
further evaluation. Clustering based on the Jaccard
similarity of the bag of words of utterances only
added noise to IDENTITY and resulted in much
worse clusters than SENT2VEC. Clustering single
occurrences of each unique utterance (as opposed
to datasets with multiplicity) lead to less useful

3Based on the observed relative frequency in the data.
*https://github.com/epfml/sent2vec
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clusters than when clustering the whole dataset,
probably because it resulted in less weight being
given to the frequent utterances that we want to fil-
ter out. K-means proved inferior to the Mean Shift
algorithm, which is a density-based clustering al-
gorithm and seems to work better for clustering
vectors of sentences. Filtering stop words before
clustering did not improve the quality of clusters,
probably because many utterances that we want to
filter out contain a large number of stop words.

4 Data Analysis

4.1 Dataset

With 90 000 utterances in 13 000 dialogs, Dai-
lyDialog (Li et al., 2017c), our primary dataset,
is comparable in size with the Cornell Movie-
Dialogs Corpus (Danescu-Niculescu-Mizil and
Lee, 2011), but contains real-world conversations.
Using the IDENTITY approach, about 87% of ut-
terances have 0 entropy (i.e. they do not appear
with more than one target), 5% have an entropy of
1 (e.g. they appear twice, with different targets),
remaining values rise sharply to 7. This distribu-
tion is similar for source and target utterances.
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Figure 1: Entropy of source utterances (computed with
IDENTITY) with respect to utterance frequency.

Entropy is clearly proportional to utterance fre-
quency (Figure 1), but has a wide range of values
among utterances of equal frequency. For exam-
ple, utterances with a frequency of 3 can have en-
tropies ranging from O to logy 3 ~ 1.58, the latter
of which would be over our filtering threshold of
1 (see Section 5.1 for details on selecting thresh-
olds). Since high-entropy utterances are relatively
short, we also examined the relationship between
entropy and utterance length (Figure 2). Given
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Figure 2: Entropy of source utterances (computed with
IDENTITY) with respect to utterance length.

the relationship between frequency and entropy, it
comes as no surprise that longer utterances have
lower entropy.

4.2 Clustering Results

Compared to IDENTITY, both SENT2VEC and
AVG-EMBEDDING produce a much lower number
of clusters with O entropy, but also a huge clus-
ter with more than 5000 elements (the size of
the second largest cluster is below 500), which
we didn’t filter since it clearly doesn’t group ut-
terances with similar meaning. Generally, clus-
ters were formed of similar utterances with the
occasional exception of longer outlier utterances
clustered together (instead of creating a separate
cluster for each outlier), which can be attributed
to the nature of the clustering algorithm. Over-
all, SENT2VEC appeared to produce better clusters
than AVG-EMBEDDING, as reflected in the evalua-
tion in Section 5.

We experimented with different bandwidth val-
ues® for the Mean Shift algorithm to produce clus-
ters with as many elements as possible while also
keeping the elements semantically similar. In an
example cluster (Figure 3) we can see that the
clustering was able to group together several vari-
ants of How are you?, in particular, those with dif-
ferent names. In general, we noticed that both in
the case of IDENTITY and the clustering methods,
utterances labeled with the highest entropy are in-
deed those generic sources and replies which we
hoped to eliminate. See Appendix A.1 for a selec-
tion of high entropy utterances and clusters.

SBandwidth is like a radius in the latent space of utterance
representations (Fukunaga and Hostetler, 1975).
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hi an how are you ?

hi craig ! how are you ?

hi how are you is alice there °?
hi ! how are you doing ?

hi francis morning ! how are you doing today °?
hi peter ! how are you °?

hi randy what are you doing right now °?

hi jane how are you doing this morning °?

hi nancy how are you doing °?

hi how are you doing °?

hi nancy . how are you doing °?

hi steve this is mike what are you doing ?
hi how are you ?

hi b . how are you ?

hi alex how are you doing °?

hi ! how are you going ?

hi mike how are you doing °?

hi . how can i help you ?

hi jack ! how are you doing ?

hi carlos what are you doing this afternoon ?
hi wvictor how are you ?

oh yes . hi how are you °?

hi tom how have you been ?
hi bob ! how are you doing °?
hi alice . how are you ?

hi brad how are you today °?

Figure 3: A cluster produced by SENT2VEC.

S Experiments

In this section the model and parameter setups are
presented along with 17 evaluation metrics. Lim-
itations of these metrics are discussed and a com-
parison between our filtering methods is presented
on DailyDialog (Section 5.3), and other datasets
(Section 5.4).

5.1 Model and Parameters

Dataset Type Th. SOURCE TARGET BOTH
ID 1 5.64% 6.98% 12.2%
DailyDialog AE 3.5 539% 7.06%  12.0%
Ne 35  6.53% 8.45% 14.3%
Cornell ID 4 - 7.39% 14.1%
Twitter ID 05 - 1.82%  9.96%

Table 1: Entropy threshold (Th.) and amount of data
filtered for all datasets in the 3 filtering scenarios. ID
stands for IDENTITY, AE stands for AVG-EMBEDDING,
and SC for SENT2VEC.

We use transformer (Vaswani et al., 2017)
as our dialog model, an encoder-decoder architec-
ture relying solely on attention mechanisms (Bah-
danau et al., 2015). transformer has already
been applied to a plethora of natural language pro-
cessing tasks, including dialog modeling (Dinan
et al., 2019; Mazare et al., 2018; Devlin et al.,
2018). We used the official implementation® (see
Appendix A.2 for a report of hyperparameters).

*https://github.com/tensorflow/
tensor2tensor

The vocabulary for DailyDialog was limited to the
most frequent 16 384 words, and train / validation
/ test splits contained 71 517 /9 027 /9 318 exam-
ples, respectively.

Clustering and Filtering. For AVG-
EMBEDDING fastText’” embeddings were used.
The bandwidth of Mean Shift was set to 0.7
and 3.5 for AVG-EMBEDDING and SENT2VEC,
which produced 40 135 and 23 616 clusters,
respectively. Entropy thresholds and amount of
data filtered can be found in Table 1. Generally
we set the threshold so that filtered data amount
is similar to the DailyDialog IDENTITY scenario.
We also set a threshold for the maximum average
utterance length (15 and 20 for AVG-EMBEDDING
and SENT2VEC) in clusters that we considered
for filtering, excluding outliers from the filtering
process (see Section 4.2).

Training and Decoding. Word embeddings of
size 512 were randomly initialized, batch size
was set to 2048 tokens, and we used the Adam
optimizer (Kingma and Ba, 2014). We experi-
mented with various beam sizes (Graves, 2012),
but greedy decoding performed better according
to all metrics, also observed previously (Asghar
etal.,2017; Shao et al., 2017; Tandon et al., 2017).

5.2 Evaluation Metrics

As mentioned in Section 2, automatic evaluation
of chatbots is an open research problem. In order
to get as complete a picture as possible, we use 17
metrics that have been applied to dialog models
over the past years, briefly described below. These
metrics assess different aspects of response qual-
ity, thus models should be compared on the whole
set of metrics.

Response length. Widely used as a simple en-
gagement indicator (Serban et al., 2017b; Tandon
et al., 2017; Baheti et al., 2018).

Word and utterance entropy. The per-word en-
tropy H,, = —ﬁ > wer logs p(w) of responses
is measured to determine their non-genericness
(Serban et al., 2017b). Probabilities are calculated
based on frequencies observed in the training data.
We introduce the bigram version of this metric, to
measure diversity at the bigram level as well. Ut-
terance entropy is the product of H,, and |U|, also
reported at the bigram level.

"nttps://fasttext.cc/
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KL divergence. We use the KL divergence be-
tween model and ground truth (GT) response sets
to measure how well a model can approximate
the GT distribution of words. Specifically, we
define distributions py; and p;,, based on each
set of responses and calculate the KL divergence
Dy, = ﬁ ZwGUgt log? Zfrf EZ; for each QT re-
sponse. The bigram version of this metric is also
reported.

Embedding metrics. Embedding average, ex-
trema, and greedy are widely used metrics (Liu
et al., 2016; Serban et al., 2017b; Zhang et al.,
2018c). average measures the cosine similarity
between the averages of word vectors of response
and target utterances. extrema constructs a rep-
resentation by taking the greatest absolute value
for each dimension among the word vectors in the
response and target utterances and measures the
cosine similarity between them. Finally, greedy
matches each response token to a target token
(and vice versa) based on the cosine similarity
between their embeddings and averages the total
score across all words. For word embeddings and
average word embedding representations, we used
the same setup as in AVG-EMBEDDING.

Coherence. We measure the cosine similarity
between pairs of input and response (Xu et al.,
2018b). Although a coherence value of 1 would
indicate that input and response are the same, gen-
erally a higher value seems better as model re-
sponses tend to have lower coherence than targets.

Distinct metrics. Distinct-1 and distinct-2 are
widely used in the literature (Li et al., 2016a; Shen
etal., 2018a; Xu et al., 2018b), measuring the ratio
of unique unigrams/bigrams to the total number of
unigrams/bigrams in a set of responses. However,
they are very sensitive to the test data size, since
increasing the number of examples in itself low-
ers their value. While the number of total words
increases linearly, the number of unique words
is limited by the vocabulary, and we found that
the ratio decreases even in human data (see Ap-
pendix A.3 for details). It is therefore important
to only compare distinct metrics computed on the
same test data.

Bleu. Measuring n-gram overlap between re-
sponse and target is widely used in the machine
learning and dialog literature (Shen et al., 2018a;
Xu et al., 2018b). We report BLEU-1, BLUE-

2, BLEU-3, and BLEU-4 computed with the
4th smoothing algorithm described in Chen and
Cherry (2014).
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Figure 4: Embedding metrics and coherence (on vali-
dation data) as a function of the training evolution of

transformer on unfiltered data (DailyDialog).

/ -
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Figure 5: Training (bottom) and validation (top)

loss with respect to training steps of transformer
trained on unfiltered data (DailyDialog).

Normally metrics are computed at the validation
loss minimum of a model, however in the case of
chatbot models loss may not be a good indicator of
response quality (Section 2), thus we also looked
at how our metrics progress during training. Fig-
ure 4 shows how coherence and the 3 embedding
metrics saturate after about 80-100k steps, and
never decrease (we ran the training for 300k steps,
roughly 640 epochs). Most metrics show a simi-
lar trend of increasing until 100k steps, and then
stagnating (see Appendix A.3 for more figures).

In contrast, validation loss for the same train-
ing reaches its minimum after about 10-20k steps
(Figure 5). This again suggests the inadequacy of
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U| HY HY H* H¢ % DY AVG EXT GRE COH dl d2 bl b2 b3 b4

TRF 86 730 122 63.6 93 330 .85 .540 .497 .552 .538 .0290 .149 .142 .135 .130 .119
B 9.8 744 123 719 105 315 .77 559 .506 .555 .572 .0247 .138 .157 .151 .147 .136

8 1 109 7.7 127 832 121 .286 .72 .570 .507 .554 .584 .0266 .150 .161 .159 .156 .146
S 94 7.19 119 664 98 462 1.08 540 .495 .553 .538 .0262 .130 .139 .133 .128 .117

B 79 725 120 577 83 447 1.05 524 .486 .548 .524 .0283 .132 .128 .121 .115 .105

E T 8.6 7.26 12.1 614 90 425 1.12 526 .492 548 .529 .0236 .115 .133 .127 .121 .111
S 9.0 721 119 651 95 496 1.16 536 .490 .548 .538 .0232 .109 .134 .130 .126 .116

B 10.0 740 123 726 108 383 .97 .544 497 549 550 .0257 .131 .145 .142 .138 .128

8 T 112 749 124 822 122 391 97 565 .500 552 .572 .0250 .132 .153 .153 .152 .142
s 111 7.15 119 744 114 534 1.27 546 .501 .560 .544 .0213 .102 .144 .139 .135 .125
Table 2: Metrics computed at the minimum of the validation loss on the unfiltered test set (DailyDialog). TRF

refers to transformer, ID to IDENTITY, AE to AVG-EMBEDDING, and SC to SENT2VEC.

SOURCE-side,

TARGET-side, and filtering BOTH sides are denoted by initials. Best results are highlighted with bold and best
results separately for each entropy computing method are in italic (and those within a 95% confidence interval).

Ul  HY HY HY H) DY D) AVG EXT GRE COH dl d2 bl b2 b3 b4

TRF 115 798 134 95 142 .0360 .182 .655 .607 .640 .567 .0465 .297 .333 .333 .328 .315

B 13.1 8.08 13.6 107 162 .0473 .210 .668 .608 .638 .598 .0410 .275 .334 .340 .339 .328

2 1 122 804 13.6 100 150 .0335 .181 .665 .610 .640 .589 .0438 289 .338 .341 .339 .328

s 123 799 13,5 101 153 .0406 .187 .662 .610 .641 .578 .0444 286 .339 .342 .338 .326

B 119 7098 135 98 147 .0395 .197 .649 .600 .628 .574 .0434 286 .318 .321 .318 .306

E T 125 799 135 102 155 .0436 204 .656 .602 .634 .580 .0423 279 .324 327 .325 .313

s 121 793 134 99 148 .0368 .186 .658 .605 .636 .578 .0425 278 .325 .328 .324 311

B 12.8 8.07 13.6 105 159 .0461 .209 .655 .600 .629 .583 .0435 .282 .322 .328 .327 .316

% T 13.0 8.06 13.6 107 162 .0477 215 .657 .602 .632 .585 .0425 279 .324 330 .329 .318

s 121 796 134 100 150 .0353 .183 .657 .606 .638 .576 .0443 .286 .331 .333 .329 .317

RT 135 840 142 116 177 .0300 .151 .531 .452 .481 .530 .0577 .379 .090 .121 .130 .125
GT 141 839 139 122 165 O 0 1 1 1 .602 .0488 362 1 1 1 1

Table 3: Metrics computed on the unfiltered test set (DailyDialog) after 150 epochs of training. TRF refers to

transformer, ID to IDENTITY, AE to AVG-EMBEDDING, and SC to SENT2VEC. SOURCE-side, TARGET-side,
and filtering BOTH sides are denoted by initials. Best results are highlighted with bold and best results separately
for each entropy computing method are in italic (and those within a 95% confidence interval). GT refers to ground
truth responses and RT refers to randomly selected responses from the training set.

the loss function, but it also questions the valid-
ity of these metrics, as they seem to favor a model
that overfitted the training data, which we can as-
sume after 640 epochs. This could be due to the
many identical inputs in train and test splits, be-
cause of the nature of dialog data. Most interest-
ing are embedding metrics and BLEU scores (Sec-
tion 5.3), since they show that even after overfit-
ting responses do not get farther from targets. This
is in line with other findings reporting that qualita-
tively responses are better after overfitting (Csaky,
2019; Tandon et al., 2017), however occasionally
they also tend to be too specific and irrelevant. We
leave it for future work to conduct human evalua-
tion between non-overfitted and overfitted models
to solidify these claims. In light of these issues, we
compare trainings on the DailyDialog dataset both

at the validation loss minimum and at an overfitted
point (150 epochs).

5.3 DailyDialog Results

We compute metrics on the unfiltered test set to
show that filtered trainings perform better even on
utterances that would have been filtered from the
training data. TRF, the baseline transformer
model trained on unfiltered data is compared to
the 9 trainings on filtered data. In all tables the
17 metrics from left to right are: response length,
unigram and bigram entropy, unigram and bigram
utterance entropy, unigram and bigram KL diver-
gence, embedding average, extrema and greedy,
coherence, distinct-1 and distinct-2, and finally,
BLEU-1, BLEU-2, BLEU-3 and BLEU-4 (see
Section 5.2).

Evaluating at the minimum validation loss (Ta-
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Input

Response

your starting salary is 2500 yuan a month and
after you become a permanent employee it will
be higher .

BASE: i can tell you what is the best way to find a job .
BASE-O: do you know what it is ?

TARGET: i 'm very interested in the position .

TARGET-O: that ’s very nice of you . i ’ll have to think about it .

BASE: i want to be a great singer .

you can greatly improve your grades by always
reflecting on what you can improve on .

BASE-O: i really appreciate it . thanks .
TARGET: i think i am experienced in that position . i think i would

like to make a good impression .
TARGET-O: i always liked it . thank you .

BASE: what about the kitchen ?

umm i think i would be hard to find something
in that range in this area . you know the
environment in the south district is the nicest .

BASE-0: what about the kitchen ?
TARGET: what about the kitchen ?

TARGET-0: what about the kitchen ?

Table 4: Example inputs and responses from DailyDialog. BASE is trained on unfiltered data, and TARGET is the
model trained on IDENTITY, TARGET filtered data. Models marked with O are evaluated at an overfitted point.

ble 2) clearly shows that models trained on data
filtered by IDENTITY and SENT2VEC are better
than the baseline. IDENTITY performs best among
the three methods, surpassing the baseline on all
but the distinct-1 metric. SENT2VEC is a close
second, getting higher values on fewer metrics
than IDENTITY, but mostly improving on the base-
line. Finally, AVG-EMBEDDING is inferior to the
baseline, as it didn’t produce clusters as mean-
ingful as SENT2VEC, and thus produced a lower
quality training set. It seems like filtering high
entropy targets (both in the case of IDENTITY
and SENT2VEC) is more beneficial than filtering
sources, and BOTH falls mostly in the middle as
expected, since it combines the two filtering types.
By removing example responses that are boring
and generic from the dataset the model learns to
improve response quality. Finding such utterances
is useful for a number of purposes, but earlier it
has been done mainly manually (Li et al., 2016d;
Shen et al., 2017), whereas we provide an au-
tomatic, unsupervised method of detecting them
based on entropy.

Every value is higher after 150 epochs of train-
ing than at the validation loss minimum (Table 3).
The most striking change is in the unigram KL
divergence, which is now an order of magnitude
lower. IDENTITY still performs best, falling be-
hind the baseline on only the two distinct metrics.
Interestingly this time BOTH filtering was better
than the TARGET filtering. SENT2VEC still mostly
improves the baseline and AVG-EMBEDDING now
also performs better or at least as good as the base-
line on most metrics. In some cases the best per-
forming model gets quite close to the ground truth
performance. On metrics that evaluate utterances
without context (i.e. entropy, divergence, dis-

tinct), randomly selected responses achieve sim-
ilar values as the ground truth, which is expected.
However, on embedding metrics, coherence, and
BLEU, random responses are significantly worse
than those of any model evaluated.

Computing the unigram and bigram KL diver-
gence with a uniform distribution instead of the
model yields a value of 4.35 and 1.87, respec-
tively. Thus, all models learned a much better
distribution, suggesting that this is indeed a use-
ful metric. We believe the main reason that clus-
tering methods perform worse than IDENTITY is
that clustering adds some noise to the filtering pro-
cess. Conducting a good clustering of sentence
vectors is a hard task. This could be remedied
by filtering only utterances instead of whole clus-
ters, thus combining IDENTITY and the clustering
methods. In this scenario, the entropy of individ-
ual utterances is computed based on the clustered
data. The intuition behind this approach would be
that the noise in the clusters based on which we
compute entropy is less harmful than the noise in
clusters which we consider for filtering. Finally,
Table 4 shows responses from the baseline and the
best performing model to 3 randomly selected in-
puts from the test set (which we made sure are not
present in the training set) to show that training on
filtered data does not degrade response quality. We
show more example responses in Appendix A.3.

5.4 Cornell and Twitter Results

To further solidify our claims we tested the two
best performing variants of IDENTITY (BOTH and
TARGET) on the Cornell Movie-Dialogs Corpus
and on a subset of 220k examples from the Twit-
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Ul HY HY H* H} % DY AVG EXT GRE COH dl d2 bl b2 b3 b4
TRF 8.1 6.55 104 54 75 229 340 .667 451 .635 .671 4.7e-4 1.0e-3 .108 .120 .120 .112
a B 74  6.67 10.8 50 69 196 291 .627 455 .633 .637 2.1e-3 7.7¢-3 .106 .113 .111 .103
= T 120 644 104 74 106 253 3.79 .646 .456 .637 .651 9.8e-4 3.2¢-3 .108 .123 .125 .118
RT 134 826 142 113 170 .03 12 .623 386 .601 .622 4.6e-2 3.2e-1 .079 .102 .109 .105
GT 13.1 8.18 13.8 110 149 0 0 1 1 .655 4.0e-2 3.le-1 1 1 1 1
Table 5: Metrics on the unfiltered test set (Cornell) at the validation loss minimum. TRF refers to t ransformer,

ID to IDENTITY. TARGET-side, and filtering BOTH sides are denoted by initials. Best results are highlighted with
bold. GT refers to ground truth responses and RT refers to randomly selected responses from the training set.

Ul HY HY H! HY DY D) AVG EXT GRE COH dl d2 bl b2 b3 b4
TRF 20.6 6.89 114 121 177 228 340 .643 .395 .591 .659 2.1e-3 6.2¢-3 .0519 .0666 .0715 .0693
a B 203695 114 119 171 236 341 .657 .394 .595 .673 1.2e-3 3.4e-3 .0563 .0736 .0795 .0774
= T 29.0 648 10.7 157 226 2.68 3.69 .644 .403 .602 .660 1.4e-3 4.6e-3 .0550 .0740 .0819 .0810
RT 14.0 9.81 159 136 171 .05 19 681 334 543 .695 8.5e-2 S5.4e-1 .0444 .0751 .0852 .0840
GT 14.0 9.78 15.8 135 167 0 0 1 1 1 734 8.1e-2  5.3e-1 1 1 1 1
Table 6: Metrics on the unfiltered test set (Twitter) at the validation loss minimum. TRF refers to t ransformer,

ID to IDENTITY. TARGET-side, and filtering BOTH sides are denoted by initials. Best results are highlighted with
bold. GT refers to ground truth responses and RT refers to randomly selected responses from the training set.

ter corpus®. Entropy thresholds were selected to

be similar to the DailyDialog experiments (Ta-
ble 1). Evaluation results at the validation loss
minimum on the Cornell corpus and the Twitter
dataset are presented in Table 5 and Table 6, re-
spectively. On these noisier datasets our simple
IDENTITY method still managed to improve over
the baseline, but the impact is not as pronounced
and in contrast to DailyDialog, BOTH and TAR-
GET perform best on nearly the same number of
metrics. On these noisier datasets the clustering
methods might work better, this is left for fu-
ture work. Compared to DailyDialog there are
some important distinctions that also underline
that these datasets are of lesser quality. The CO-
HERENCE metric is worse on the ground truth re-
sponses than on model responses (Table 5, and
some embedding metrics and BLEU scores are
better on randomly selected responses than on
model responses (Table 6).

6 Conclusion

We proposed a simple unsupervised entropy-based
approach that can be applied to any conversa-
tional dataset for filtering generic sources/targets
that cause “confusion” during the training of open-
domain dialog models. We compared various se-
tups in an extensive quantitative evaluation, and
showed that the best approach is measuring the

$https://github.com/Marsan-Ma/chat_
corpus/

entropy of individual utterances and filtering pairs
based on the entropy of target, but not source utter-
ances. Some limitations of current automatic met-
rics and the loss function have also been shown,
by examining their behavior on random data and
with overfitting.

In the future, we plan to explore several addi-
tional ideas. As mentioned in Section 5.3, we
want to extend our clustering experiments combin-
ing the ideas behind IDENTITY and the clustering
methods to make them more robust to noise. We
wish to conduct clustering experiments on nois-
ier datasets and try other sentence representations
(Devlin et al., 2018). We also plan to combine our
method with coherence-based filtering (Xu et al.,
2018b). Furthermore, we intend to perform a di-
rect quantitative evaluation of our method based
on human evaluation. Finally, we believe our
method is general enough that it could also be ap-
plied to datasets in other similar NLP tasks, such
as machine translation, which could open another
interesting line of future research.
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A Appendix

A.1 High Entropy Utterances
A.1.1 Top 20 high entropy utterances

Center: come on you can at least try a little besides your cigarette
Entropy: 4.959251313559618

Utterance Frequency Entropy size: 148

Elements:

yeS . 173 706 thank you very much for your kindness
yes please . thank you very much

thank you . 141 6.57 sure . thank you very much

thank you very much . it s wvery kind of you

Why ‘7 104 633 okay . thank you very much

thank you very much

you are so kind ! tl;ank you very much
here you are . 99 610 yes . thank you very much .
thank you very much . see you tomorrow afternoon
Ok . 75 6'00 i love flowers you know . thank you very much .
yes thank you very much .
what do you mean ? 77 5.97 i cee . thank you very much
. thank you very much .  take the pills
may i help you ? 72 5.96 vell thank you very mich
. thank you very much . are you here alone ?
cani help you {) 80 593 here it is . and thank you very much
i understand . thank you very much |

really ? 74 5.91 oh thank you wery much

fine thank you very much

sure . 66 5.66 Fo e

what can i do foryou ? 51 5.63 v e iy "
why not ? 61 5.42 S

what ? 48 5.27 I Yove Flovers oo knor, - thank you very much

very well thank you .
What happened ? 44 5.18 thank you very much . byebye

oh well thank you very much

anything else {) 43 517 thank goodness . it is still.there . thank you very much
thank you so much
thank you very much. 72 5.14 thank you very mich !
thank you very much doctor .
1Q 1 okay sir here you are . thank you very much
What 1S lt 9 41 506 yes thank you so much .
i see 42 5 05 fantastic . thank you wery much

thank you very much mr green

no . 42 5.04 well thank you
thanks . 50 5.03 Figure 7: A high entropy cluster from DailyDialog.

Table 7: Top 20 source utterances (from DailyDialog)
sorted by entropy. The entropy was calculated with
IDENTITY.

A.1.2 High Entropy Clusters

Center: coffee ? 1 don t honestly like that kind of stuff
Entropy: 5.885753880055374

Size: 138

Elements:

here you are . Center: i 'm not sure . but i "1l get a table ready as fast as i can
here you are . have a nice stay here . Entropy: 4.638892533270529
here they are . Size: 57

you are kidding Elements: .
£ here vou are yes follow me . here it is
ot course - ¥ . oh yes . here it is

here you are madam . all these are sixteens . yes here this is

we are here . oh . yes . it is

here we are . this is wangfujing street . yes . here it is

here you are . you left the medicine here . oh yes it is

certainly here you are . yes we are

it here you are yes 1t has

ot course . ¥ oh yes . here it is

sure here you are . yes it 's 167

here you are . you can try them on . yes they are

here you are . it s very attractive . yes sir . here it is

here we are . yes she is o L
surely of course . here you are yes it is . it 's brilliant
f course here you are yes here it is

o ¥ yes it is

you are late . yes he is .

thank you . here you are . yes it would be

here you are madam . all these are sixteens

Fi 8: A high ent luster from DailyDialog.
Figure 6: A high entropy cluster from DailyDialog. lgure 181 entropy clustet from Lallylhalog
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A.2 Model Parameters

Name Value
Hidden size 512
Number of hidden layers 6
Label smoothing 0.1
Filter size 2048
Number of attention heads 8
Layer dropout 0.2
Relu dropout 0.1
Attention dropout 0.1
Learning rate 0.2

Learning rate warmup steps 8000

Table 8: Transformer hyperparameters.

A.3 Evaluation Metrics and Examples
0,8

0,35 0,7
03 0,6
1 ~ 05
025 | 3
£
g 04
[=]
< 02
_E 03
80,5
° 02
0,1 0,1
0,05 0
0 10000 20000 30000 40000 50000 60000 70000
Number of examples
0
0 10000 20000 30000 40000 50000 60000 70000 ——Model Data
Number of examples
——Model ---Data Figure 10: Distinct-2 metric with respect to number of

test examples (on DailyDialog). Model responses were
Figure 9: Distinct-1 metric with respect to number of  evaluated on 9000 examples only, since the rest were
test examples (on DailyDialog). Model responses were training examples.
evaluated on 9000 examples only, since the rest were
training examples.
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Figure 11: Average length of responses (computed on the validation set) with respect to the number of training
steps of the t ransformer trained on unfiltered data (DailyDialog).
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Figure 12: Word entropy of responses (computed on the validation set) with respect to the number of training steps
of the transformer trained on unfiltered data (DailyDialog).
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Figure 13: Utterance entropy of responses (computed on the validation set) with respect to the number of training
steps of the t ransformer trained on unfiltered data (DailyDialog).
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Figure 14: KL divergence of responses (computed on the validation set) with respect to the number of training
steps of the t ransformer trained on unfiltered data (DailyDialog).
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Figure 15: Distinct-1 and distinct-2 metrics (computed on the validation set) with respect to the number of training
steps of the t ransformer trained on unfiltered data (DailyDialog).
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Input Unfiltered Unfiltered-Overfitted IDENTITY TARGET fil-  IDENTITY  TARGET
tered filtered-overfitted
some high speed chase i’m not sure . but many things are i’msosorry . enough !

scene i think .

went wrong !

how long is this bus ride
?

about twelve hours .

it ’s about fortyfive min-

utes to an hour .

it ’s about 20 minutes .

it ’s only about fortyfive
minutes to an hour .

is that yellow bus it ?

no it ’s not far . it ’s a bit

yeah . there s a new one

no it ’s a yellow one .

no it ’s not very expen-

cold . in america . sive these days .
hi mary ! what do you ilike playing basketball ~ well i like to play the pi- i like playing basketball i like playing chess .
like to do in your spare ano .
time ?
let me see . we can visit i hope so . yes there are many fa-  i’m glad to hear that . where are your parents ?
the country . we have mous paintings on show
n’t done that for such a . 1 hope it ’s the nicest
long time . city in the united states .
thirty u . s . dollars . . . that’s fine . isee . isit along time how many months did  what re two weeks ?
and it ’s only been used to come to the station ? you get there ?
for six months .
five hundred dollars al-  here you are . here you are . here is your bill . here you are . thank you
together . byebye .
look at this bridge . we  yes i agree . oh yeah . how far is it ? well there ’s a spanish
will soon be crossing teacher . soi’ll often go
the thames . back to the spanish mu-

seum .

is the furniture crafted yesitis. yes it ’s fully furnished .  yes the furniture is right  yes it ’s a furnished

well ?

over there .

eatin kitchen . the furni-
ture and the icebox are
all pretty outdated .

where do they go ?

they ’'re on the bottom

i have no idea .

they re in the cabinet

go to them department

floor . next to the library . please .
let me pay for it . ok . here you are . cash credit card or debit ok . here is the money .  cash credit card or debit
card ? card ?
he never does and in  heisahardjob. hecan that ’s right . he has heisavery kindof man yeah. he ’s a very easy
fact he seldom commu-  also learn a lot from the  no children and his wife teacher .
nicates with him . government . experience too .
so you must have had a  yes i am . ireally en- yes. iam very sorryi i will. thanks for com- yes. let’s go.
busy and enjoyable day  joyed it . can t make it . ing .
yesterday .
yes . the reservation un- ok . could you spell that i ’m afraid there s no ok . would you please
der mr . watson . please ? seat in the middle of the  fill out the table ?
table .
there are so many to isee. what ’s the best part ? i’mnotsure. i’ll go you mean you do n’t

choose from . idid n’t
know you could do all
of this using a card .

to the doctor and get my
card right away .

have to tell me the truth
N

it was great ! how was

your year ?

it was great . i had a

great time .

my mother had a birth-
day party for me .

it was great . i 'm glad i
did n’t like it .

it was ok . there was a
lot of turbulence though
. the worst thing was n’t
too good !

tomorrow ? no i am
afraid i won t be able to
. 1 m going on business

to birmingham .

i think you are looking
for a .<unk><unk>in
the future . the best rea-
son why are you want to
see the results .

well there is a problem
with the exchange rate
. it s the same size that
you haveintheu.s.

you should go to the
dentist .

you might want to
change your plans

with the cold and wet
weather that we re sup-
posed to have tomorrow
the roads are going to

be rather slippery .

Table 9: Responses to randomly selected test inputs which we made sure were not in the training data (DailyDia-
log). Unfiltered is the model trained on unfiltered data, and IDENTITY TARGET is the model trained on IDENTITY,
TARGET filtered data. Overfitted means that the respective model is evaluated at an overfitted point.
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Input

Unfiltered

Unfiltered-Overfitted

IDENTITY TARGET fil-
tered

IDENTITY  TARGET
filtered-overfitted

you ’re flattering me .

no .

no really .

nobutyoucant.

no really . i can only

hear a little accent .

three bags and a suit-
case . this is my luggage
to check .

ok . i will take one .

what ’s this ? essential
oil 7 wow ! this is a

small bag .

i’ll put you in the bag .

ok . is this your luggage
properly labelled sir ?

i like orange better .

what ’s your favorite fla-
vor ?

how about drinks ?

i1l tell you what you 're
doing .

could i have some water
9

i like to watch barbie

sticking her tongue out

what ’s her figure ?

oh she ’s a pretty

woman .

you are not supposed to

be serious .

oh shut up ! she ’s not
what you are thinking
about .

if you give us your in-
quiry i shall go very
carefully into the price
and try my best to put
you on the best of the

terms .

ok . i will take it .

thank you very much .
we will try our best to

do our best to help you

i understand . i under-

stand that you are right

ok i will . ilook forward

to it .

ok . any time on friday
will be ok with me .

ok . see you then .

i think so .

i Il be expecting you
then .

great |

no wonder you can con-
trol your voice so well
. you are a professional
singer .

iam not a singer .

i would n’t mind a posi-

tion that would be great

i am a singer . i think
i can be a singer in the
lead .

i would n’t like to be a
singer but i love to sing

that dream .

when can i get high

speed internet installed
9

you can make a list of
the company and make
sure that you do n’t have
to use the machine .

you ’1l need to make an
appointment before the

company starts .

you can get up at the air-
port and you ’Il have to
make an appointment .

you 1l have to make an
appointment before we
can come in and install
it.

i like those kinds of pro-
grammes too . they re
very informative . i
think that many people
underrate the education

value of tv .

i agree . people often
criticize tv for showing
too much sex and vio-

lence .

i agree . people often
criticize tv for showing
too much sex and vio-

lence .

i think that teenagers
should be often become
addicted and violence .

i agree . people often
criticize tv for showing
too much sex and vio-

lence .

can you tell that i m ex-
cited ?

im afraid i m not a child

i m a fashion designer
next month i have a

fashion show .

i m not sure . what do

you want to know ?

im sure that i 1l cook the
same for you .

would you like to have a

yes i ’d like a glass of

no thank you .

no i ’d rather have it

yes with the lux dan-

shampoo sir ? iced tea . with me . druff shampoo . it helps
a lot to get rid of my
dandruff .

what else would i pre-  you can bring your beef oh good ! can you well the interviewers let me see . everything

pare sir ?

with your chicken and a
bottle of wine .

make some recommen-

dation for me ?

are not interested in the
position .

looks fine .

he always says i am a
hard worker with con-
sciousness of responsi-
bility sufficient educa-
tion and enough experi-

ence .

i think that maybe you
are right .

what s the matter with

you ?

how many years of ex-
perience will you earn ?

would you like to work
in the finance depart-

ment ?

what made you think
that ?

ilike it a lot .

i love that shirt on you .

ithink it ’s great . i think
i ve learned a lot from

different countries .

i will care for it .

i can tell you what bus
to catch but you have to
walk a little bit .

idon’t know .

tell me how to get a
ticket and a student bus

station .

i ’m sorry but i do n’t

have to wait .

you ’re going to have a

car .

Table 10: Responses to randomly selected test inputs which we made sure were not in the training data (DailyDia-
log). Unfiltered is the model trained on unfiltered data, and IDENTITY TARGET is the model trained on IDENTITY,
TARGET filtered data. Overfitted means that the respective model is evaluated at an overfitted point.
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