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Abstract

In this paper, we investigate the aspect of
structured output modeling for the state-of-
the-art graph-based neural dependency parser
(Dozat and Manning, 2017). With evalua-
tions on 14 treebanks, we empirically show
that global output-structured models can gen-
erally obtain better performance, especially on
the metric of sentence-level Complete Match.
However, probably because neural models al-
ready learn good global views of the inputs,
the improvement brought by structured output
modeling is modest.

1 Introduction

In the past few years, dependency parsers,
equipped with neural network models, have led to
impressive empirical successes on parsing accu-
racy (Chen and Manning, 2014; Weiss et al., 2015;
Dyer et al., 2015; Andor et al., 2016; Kiperwasser
and Goldberg, 2016; Kuncoro et al., 2016; Dozat
and Manning, 2017; Ma et al., 2018). Among
them, the deep-biaffine attentional parser (BiAF)
(Dozat and Manning, 2017) has stood out for
its simplicity and effectiveness. BiAF adopts
a simple bi-directional LSTM neural architec-
ture (Ma and Hovy, 2016; Kiperwasser and Gold-
berg, 2016) with the first-order graph parsing al-
gorithm (McDonald et al., 2005a,b). Simple as
it appears to be, BiAF has led to several record-
breaking performences in multiple treebanks and
languages (Dozat et al., 2017).

In their pioneering work, besides the neural ar-
chitecture, Dozat and Manning (2017) adopt a
simple head-selection training object (Zhang et al.,
2017) by regarding the original structured predic-
tion task as an head-classification task in train-
ing. Although practically this simplification works
well, there are still problems with it. Due to lo-
cal normalization in the training objective (see

§2.2), no global tree-structured information can be
back-propagated during training. This can lead
to the discrepancy between training and testing,
since during testing, the MST (Maximum Span-
ning Tree) algorithm (McDonald et al., 2005b) is
used to ensure valid tree structures. This prob-
lem raises concerns about the structured output
layer. Several previous neural graph parsers uti-
lized structured techniques (Pei et al., 2015; Kiper-
wasser and Goldberg, 2016; Zhang et al., 2016;
Wang and Chang, 2016; Ma and Hovy, 2017), but
their neural architectures might not be competitive
to the current state-of-the-art BiAF parsing model.
In this paper, building upon the BiAF based neural
architecture, we empirically investigate the effec-
tiveness of utilizing classical structured prediction
techniques of output modeling for graph-based
neural dependency parsing. We empirically show
that structured output modeling can obtain better
performance, especially on the the sentence-level
metrics. However, the improvements are modest,
probably because neural models make the problem
easier to solve locally.

2 Output Modeling

In structured prediction tasks, a structured output
y is predicted given an input x. We refer to the en-
coding of the x as input modeling, and the model-
ing of the structured output y as output modeling.

Output modeling concerns modeling dependen-
cies and interactions across multiple output com-
ponents and assigning them proper scores. A com-
mon strategy to score the complex output structure
is to factorize it into sub-structures, which is re-
ferred as factorization. A further step of normal-
ization is needed to form the final score of an out-
put structure. We will explain more details about
these concepts in the situation of graph-based de-
pendency parsing.
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2.1 Factorization

The output structure of dependency parsing is a
collection of dependency edges forming a single-
rooted tree. Graph-based dependency parsers fac-
torize the outputs into specifically-shaped sub-
trees (factors). Based on the assumption that the
sub-trees are independent to each other, the score
of the output tree structure (") is the combination
of the scores of individual sub-trees in the tree.

In the simplest case, the sub-trees are the indi-
vidual dependency edges connecting each modi-
fier and its head word ((m, h)). This is referred to
as first-order factorization (Eisner, 1996; McDon-
ald et al., 2005a), which is adopted in (Dozat and
Manning, 2017) and the neural parsing models in
this work. There are further extensions to higher-
order factors, considering more complex sub-trees
with multiple edges (McDonald and Pereira, 2006;
Carreras, 2007; Koo and Collins, 2010; Ma and
Zhao, 2012). We leave the exploration of these
higher-order graph models to future work.

2.2 Normalization

After obtaining the individual scores of the sub-
structures, we need to compute the score of the
whole output structure. The main question is on
what scale to normalize the output scores. For
graph-based parsing, there can be mainly three op-
tions: Global, Local or Single, following different
structured output constraints and corresponding to
different loss functions.

Global Global models directly normalize at the
level of overall tree structures, whose scores are
obtained by directly summing the raw scores of the
sub-trees without any local normalization. This
can be shown clearly if further taking a probabilis-
tic CRF-like treatment, where a final normaliza-
tion is performed over all possible trees:

| exp Z(m,h)ET Score(mn, h)
= log > v exp Z(m,h)eT’ Score(m, h)

Here, the normalization is carried out in the ex-
act output space of all legal trees (7”). Max-
Margin (Hinge) loss (Taskar et al., 2004) adopts
the similar idea, though there is no explicit nor-
malization in its formulation. The output space
can be further constrained by requiring the projec-
tivity of the trees (Kubler et al., 2009). Several
manual-feature-based (McDonald et al., 2005b;
Koo and Collins, 2010) and neural-based depen-
dency parsers (Pei et al., 2015; Kiperwasser and

Score, (T)

Goldberg, 2016; Zhang et al., 2016; Ma and Hovy,
2017) utilize global normalization.

Local Local models, in contrast, ignore the
global tree constraints and view the problem as
a head-selection classification problem (Fonseca
and Aluisio, 2015; Zhang et al., 2017; Dozat and
Manning, 2017). The structured constraint that
local models follow is that each word can be at-
tached to one and only one head node. Based on
this, the edge scores are locally normalized over
all possible head nodes. This can be framed as the
softmax output if taking a probabilistic treatment:

Z log

(m,h)ET

exp Score(m, h)
Zh’ exp Score(m, h/)

Scorey(T') =

In this way, the model only sees and learns head-
attaching decisions for each individual words.
Therefore, the model is unaware of the global tree
structures and may assign probabilities to non-tree
cyclic structures, which are illegal outputs for de-
pendency parsing. In spite of this defect, the lo-
cal model enjoys its merits of simplicity and effi-
ciency in training.

Single (Binary) If further removing the single-
head constraint, we can arrive at a more simplified
binary-classification model for each single edge,
referred as the “Single” model, which predicts the
presences and absences of dependency relation for
every pair of words. Eisner (1996) first used this
model in syntactic dependency parsing, and Dozat
and Manning (2018) applied it to semantic depen-
dency parsing. Here, the score of each edge is nor-
malized against a fixed score of zero, forming a
sigmoid output:

exp Score(m, h)
exp Score(m, h) +1

Scores(T): Z log

(m,h)ET

Here, we only show the scoring formula for
brevity. In training, since this binary classification
problem can be quite imbalanced, we only sample
partial of the negative instances (edges). Practi-
cally, we find a ratio of 2:1 makes a good balance,
that is, for each token, we use its correct head word
as the positive instance and randomly sample two
other tokens in the sentence as negative instances.

2.3 Summary

The normalization methods that we describe above
actually indicate the output structured constraints
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Normalization | Loss Algorithm
Single Prob -
Local Prob -
Global-NProj Prob Matrix-Tree Theorem

Hinge Chu-Liu-Edmonds
Global-Proj P_rob Ins1d_e—0u}s1de
Hinge Eisner’s
Table 1: Summarization of the methods explored in

this work and their corresponding algorithms.

that the model is aware of. The global model
is aware of all the constraints to ensure a legal
dependency tree. The local model maintains the
single-head constraint while there are almost no
structured constrains under the single model. To
be noted, for all these normalization methods, we
can take various loss functions. In this work, we
study two typical ones: probabilistic Maximum-
Likelihood loss (Prob), which requires actual nor-
malization over the output space, and Max-Margin
Hinge loss (Hinge), which only requires loss-
augmented decoding in the same output space.
Table 1 summarizes the methods (normalization
and loss function) that we investigate in our ex-
periments. For global models, we consider both
Projective (Proj) and Non-Projective (NProj) con-
straints. Specific algorithms are required for prob-
abilistic loss (a variation of Inside-Outside algo-
rithm for projective (Paskin, 2001) and Matrix-
Tree Theorem for non-projective parsing (Koo
et al., 2007; Smith and Smith, 2007; McDon-
ald and Satta, 2007)) and hinge loss (Eisner’s al-
gorithm for projective (Eisner, 1996) and Chu-
Liu-Edmonds’ algorithm for non-projective pars-
ing (Chu and Liu, 1965; Edmonds, 1967; McDon-
ald et al., 2005b)). For Single and Local models,
we only utilize probabilistic loss, since in prelim-
inary experiments we found hinge loss performed
worse. No special algorithms other than simple
enumeration are needed for them in training. In
testing, we adopt non-projective algorithms for the
non-global models unless otherwise noted.

3 Experiments

3.1 Settings

We evaluate the parsers on 14 treebanks: English
Penn Treebank (PTB), Penn Chinese Treebank
(CTB) and 12 selected treebanks from Universal
Dependencies (v2.3) (Nivre et al., 2018). We fol-
low standard data preparing conventions as in Ma
et al. (2018). Please refer to the supplementary
material for more details of data preparation.

For the neural architecture, we also follow the
settings in Dozat and Manning (2017) and Ma
et al. (2018) and utilize the deep BiAF model. For
the input, we concatenate representations of word,
part-of-speech (POS) tags and characters. Word
embeddings are initialized with the pre-trained
fasttext word vectors' for all languages. For POS
tags and Character information, we use POS em-
beddings and a character-level Convolutional Neu-
ral Network (CNN) for the encoding. For the
encoder, we adopt three layers of bi-directional
LSTM to get contextualized representations, while
our decoder is the deep BiAF scorer as in Dozat
and Manning (2017). We only slightly tune hyper-
parameters on the Local model and the develop-
ment set of PTB, and then use the same ones for
all the models and datasets. More details of hyper-
parameter settings are provided in the supplemen-
tary material. Note that our exploration only con-
cerns the final output layer which does not con-
tain any trainable parameters in the neural model,
and all our comparisons are based on exactly the
same neural architecture and hyper-parameter set-
tings. Only the output normalization methods and
the loss functions are different.

We run all the experiments with our own im-
plementation?, which is written with PyTorch. All
experiments are run with one TITAN-X GPU. In
training, global models take around twice the time
of the local and single models; while in testing,
their decoding costs are similar.

3.2 Results

We run all the models three times with different
random initialization, and the averaged results on
the test sets are shown in Table 2. Due to space
limitation, we only report LAS (Labeled Attach-
ment Score) and LCM (Labeled Complete Match)
in the main content. We also include the unla-
beled scores UAS (Unlabeled Attachment Score)
and UCM (Unlabeled Complete Match) in the sup-
plementary material. The evaluations on PTB and
CTB exclude punctuations?®, while on UD we eval-
uate on all tokens (including punctuations) as the
setting of the LAS metric in the CoNLL shared
tasks (Zeman et al., 2017, 2018).

"https://fasttext.cc/docs/en/pretrained-vectors.html

2Our implementation is publicly available at https: //
github.com/zzsfornlp/zmsp

3Tokens whose gold POS tag is one of {“” : , .} for PTB
or “PU” for CTB
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Single Local Global-NProj Global-Proj

Method Prfb Prob Prob i]-Iinge Prob JHinge
PTB 93.43/44.67 | 93.75/46.65 | 93.84T/47.17 | 93.917/47.787 | 93.79/47.16 | 93.967/48.47"
CTB 87.03/31.26 | 88.16/33.16 | 88.26/33.73 87.92/32.77 | 88.467/35.117 | 88.14/34.001
bg-btb 89.97/39.25 | 90.06/39.99 | 90.357/41.25T | 90.427/40.83 | 90.15/40.98 90.20/40.53
ca-ancora 91.23/25.03 | 91.54/26.35 | 91.737/27.19" | 91.737/26.65 | 91.39/27.39" | 91.51/27.19%
cs-pdt 90.95/43.07 | 91.51/45.62 | 91.697/46.60" | 91.52/46.02" | 91.10/44.43 91.18/44.02
de-gsd 83.687/22.65 | 83.43/22.42 | 83.651/22.86 | 83.661/22.93 | 83.39/23.37" | 83.63/23.51"
en-ewt 88.01/55.93 | 88.33/56.46 | 88.527/57.291 | 88.597/57.33"7 | 88.521/58.297 | 88.41/57.31%
es-ancora 90.82/27.27 | 91.05/27.41 | 91.12/27.89 91.14/27.35 | 90.84/28.41" | 91.03/27.70
fr-gsd 88.00/20.03 | 88.13/20.83 | 88.437/21.71 88.22/20.27 | 88.597/23.807 | 88.417/21.88
it-isdt 91.71/44.05 | 92.01/44.26 | 92.16/45.30 92.08/45.02 | 92.497/48.277 | 92.371/46.75"
nl-alpino 88.31/33.11 | 88.81/33.67 | 88.94/34.62 | 88.94/35.12° 88.37/33.05 88.45/33.00
no-bokmaal | 92.89/53.60 | 92.89/53.58 | 93.027/54.367 | 92.78/53.09 92.82/53.57 92.70/52.71
ro-rrt 85.107/12.85" | 84.58/11.57 | 84.857/12.44 | 85.041/13.03" | 84.89%/12.94% | 85.167/13.76'
ru-syntagrus | 92.76/48.67 | 93.29/50.69 | 93.361/50.97 | 93.29/50.72 93.11/50.79 93.19/50.17
Average 89.56/35.82 | 89.82/36.62 | 89.997/37.39T | 89.957/37.077 | 89.85/37.687 | 89.88/37.217

Table 2: Results (LAS/LCM) on the test sets (averaged over three runs). ‘t’ means that the result of the model is
statistically significantly better (by permutation test, p < 0.05) than the Local-Prob model.

Overall, the global models* perform better con-
sistently, especially on the metrics of Complete
Match, showing the effectiveness of being aware
of global structures. However, the performance
gaps between global models and local models are
small. More surprisingly, the single models that
ignore all the structures only lag behind by around
0.4 averagely. In some way, this shows that in-
put modeling, including the distributed input rep-
resentations, contextual encoders and parts of the
decoders, makes the structured decision problem
easier to solve locally. Neural models seem to
squeeze the improvement space that structured
output modeling can bring.

3.3 Analysis

We further analyze on output constraints and input
modeling. For brevity, we only analyze on PTB
and use probabilistic models. Single models are
excluded for their poorer performance.

Firstly, we study the influence of output con-
straint differences in training and testing. Here,
we include a naive “Greedy” decoding algorithm
which simply selects the most probable head for
each token. This does not ensure that the outputs
are trees and corresponds to the head-classification
method adopted by local models. The results of
different models and training/testing algorithms
are shown in Figure 1. Interestingly, the discrep-
ancies in training and testing are only detrimen-

“Projective global models perform averagely poorer than
non-projective ones, since some of the treebanks (for exam-
ple, only 88% of the trees in ‘cs-pdt’ are projective) contain
a non-negligible portion of non-projective trees.

90.97/27.87

Training Methods

80.08/3.6 85.6/15.63

3 ézé\ Q@\

&
&

€
Testing Decoding Algorithms

Figure 1: Results (LAS/LCM, on the PTB test set)
of different models (with prob loss) and decoding al-
gorithms. Rows represent the methods used in training
and columns denote the decoding algorithms in testing.
Darker colors represent better scores.

tal when the output constraint in testing is looser
than that in training (the left corner in the figure),
as shown by the poorer results in the training-
testing pairs of “NProj-Greedy”, “Proj-Greedy”
and “Proj-NProj”. Generally, projective decod-
ing is the best choice since PTB contains mostly
(99.9%) projective trees.

Next, we study the interactions of “weaker”
neural architectures (for input modeling) and out-
put modeling. We consider three “weaker” mod-
els: (1) “No-Word” ignores all the lexical inputs
and is a pure delexicalized model; (2) “Simple-
CNN” replaces the RNN encoder with a much
simpler encoder, which is a simple single-layer
CNN with a window size of three for the purpose
of studying weak models; (3) “No-Encoder” com-
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I Diff LCM(global, local)
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w
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203 +1.91

Y

+0.74

+0.09. +0.20
ol

Full No-Word Simple-CNN
(93.78/46.80) (86.29/24.79) (82.72/18.34)
Neural Architectures

Evaluation Differences

No-Encoder
(61.70/7.20)

Figure 2: Evaluation differences (on the PTB test set)
between global and local methods when adopting vari-
ous “weaker” neural architectures. Numbers below x-
axis labels denote the evaluation scores (LAS/LCM) of
the local models.

pletely deletes the encoder, leading to a model that
does not take any contextual information. Here,
since we are testing on PTB which almost contain
only projective trees, we use projective decoding
for all models. As shown in Figure 2, when in-
put modeling is weaker, the improvements brought
by the global model generally get larger. Here,
the LCM for “No-Encoder” is an outlier, prob-
ably because this model is too weak to get rea-
sonable complete matches. The results show that
with weaker input modeling, the parser can gen-
erally benefit more from structured output model-
ing. In some way, this also indicates that better
input modeling can make the problem depend less
on the global structures so that local models are
able to obtain competitive performance.

4 Discussion and Conclusion

In this paper, we call the models that are aware
of the whole output structures “global”. In fact,
with the neural architecture that can capture fea-
tures from the whole input sentence, actually all
the models we explore have a “global” view of in-
puts. Our experiments show that with this kind
of global input modeling, good results can be ob-
tained even when ignoring certain output struc-
tures, and further enhancement of global output
structures only provides small benefits. This might
suggest that input and output modeling can capture
certain similar information and have overlapped
functionalities for the structured decisions.

In future work, there can be various possible ex-
tensions. We will explore more about the interac-
tions between input and output modeling for struc-
tured prediction tasks. It will be also interesting
to adopt even stronger input models, especially,

those enhanced with contextualized representa-
tions from Elmo (Peters et al., 2018) or BERT (De-
vlin et al., 2018). A limitation of this work is that
we only explore first-order graph based parser, that
is, for the factorization part, we do not consider
high-order sub-subtree structures. This part will
surely be interesting and important to explore.
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