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Abstract
Adversarial domain adaptation has been re-
cently introduced as an effective technique for
textual matching tasks, such as question dedu-
plication (Shah et al., 2018). Here we investi-
gate the use of gradient reversal on adversar-
ial domain adaptation to explicitly learn both
shared and unshared (domain specific) repre-
sentations between two textual domains. In
doing so, gradient reversal learns features that
explicitly compensate for domain mismatch,
while still distilling domain specific knowl-
edge that can improve target domain accuracy.
We evaluate reversing gradients for adversarial
adaptation on multiple domains, and demon-
strate that it significantly outperforms other
methods on question deduplication as well as
on recognizing textual entailment (RTE) tasks,
achieving up to 7% absolute boost in base
model accuracy on some datasets.

1 Introduction

Domain adaptation is a flexible machine learning
approach that allows the transfer of category inde-
pendent information between domains. Through
domain adaptation we can leverage source task
representations to bring the source and target dis-
tributions closer in a learned joint feature space. In
this paper we are focused only on semi-supervised
domain adaptation — when knowledge from a
large labeled dataset in a source domain can be
somewhat transferred to help improve the same
task on a target domain, which typically has a sig-
nificantly smaller number of labels. In particu-
lar, this paper focuses on domain adaptation for
the detection of question duplicates in commu-
nity question answering forums (Shah et al., 2018;
Hoogeveen et al., 2015), as well as for RTE tasks
(Dagan et al., 2005; Zhao et al., 2017).

Generally speaking, the effectiveness of domain
adaptation depends essentially on two factors: the

similarity between source and target domains, and
representation strategy to transfer the source do-
main knowledge. Long et al. showed transfer-
ring features across domains becomes increasingly
difficult as domain discrepancy increases (Long
et al., 2017), since the features learned by models
gradually transition from general to highly domain
specific as training progresses. Recent domain
adaptation strategies attempt to counter this issue
by making certain features invariant across source
and target domains using distribution matching
(Cao et al., 2018) or minimizing distance metrics
between the representations (Sohn et al., 2019).

The idea of generating domain invariant fea-
tures was further enhanced by the use of adver-
sarial learning methods. Recent work has advo-
cated for tuning networks using a loss functions
that reduce the mismatch between source and tar-
get data distributions (Sankaranarayanan et al.,
2018; Tzeng et al., 2017). Others have proposed a
domain discriminator that maximizes the domain
classification loss between source and target do-
mains (Cohen et al., 2018; Shah et al., 2018). One
particular limitation of these approaches is that
they are restricted to using only the shared domain
invariant features and hence can’t benefit from tar-
get domain specific information. Small amounts
of labeled target domain data could in principle
be used to fine-tune learned shared representations
and improve the target task, however this could
also lead to overfitting (Sener et al., 2016).

To address this issue, Qiu et al. used both
shared domain invariant and domain specific fea-
tures: while the shared features are learned by
maximizing domain discriminator loss, the do-
main specific features are learned by jointly min-
imizing the task loss and the domain classifica-
tion loss by domain specific discriminators (Qiu
et al., 2018). Similar ideas were put forth by
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Peng et al for cross-domain sentiment classifica-
tion where they demonstrate the effectiveness of
using both domain specific and domain invariant
features (Peng et al., 2018). Moreover, Bousmalis
et al have made similar observations in domain
adaptation for image classification and related vi-
sion tasks (Bousmalis et al., 2016). All these stud-
ies follow similar approach of learning shared fea-
ture space by maximizing domain classification
loss.

In contrast, our work here enhances the ideas
from from Qiu et al. by utilizing a Gradient Re-
versal Layer (GRL) (Ganin and Lempitsky, 2015)
to train the domain discriminator in a minimax
game manner, and show that it results in signifi-
cantly better transfer performance to multiple tar-
get domains. The use of gradient reversal layer is
further advocated by works of Elazar et al (Elazar
and Goldberg, 2018) and Fu et al (Fu et al., 2017)
for removal of demographic attributes from text,
and relation extraction from text, respectively. To
the best of our knowledge, the use of Gradient Re-
versal in textual matching tasks, such as question
deduplication and RTE, is novel and may trigger
further applications of this approach in other lan-
guage tasks.

To summarize our contributions, (1) we propose
a novel approach for adversarial domain adapta-
tion that uses gradient reversal layers to discover
shared representations between source and target
domains on textual matching tasks, and elegantly
combines domain specific and domain invariant
shared features. (2) We apply it to question dedu-
plication tasks and empirically confirm that it out-
performs all other strong baselines and feature sets
on five different domains, with absolute accuracy
gains of up to 4.5%. (3) We further apply the same
approach to two different textual entailment do-
mains, where it again outperforms other baselines
by as much as 7% absolute accuracy points.

2 Approaches

2.1 Base Model:BiMPM

Wang et al. (Wang et al., 2017) proposed the Bilat-
eral Multi-Perspective Matching model for many
language tasks, including question duplicate de-
tection and RTE. This model takes in the two can-
didate sentences as inputs to a Bi-LSTM layer that
generates hidden representations for both of them.
These representations are passed on to a multi-
perspective matching block that uses four differ-

Figure 1: (a) Architecture for data flow of pass 1, (b)
Architecture for data flow of passes 2 and 3

ent matching mechanisms - full matching, max-
pooling matching, attentive matching and max at-
tentive matching to generate matched representa-
tions of all words of both the sentences. This
matching takes place in both the directions, i.e.
if P and Q are the two input sentences, then rep-
resentations for all words of P are computed by
matching with words of Q, and same is done for
all words of Q by matching with all words of P.
These representations are then fed into an aggre-
gation layer followed by fully connected layers
for classification. In our experiments, we modi-
fied this architecture by replacing the aggregation
LSTM in the aggregation layer by an aggregating
attention layer, and replacing the following fully
connected layers by a bilinear layer.

2.2 Adversarial Domain Adaptation Methods

The overall architecture used for prediction makes
use of both shared and domain specific features.
The shared features are learned in an adversar-
ial fashion wherein the desired feature layer that
needs to be shared sends its output to a domain
discriminator. For our experiments, we plug in
this domain discriminator at the base of the model,
right after the Bi-LSTM layer. This is to en-
sure that the layers following Bi-LSTM are trained
only for the duplicate classification task, and use
domain invariant features generated by the Bi-
LSTM. Our work uses two domain discriminators
- shared domain discriminator with gradient rever-
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Figure 2: Architecture for data flow of passes 4 and 5

sal layer (explained below), that is used to train
shared Embedding and Bi-LSTM layers to gen-
erate domain invariant features, and unshared do-
main discriminator that is used to train all the do-
main specific Embedding and Bi-LSTM layers to
generate highly domain specific features. These
discriminators consist of an aggregation layer (at-
tention mechanism), followed by a fully connected
layer for domain classification (see Figures 1(a)
and 1(b)).

The shared domain discriminator uses a Gradi-
ent Reversal Layer (GRL) (see Figure 1(a)) that
acts as an identity transform in the forward pass
through the network. During the backward pass
however, this layer multiplies the incoming gra-
dient by a negative factor −λ which reverses the
gradient direction. The use of this layer allows
the domain discriminator to be trained in a mini-
max game fashion, where the domain classifica-
tion layer tries to minimize the domain classifica-
tion loss, thus trying to be better at this task, while
feature extraction layers (layers before GRL) act
as adversaries by trying to make the task harder for
domain classification layer. This ensures that fea-
ture extraction layers are as ineffective as possible
for domain classification, thus bringing the feature
maps of both domains closer. As a result, the de-
sired feature layers should generate shared feature
representations that are almost indistinguishable
by the domain classification layer. The shared fea-
tures obtained from shared Bi-LSTM should also
be more effective to transfer than the ones obtained

by simply maximizing the domain classification
loss throughout the domain discriminator and base
model layers.

The domain specific features are learned using
an unshared domain discriminator that is identical
to the domain discriminator used for shared fea-
tures, except that the GRL is replaced by iden-
tity transform layer (see Figure 1(b)). This layer
however, multiplies the incoming gradient by a
positive factor +λ to maintain uniformity in gra-
dient magnitudes with shared domain discrimina-
tor. This domain discriminator tries to minimize
the domain classification loss, as do the preceding
layers and thus the desired feature layer learns to
generate highly domain specific feature represen-
tations.

A block diagram of the proposed adversarial
learning framework for domain adaptation has
been shown in Figure 3.

Figure 3: Adversarial Learning Framework for Domain
Adaptation

2.3 Model Architecture

The training data has sentence pairs (QS) from
source domain S, and sentence pairs (QT ) from
target domain T . Figures 1 and 2 show the over-
all architecture of the model. The initial layers
of the network - Embedding, Bi-LSTM and multi-
perspective match block - are of two kinds: shared
and domain specific. Shared layers are used in
the network for sentences of all domain types,
whereas the domain specific layers work on sen-
tences of only corresponding domains. The Em-
bedding layers can be appropriately initialized and
trained end-to-end along with the rest of the net-
work. Each domain has domain specific aggre-
gation and classification (fully connected) layers
as well. The aggregation layer takes in the do-
main specific and shared features as inputs (Figure
2), aggregates them and concatenates these aggre-
gated vectors to form a combined representation.
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This combined feature vector is passed to the clas-
sification layers for task classification.

2.4 Model Training

The forward propagation through the model in-
volves 5 passes, which are listed below:

• Pass 1 (Figure 1(a)) - QS and QT through
shared layers and shared domain discrimina-
tor (Loss = L1).

• Pass 2 (Figure 1(b)) - QS through domain
specific layers and unshared domain discrim-
inator (Loss = L2).

• Pass 3 (Figure 1(b)) - QT through domain
specific layers and unshared domain discrim-
inator (Loss = L3).

• Pass 4 (Figure 2) - QS through domain spe-
cific and shared layers for task classification
(Loss = L4).

• Pass 5 (Figure 2) - QT through domain spe-
cific and shared layers for task classification
(Loss = L5).

The source domain layers are trained by
minimizing LS (Equation 1). The target domain
layers are trained by minimizing LT (Equa-
tion 2). The shared embedding, Bi-LSTM and
aggregation layers are learned by minimizing
LSh (Equation 3), while fully connected layer
of shared domain discriminator minimizes L1.

LS = L2 + L4 (1) LT = L3 + L5 (2)

LSh = L4 + L5 − λL1 (3)

Note that not all domain specific layers con-
tribute to losses L2 and L3, and thus the gradient
due to these losses affects only the Embedding and
Bi-LSTM layers for all domains. We trained all
the models and tuned all the hyperparameters to
optimize the validation set performance on target
domain data.

3 Experiments

3.1 Datasets

For question duplicate detection, we use the Quora
question pairs dataset(Quora, 2017) as the source
domain dataset and 5 datasets that are from dif-
ferent and diverse set of domains as our target do-
mains. The Android, Mathematica, Programmers
and Unix question datasets were used from the
Stack Exchange dataset (StackExchchange, 2018).
We obtained the Tax Domain Qs from a popular

forum for tax related question answers, which we
plan to make public shortly. For RTE, the Stanford
Natural Language Inference (SNLI) (SNLI, 2015)
has been used as source domain, and for target
domains we used The Guardian Headlines RTE
(RTE, 2012) and SICK (SICK, 2014) datasets.
The size for all these datasets has been mentioned
in Table 1 in the (train/ validation/ test) format.

3.2 Results

In Table 1 we compared the base model BiMPM
(base) trained only on the target domains to three
variants of the same model, each obtained after
a different approach for adversarial domain adap-
tation. Model T1 was trained by using both the
shared and domain specific features, but maximiz-
ing the domain classification loss to learn shared
features. Model T2 used only the shared features
learned using gradient reversal strategy, along with
fine-tuned features obtained from later layers of
the network. Model T3 used both the domain spe-
cific features as well as the shared features learned
using the gradient reversal method. The accuracy
of these models for five different question dedu-
plication and two RTE target domains is reported
in Table 1. Comparisons of accuracy numbers be-
tween different rows are fairly consistent across all
domains1, enabling us to draw the following em-
pirical claims:

T1, T2 and T3 outperform baseline, hence
enforcing the effectiveness of adversarial domain
adaptation in all tasks in Table 1.

T3 outperforms T2, thus indicating that learn-
ing a combination of domain specific and shared
representations is quite beneficial for all domain
transfer experiments in Table 1. This observation
was also noted by Qiu et al (Qiu et al., 2018), even
if without the use of gradient reversal.

Both T2 and T3 outperform T1, hence pro-
viding strong evidence that GRL significantly im-
proves overall feature learning if compared to
maximizing the domain classification loss. In par-
ticular, the comparison between T3 and T1, shows
that learning exactly the same feature set using
GRL for adversarial domain adaptation is more ef-
fective than maximizing the loss.

T3 outperforms all other models, showing
that our proposed approach consistently beats all
other settings for domain adaptation in both ques-

1All row differences are statistically significant on paired
t-test(p-value< 0.05)
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Model Adversarial Features
Question Duplicate Detection Textual Entailment

(BiMPM) Approach
Tax Domain Android Mathematica Programmers Unix Guardian SICK

(3k/ 1k/ 1k) (7k/ 1.5k/ 1.5k) (5.4k/ 1.2k/ 1.2k) (6.5k/ 1.5k/ 1.5k) (7k/ 1.5k/ 1.5k) (23k/ 5k/ 5k) (6.8k/ 1.5k/ 1.5k)

base – DSF 84.7 90.7 80.0 90.7 88.7 92.3 69.5
T1 maxLoss SF + DSF 87.6 91.3 82.1 91.6 89.6 94.3 72.7
T2 GRL SF 88.1 92.0 82.6 91.9 90.8 96.4 73.8
T3 GRL SF + DSF 89.3 92.6 83.0 92.4 91.1 97.4 76.4

Table 1: Comparison of Accuracy for different domain adaptation methods; Source domain for question duplicate
detection: Quora (240k/ 80k/ 80k), Source domain for RTE: SNLI (550k/ 10k/ 10k); SF: shared features, DSF:
domain specific features, maxLoss: maximizing domain discriminator loss, GRL: gradient reversal layer

tion duplicate classification and RTE.

4 Discussion and Conclusion

We systematically evaluated different adversarial
domain adaptation techniques for duplicate ques-
tion detection and RTE tasks. Our experiments
showed that adversarial domain adaptation using
gradient reversal yields the best knowledge trans-
fer between all textual domains in Table 1. This
method outperformed existing domain adaptation
techniques, including recently proposed adversar-
ial domain adaptation method of maximizing the
domain classification loss by a discriminator. Fur-
thermore, we show that the models that use both
domain specific features and shared features out-
perform the models that use only either of these
features.
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