
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5508–5521
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5508

Learning Latent Trees with Stochastic Perturbations
and Differentiable Dynamic Programming

Caio Corro Ivan Titov
ILCC, School of Informatics, University of Edinburgh

ILLC, University of Amsterdam
c.f.corro@uva.nl ititov@inf.ed.ac.uk

Abstract

We treat projective dependency trees as latent
variables in our probabilistic model and induce
them in such a way as to be beneficial for a
downstream task, without relying on any direct
tree supervision. Our approach relies on Gum-
bel perturbations and differentiable dynamic
programming. Unlike previous approaches to
latent tree learning, we stochastically sample
global structures and our parser is fully differ-
entiable. We illustrate its effectiveness on sen-
timent analysis and natural language inference
tasks. We also study its properties on a syn-
thetic structure induction task. Ablation stud-
ies emphasize the importance of both stochas-
ticity and constraining latent structures to be
projective trees.

1 Introduction

Discrete structures are ubiquitous in the study of
natural languages, for example in morphology,
syntax and discourse analysis. In natural language
processing, they are often used to inject linguistic
prior knowledge into statistical models. For exam-
ples, syntactic structures have been shown benefi-
cial in question answering (Cui et al., 2005), senti-
ment analysis (Socher et al., 2013), machine trans-
lation (Bastings et al., 2017) and relation extrac-
tion (Liu et al., 2015), among others. However,
linguistic tools producing these structured repre-
sentations (e.g., syntactic parsers) are not avail-
able for many languages and not robust when ap-
plied outside of the domain they were trained on
(Petrov et al., 2010; Foster et al., 2011). More-
over, linguistic structures do not always seem
suitable in downstream applications, with sim-
pler alternatives sometimes yielding better perfor-
mance (Wang et al., 2018).

Indeed, a parallel line of work focused on induc-
ing task-specific structured representations of lan-
guage (Naradowsky et al., 2012; Yogatama et al.,

2017; Kim et al., 2017; Liu and Lapata, 2018; Nic-
ulae et al., 2018). In these approaches, no syn-
tactic or semantic annotation is needed for train-
ing: representation is induced from scratch in an
end-to-end fashion, in such a way as to benefit a
given downstream task. In other words, these ap-
proaches provide an inductive bias specifying that
(hierarchical) structures are appropriate for repre-
senting a natural language, but do not make any
further assumptions regarding what the structures
represent. Structures induced in this way, though
useful for the task, tend not to resemble any ac-
cepted syntactic or semantic formalisms (Williams
et al., 2018a). Our approach falls under this cate-
gory.

In our method, projective dependency trees (see
Figure 3 for examples) are treated as latent vari-
ables within a probabilistic model. We rely on
differentiable dynamic programming (Mensch and
Blondel, 2018) which allows for efficient sampling
of dependency trees (Corro and Titov, 2019). Intu-
itively, sampling a tree involves stochastically per-
turbing dependency weights and then running a re-
laxed form of the Eisner dynamic programming al-
gortihm (Eisner, 1996). A sampled tree (or its con-
tinuous relaxation) can then be straightforwardly
integrated in a neural sentence encoder for a target
task using graph convolutional networks (GCNs,
Kipf and Welling, 2017). The entire model, in-
cluding the parser and GCN parameters, are es-
timated jointly while minimizing the loss for the
target task.

What distinguishes us from previous work is
that we stochastically sample global structures and
do it in a differentiable fashion. For example, the
structured attention method (Kim et al., 2017; Liu
and Lapata, 2018) does not sample entire trees but
rather computes arc marginals, and hence does not
faithfully represent higher-order statistics. Much
of other previous work relies either on reinforce-



5509

ment learning (Yogatama et al., 2017; Nangia and
Bowman, 2018; Williams et al., 2018a) or does
not treat the latent structure as a random vari-
able (Peng et al., 2018). Niculae et al. (2018)
marginalizes over latent structures, however, this
necessitates strong sparsity assumptions on the
posterior distributions which may inject undesir-
able biases in the model. Overall, differential dy-
namic programming has not been actively studied
in the task-specific tree induction context. Most
previous work also focused on constituent trees
rather than dependency ones.

We study properties of our approach on a syn-
thetic structure induction task and experiment on
sentiment classification (Socher et al., 2013) and
natural language inference (Bowman et al., 2015).
Our experiments confirm that the structural bias
encoded in our approach is beneficial. For ex-
ample, our approach achieves a 4.9% improve-
ment on multi-genre natural language inference
(MultiNLI) over a structure-agnostic baseline. We
show that stochastisticity and higher-order statis-
tics given by the global inference are both impor-
tant. In ablation experiments, we also observe that
forcing the structures to be projective dependency
trees rather than permitting any general graphs
yields substantial improvements without sacrific-
ing execution time. This confirms that our induc-
tive bias is useful, at least in the context of the
considered downstream applications.1 Our main
contributions can be summarized as follows:

1. we show that a latent tree model can be esti-
mated by drawing global approximate sam-
ples via Gumbel perturbation and differen-
tiable dynamic programming;

2. we demonstrate that constraining the struc-
tures to be projective dependency trees is
beneficial;

3. we show the effectiveness of our approach
on two standard tasks used in latent structure
modelling and on a synthetic dataset.

2 Background

In this section, we describe the dependency pars-
ing problem and GCNs which we use to incorpo-
rate latent structures into models for downstream
tasks.

1The Dynet code for differentiable dynamic programming
is available at https://github.com/FilippoC/
diffdp.

2.1 Dependency Parsing

Dependency trees represent bi-lexical relations be-
tween words. They are commonly represented as
directed graphs with vertices and arcs correspond-
ing to words and relations, respectively.

Let x = x0 . . . xn be an input sentence with n
words where x0 is a special root token. We de-
scribe a dependency tree of x with its adjacency
matrix T ∈ {0, 1}n×n where Th,m = 1 iff there
is a relation from head word xh to modifier word
xm. We write T (x) to denote the set of trees com-
patible with sentence x.

We focus on projective dependency trees. A
dependency tree T is projective iff for every arc
Th,m = 1, there is a path with arcs in T from xh to
each word xi such that h < i < m or m < i < h.
Intuitively, a tree is projective as long as it can be
drawn above the words in such way that arcs do
not cross each other (see Figure 3). Similarly to
phrase-structure trees, projective dependency trees
implicitly encode hierarchical decomposition of a
sentence into spans (‘phrases’). Forcing trees to be
projective may be desirable as even flat span struc-
tures can be beneficial in applications (e.g., encod-
ing multi-word expressions). Note that actual syn-
tactic trees are also, to a large degree, projective,
especially for such morphologically impoverished
languages as English. Moreover, restricting the
space of the latent structures is important to ease
their estimation. For all these reasons, in this work
we focus on projective dependency trees.

In practice, a dependency parser is given a sen-
tence x and predicts a dependency tree T ∈ T (x)
for this input. To this end, the first step is to com-
pute a matrix W ∈ Rn×n that scores each de-
pendency. In this paper, we rely on a deep dotted
attention network. Let e0 . . . en be embeddings
associated with each word of the sentence.2 We
follow Parikh et al. (2016) and compute the score
for each head-modifier pair (xh, xm) as follows:

Wh,m=MLPhead(eh)>MLPmod(em)+bh-m, (1)

where MLPhead and MLPmod are multilayer per-
ceptrons, and bh-m is a distance-dependent bias,
letting the model encode preference for long
or short-distance dependencies. The conditional
probability of a tree pθ(T |x) is defined by a log-

2 The embeddings can be context-sensitive, e.g., an RNN
state.

https://github.com/FilippoC/diffdp
https://github.com/FilippoC/diffdp
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linear model:

pθ(T |x) =
exp(

∑
h,mWh,mTh,m)∑

T ′∈T (x) exp(
∑

h,mWh,mT
′
h,m)

.

When tree annotation is provided in data D, net-
works parameters θ are learned by maximizing the
log-likelihood of annotated trees (Lafferty et al.,
2001).

The highest scoring dependency tree can be pro-
duced by solving the following mathematical pro-
gram:

T = arg max
T∈T (x)

∑
h,m

Wh,mTh,m. (2)

If T (x) is restricted to be the set of projective
dependency trees, this can be done efficiently in
O(n3) using the dynamic programming algorithm
of Eisner (1996).

2.2 Graph Convolutional Networks
Graph Convolutional Networks (GCNs, Kipf and
Welling, 2017; Marcheggiani and Titov, 2017)
compute context-sensitive embeddings with re-
spect to a graph structure. GCNs are composed
of several layers where each layer updates vertices
representations based on the current representa-
tions of their neighbors. In this work, we fed the
GCN with word embeddings and a tree sample T .
For each word xi, a GCN layer produces a new
representation relying both on word embedding of
xi and on embeddings of its heads and modifiers
in T . Multiple GCN layers can be stacked on top
of each other. Therefore, a vertex representation in
a GCN with k layers is influenced by all vertices at
a maximum distance of k in the graph. Our GCN
is sensitive to arc direction.

More formally, let E0 = e0 � · · · � en, where
� is the column-wise concatenation operator, be
the input matrix with each column corresponding
to a word in the sentence. At each GCN layer t,
we compute:

Et+1 = σ
(
f(Et) + g(Et)T + h(Et)T>

)
,

where σ is an activation function, e.g. ReLU.
Functions f(), g() and h() are distinct multi-
layer perceptrons encoding different types of rela-
tionships: self-connection, head and modifier, re-
spectively (hyperparameters are provided in Ap-
pendix A). Note that each GCN layer is easily
parallelizable on GPU both over vertices and over
batches, either with latent or predefined structures.

(a)

x

T

y

(b)

x
T

x′T ′

y

Figure 1: The two directed graphical models used in
this work. Shaded and unshaded nodes represent ob-
servable and unobservable variables, respectively. (a)
In the sentence classification task, the output y is con-
ditioned on the input and the latent tree. (b) In the nat-
ural language inference task, the output is conditioned
on two sentences and their respective latent trees.

3 Structured Latent Variable Models

In the previous section, we explained how a de-
pendency tree is produced for a given sentence
and how we extract features from this tree with
a GCN. In our model, we assume that we do not
have access to gold-standard trees and that we
want to induce the best structure for the down-
stream task. To this end, we introduce a prob-
ability model where the dependency structure is
a latent variable (Section 3.1). The distribution
over dependency trees must be inferred from the
data (Section 3.2). This requires marginalization
over dependency trees during training, which is in-
tractable due to the large search space.3 Instead,
we rely on Monte-Carlo (MC) estimation.

3.1 Graphical Model
Let x be the input sentence, y be the output (e.g.
sentiment labelling) and T (x) be the set of latent
structures compatible with input x. We construct
a directed graphical model where x and y are ob-
servable variables, i.e. their values are known dur-
ing training. However, we assume that the proba-
bility of the output y is conditioned on a latent tree
T ∈ T (x), a variable that is not observed during
training: it must be inferred from the data. For-
mally, the model is defined as follows:

pθ(y|x) = Epθ(T |x)[p(y|x,T )] (3)

=
∑

T∈T (x)

pθ(T |x)× pθ(y|x,T ),

where θ denotes all the parameters of the model.
An illustration of the network is given in Fig-
ure 1a.

3This marginalization is a sum of the network outputs over
all possible projective dependency trees. We cannot rely on
the usual dynamic programming approach because we do not
make any factorization assumptions in the GCN.
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3.2 Parameter Estimation
Our probability distributions are parameterized by
neural networks. Their parameters θ are learned
via gradient-based optimization to maximize the
log-likelihood of (observed) training data. Unfor-
tunately, estimating the log-likelihood of observa-
tion requires computing the expectation in Equa-
tion 3, which involves an intractable sum over all
valid dependency trees. Therefore, we propose to
optimize a lower bound on the log-likelihood, de-
rived by application of Jensen’s inequality which
can be efficiently estimated with the Monte-Carlo
(MC) method:

log pθ(y
i|xi) = logET∼pθ(T |xi)[pθ(y

i|T , xi)]
≥ ET∼pθ(T |xi)[log pθ(y

i|T , xi)]. (4)

However, MC estimation introduces a non-
differentiable sampling function T ∼ pθ(T |xi)
in the gradient path. Score function estimators
have been introduced to bypass this issue but suf-
fer from high variance (Williams, 1987; Fu, 2006;
Schulman et al., 2015). Instead, we propose
to reparametrize the sampling process (Kingma
and Welling, 2014), making it independent of the
learned parameter θ : in such case, the sampling
function is outside of the gradient path. To this
end, we rely on the Perturb-and-MAP framework
(Papandreou and Yuille, 2011). Specifically, we
perturb the potentials (arc weights) with samples
from the Gumbel distribution and compute the
most probable structure with the perturbed poten-
tials:

Gh,m ∼ G(0, 1), (5)

W̃ = W + G, (6)

T = arg max
T∈T (x)

∑
h,m

Th,mW̃h,m. (7)

Each element of the matrix G ∈ Rn×n contains
random samples from the Gumbel distribution4

which is independent from the network parameters
θ, hence there is no need to backpropagate through
this path in the computation graph. Note that,
unlike the Gumbel-Max trick (Maddison et al.,
2014), sampling with Perturb-and-MAP is approx-
imate, as the noise is factorizable: we add noise
to individual arc weights rather than to scores of
entire trees (which would not be tractable). This

4That is Gh,m = − log(− log(Uh,m)) where Uh,m is
sampled from the uniform distribution on the interval (0, 1).

Algorithm 1 This function computes the chart val-
ues for items of the form [i, j,→,⊥] by search-
ing the set of antecedents that maximizes its score.
Because these items assume a dependency from xi
to xj , we add Wi,h to the score.

1: function BUILD-URIGHT(i, j, W̃ )
2: s← null-initialized vec. of size j − i
3: for i ≤ k < j do
4: si−k ← [i, k,→,>] + [k + 1, j,←,>]

5: b← ONE-HOT-ARGMAX(s)
6: BACKPTR[i, j,→,⊥]← b
7: WEIGHT[i, j,→,⊥]← b>s +Wj,i

Algorithm 2 If item [i, j,→,⊥] has contributed
the optimal objective, this function sets Ti,j to 1.
Then, it propagates the contribution information to
its antecedents.

1: function BACKTRACK-URIGHT(i, j,T )
2: Ti,j ← CONTRIB[i, j,→,⊥]
3: b← BACKPTR[i, j,→,⊥]
4: for i ≤ k < j do
5: CONTRIB[i, k,→,>]

+← bi−kTi,j

6: CONTRIB[k + 1, j,←,>]
+← bi−kTi,j

is the first source of bias in our gradient estima-
tor. The maximization in Equation 7 can be com-
puted using the algorithm of Eisner (1996). We
stress that the marginalization in Equation 3 and
MC estimated sum over trees capture high-order
statistics, which is fundamentally different from
computing edge marginals, i.e. structured atten-
tion (Kim et al., 2017). Unfortunately, the esti-
mated gradient of the reparameterized distribution
over parse trees is ill-defined (either undefined or
null). We tackle this issue in the following section.

4 Differentiable Dynamic Programming

Neural networks parameters are learned using
(variants of) the stochastic gradient descent algo-
rithm. The gradient is computed using the back-
propagation algorithm that rely on partial deriva-
tive of each atomic operation in the network.5 The
perturb-and-MAP sampling process relies on the
dependency parser (Equation 7) which contains
ill-defined derivatives. This is due to the usage
of constrained arg max operations (Gould et al.,

5There are some exception where a sub-derivative is
enough, for example for the ReLU non-linearity.



5512

2016; Mensch and Blondel, 2018) in the algorithm
of Eisner (1996). Let L be the training loss, back-
propagation is problematic because of the follow-
ing operation:

∂L
∂W̃

=
∂L
∂T

∂T

∂W̃

where ∂T

∂W̃
is the partial derivative with respect to

the dependency parser (Equation 7) which is null
almost everywhere, i.e. there is no descent direc-
tion information. We follow previous work and
use a differentiable dynamic programming surro-
gate (Mensch and Blondel, 2018; Corro and Titov,
2019). The use of the surrogate is the second
source of bias in our gradient estimation.

4.1 Parsing with Dynamic Programming
The projective dependency parser of Eisner (1996)
is a dynamic program that recursively builds a
chart of items representing larger and larger spans
of the input sentence. Items are of the form
[i, j, d, c] where: 0 ≤ i ≤ j ≤ n are the bound-
aries of the span; d ∈ {→,←} is the direction
of the span, i.e. a right span → (resp. left span
←) means that all the words in the span are de-
scendants of xi (resp. xj) in the dependency tree;
c ∈ {>,⊥} indicates if the span is complete (>)
or incomplete (⊥) in its direction. In a complete
right span, xj cannot have any modifiers on its
right side. In a complete left span, xi cannot have
any modifier on its left side. A set of deduction
rules defines how the items can be deduced from
their antecedents.

The algorithm consists of two steps. In the first
step, items are deduced in a bottom-up fashion and
the following information is stored in the chart:
the maximum weight that can be obtained by each
item and backpointers to the antecedents that lead
to this maximum weight (Algorithm 1). In the sec-
ond step, the backpointers are used to retrieve the
items corresponding to the maximum score and
values in T are set accordingly (Algorithm 2).6

4.2 Continuous Relaxation
The one-hot-argmax operation on line 5 in Algo-
rithm 1 can be written as follows:

arg max
b≥0

∑
k

bksk s.t.
∑
k

bk = 1.

6The second step is often optimized to have linear time
complexity instead of cubic. Unfortunately, this change is
not compatible with the continuous relaxation we propose.

It is known that a continuous relaxation of
arg max in the presence of inequality constraints
can be obtained by introducing a penalizer that
prevents activation of inequalities at the optimal
solutions (Gould et al., 2016):

arg max
b≥0

∑
k

bksk − Ω(b) s.t.
∑
k

bk = 1.

Several Ω functions have been studied in the liter-
ature for different purposes, including logarithmic
and inverse barriers for the interior point method
(Den Hertog et al., 1994; Potra and Wright, 2000)
and negative entropy for deterministic annealing
(Rangarajan, 2000). When using negative en-
tropy, i.e. Ω(b) =

∑
k bk log bk, solving the penal-

ized one-hot-argmax has a closed form solution
that can be computed using the softmax function
(Boyd and Vandenberghe, 2004), that is:

bk =
exp(sk)∑
k′ exp(sk′)

.

Therefore, we replace the non-differentiable
one-hot-argmax operation in Algorithm 1 with a
softmax in order to build a smooth and fully dif-
ferentiable surrogate of the parsing algorithm.

5 Controlled Experiment

We first experiment on a toy task. The task is de-
signed in such a way that there exists a simple pro-
jective dependency grammar which turns it into a
trivial problem. We can therefore perform thor-
ough analysis of the latent tree induction method.

5.1 Dataset and Task
The ListOps dataset (Nangia and Bowman, 2018)
has been built specifically to test structured latent
variable models. The task is to compute the re-
sult of a mathematical expression written in prefix
notation. It has been shown easy for a Tree-LSTM
that follows the gold underlying structure but most
latent variable models fail to induce it. Unfortu-
nately, the task is not compatible with our neural
network because it requires propagation of infor-
mation from the leafs to the root node, which is
not possible for a GCN with a fixed number of lay-
ers. Instead, we transform the computation prob-
lem into a tagging problem: the task is to tag the
valency of operations, i.e. the number of operands
they have.

We transform the original unlabelled binary
phrase-structure into a dependency structure by
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following a simple head-percolation table: the
head of a phrase is always the head of its left
argument. The resulting dependencies represent
two kinds of relation: operand to argument and
operand to closing parenthesis (Figure 2). There-
fore, this task is trivial for a GCN trained with
gold dependencies: it simply needs to count the
number of outgoing arcs minus one (for operation
nodes). In practice, we observe 100% tagging ac-
curacy with the gold dependencies.

5.2 Neural Parametrization

We build a simple network where a BiLSTM is
followed by deep dotted attention which computes
the dependency weights (see Equation 1). In these
experiments, unlike Section 6, GCN does not have
access to input tokens (or corresponding BiLSTM
states): it is fed ‘unlexicalized’ embeddings (i.e.
the same vector is used as input for every token).7

Therefore, the GCN is forced to rely on tree infor-
mation alone (see App. A.1 for hyperparameters).

There are several ways to train the neural net-
work. First, we test the impact of MC estimation at
training. Second, we choose when to use the con-
tinuous relaxation. One option is to use a Straight-
Through estimator (ST, Bengio, 2013; Jang et al.,
2017): during the forward pass, we use a discrete
structure as input of the GCN, but during the back-
ward pass we use the differentiable surrogate to
compute the partial derivatives. Another option is
to use the differentiable surrogate for both passes
(Forward relaxed). As our goal here is to study
induced discrete structures, we do not use relax-
ations at test time. We compare our model with
the non-stochastic version, i.e. we set G = 0.

5.3 Results

The attachment scores and the tagging accuracy
are provided in Table 1. We draw two conclu-
sions from these results. First, using the ST esti-
mator hurts performance, even though we do not
relax at test time. Second, the MC approxima-
tions, unlike the non-stochastic model, produces
latent structures almost identical to gold trees. The
non-stochastic version is however relatively suc-
cessful in terms of tagging accuracy: we hypothe-
size that the LSTM model solved the problem and

7To put it clearly, we have two sets of learned embed-
dings: a set of lexicalized embeddings used for the input of
the BiLSTM and a single unlexicalized embedding used for
the input of the GCN.

* (max 3 4 (med 9 3 ) 1 )
- 4 - - 2 - - - - -

Figure 2: An example from the ListOps dataset. Num-
bers below operation tokens are valencies. (top) the
original unlabelled phrase-structure. (bottom) our de-
pendency conversion: each dependency represents ei-
ther an operand to argument relation or a closing paren-
thesis relation.

Acc. Att.
Latent tree - G = 0

Forward relaxed 98.1 83.2
Straight-Through 70.8 33.9
Latent tree - MC training
Forward relaxed 99.6 99.7
Straight-Through 77.0 83.2

Table 1: ListOps results: tagging accuracy (Acc.) and
attachment score for the latent tree grammar (Att.).

uses trees as messages to communicate solutions.
See extra analysis in App. C.8

6 Real-world Experiments

We evaluate our method on two real-world prob-
lems: a sentence comparison task (natural lan-
guage inference, see Section 6.1) and a sen-
tence classification problem (sentiment classifica-
tion, see Section 6.2). Besides using the differ-
entiable dynamic programming method, our ap-
proach also differs from previous work in that
we use GCNs followed by a pooling operation,
whereas most previous work used Tree-LSTMs.
Unlike Tree-LSTMs, GCNs are trivial to paral-
lelize over batches on GPU.

6.1 Natural Language Inference
The Natural Language Inference (NLI) problem is
a task developed to test sentence understanding ca-
pacity. Given a premise sentence and a hypothe-
sis sentence, the goal is to predict a relation be-
tween them: entailment, neutral or contradiction.
We evaluate on the Stanford NLI (SNLI) and the

8 This results are not cherry-picked to favor the MC
model. We observed a deviation of ±0.54% in attachment
score for the non-stochastic model, whereas, for MC sam-
pling, all except one achieved an attachment score above 99.7
(out of 5 runs).
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Acc. #Params
Yogatama et al. (2017)
*100D SPINN 80.5 2.3M
Maillard et al. (2017)
LSTM 81.2 161K
*Latent Tree-LSTM 81.6 231K
Kim et al. (2017)
No Intra Attention 85.8 -
Simple Simple Att. 86.2 -
*Structured Attention 86.8 -
Choi et al. (2018)
*100D ST Gumbel Tree 82.6 262K
*300D ST Gumbel Tree 85.6 2.9M
*600D ST Gumbel Tree 86.0 10.3M
Niculae et al. (2018)
Left-to-right Trees 81.0 -
Flat 81.7 -
Treebank 81.7 -
*SparseMAP 81.9 -
Liu and Lapata (2018)
175D No Attention 85.3 600K
*100D Projective Att. 86.8 1.2M
*175D Non-projective Att. 86.9 1.1M
This work
No Intra Attention 84.4 382K
Simple Intra Att. 83.8 582K
*Latent Tree + 1 GCN 85.2 703K
*Latent Tree + 2 GCN 86.2 1M

Table 2: SNLI results and number of network param-
eters (discarding word embeddings). Stars indicate la-
tent tree models.

Multi-genre NLI (MultiNLI) datasets. Our net-
work is based on the decomposable attention (DA)
model of Parikh et al. (2016). We induce struc-
ture of both the premise and the hypothesis (see
Equation 1 and Figure 1b). Then, we run a GCN
over the tree structures followed by inter-sentence
attention. Finally, we apply max-pooling for each
sentence and feed both sentence embeddings into a
MLP to predict the label. Intuitively, using GCNs
yields a form of intra-attention. See the hyper-
parameters in Appendix A.2.

SNLI: The dataset contains almost 0.5m train-
ing instances extracted from image captions (Bow-
man et al., 2015). We report results in Table 2.

Our model outperforms both no intra-attention
and simple intra-attention baselines9 with 1 layer

9The attention weights are computed in the same way as
scores for tree prediction, i.e. using Equation 1.

of GCN (+0.8) or two layers (+1.8). The im-
provements with using multiple GCN hops, here
and on MultiNLI (Table 3b), suggest that higher-
order information is beneficial.10 It is hard to com-
pare different tree induction methods as they build
on top of different baselines, however, it is clear
that our model delivers results comparable with
most accurate tree induction methods (Kim et al.,
2017; Liu and Lapata, 2018). The improvements
from using latent structure exceed these reported
in previous work.

MultiNLI: MultiNLI is a broad-coverage NLI
corpus Williams et al. (2018b): the sentence pairs
originate from 5 different genres of written and
spoken English. This dataset is particularly inter-
esting because sentences are longer than in SNLI,
making it more challenging for baseline models.11

We follow the evaluation setting in Williams et al.
(2018b,a): we include the SNLI training data, use
the matched development set for early stopping
and evaluate on the matched test set. We use the
same network and parameters as for SNLI. We re-
port results in Table 3b.

The DA baseline (‘No Intra Attention’) per-
forms slightly better (+0.6%) than the original
BiLSTM baseline. Our latent tree model signifi-
cantly improves over our the baseline, either with
a single layer GCN (+3.4%) or with a 2-layer
GCN (+4.9%). We observe a larger gap than on
SNLI, which is expected given that MultiNLI is
more complex. We perform extra ablation tests on
MultiNLI in Section 6.3.

6.2 Sentiment Classification

We experiment on the Stanford Sentiment Classi-
fication dataset (Socher et al., 2013). The original
dataset contains predicted constituency structure
with manual sentiment labeling for each phrase.
By definition, latent tree models cannot use the
internal phrase annotation. We follow the setting
of Niculae et al. (2018) and compare to them in
two set-ups: (1) with syntactic dependency trees
predicted by CoreNLP (Manning et al., 2014); (2)
with latent dependency trees. Results are reported
in Table 3a.

First, we observe that the bag of bigrams base-

10 In contrast, multiple hops relying on edge marginals was
not beneficial (Liu and Lapata, 2018), personal communica-
tion.

11 The average sentence length in SNLI (resp. MultiNLI)
is 11.16 (resp. 16.79). There is 21% (resp. 42%) of sentence
longer than 15 words in SNLI (resp. MultiNLI).
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(a)

Socher et al. (2013)
Bigram 83.1
Naive Bayes
Niculae et al. (2018)
CoreNLP 83.2
*Latent tree 84.7
This work
CoreNLP 83.8
*Latent tree 84.6

(b)

Acc.
Williams et al. (2018a)
300D LSTM 69.1
*300D SPINN 66.9
300D Balanced Trees 68.2
*300D ST Gumbel Tree 69.5
*300D RL-SPINN 67.3
This work
No Intra Attention 68.1
*Latent tree + 1 GCN 71.5
*Latent tree + 2 GCN 73.0

(c)

Match Mis.
Baselines
No Intra Att 68.5 68.9
Simple Intra Att 67.9 68.4
Left-to-right trees
1 GCN 71.2 71.8
2 GCN 72.3 71.1
Latent head selection model
1 GCN 69.0 69.4
2 GCN 68.7 69.6
Latent tree model
1 GCN 71.9 71.7
2 GCN 73.2 72.9

Table 3: (a) SST results. Stars indicate latent tree models. (b) MultiNLI results. Stars indicate latent tree models.
(c) Ablation tests on MultiNLI (results on the matched and mismatched development sets).

* My favorite restaurants are always at least a hundred miles away from my house .

* We do n’t loan a lot of money .
* He had recently seen pictures depicting those things .

Figure 3: Examples of trees induced on the matched development set of MultiNLI, the model using 2 GCN layers.

line of Socher et al. (2013) achieves results com-
parable to all structured models. This suggest
that the dataset may not be well suited for eval-
uating structure induction methods. Our latent
dependency model slighty improves (+0.8) over
the CoreNLP baseline. However, we observe that
while our baseline is better than the one of Niculae
et al. (2018), their latent tree model slightly out-
performs ours (+0.1). We hypothesize that graph
convolutions may not be optimal for this task.

6.3 Analysis

(Ablations) In order to test if the tree constraint is
important, we do ablations on MultiNLI with two
models: one with a latent projective tree variable
(i.e. our full model) and one with a latent head se-
lection model that does not impose any constraints
on the structure. The estimation approach and the
model are identical, except for the lack of the tree
constraint (and hence dynamic programming) in
the ablated model. We report results on develop-
ment sets in Table 3c. We observe that the latent
tree models outperform the alternatives.

Previous work (e.g., Niculae et al., 2018) in-
cluded comparison with balanced trees, flat trees

and left-to-right (or right-to-left) chains. Flat trees
are pointless with the GCN + DA combination: the
corresponding pooling operation is already done
in DA. Though balanced trees are natural with
bottom-up computation of TreeLSTMs, for GCNs
they would result in embedding essentially ran-
dom subsets of words. Consequently, we com-
pare only to left-to-right chains of dependencies.12

This approach is substantially less accurate than
our methods, especially for out-of-domain (i.e.
mismatched) data.
(Grammar) We also investigate the structure of
the induced grammar. We report the latent struc-
ture of three sentences in Figure 3. We observe
that sentences are divided into spans, where each
span is represented with a series of left depen-
dencies. Surprisingly, the model chooses to use
only left-to-right dependencies. The neural net-
work does not include a RNN layer, so this may
suggest that the grammar is trying to reproduce
an recurrent model while also segmenting the sen-
tence in phrases.
(Speed) We use a O(n3)-time parsing algorithm.

12They are the same as right-to-left ones, as our GCNs treat
both directions equivalently.
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Nevertheless, our model is efficient: one epoch
on SNLI takes 470 seconds, only 140 seconds
longer than with the O(n2)-time latent-head ver-
sion of our model (roughly equivalent to classic
self-attention). The latter model is computed on
GPU (Titan X) while ours uses CPU (Xeon E5-
2620) for the dynamic program and GPU for run-
ning the rest of the network.

7 Related work

Recently, there has been growing interest in pro-
viding an inductive bias in neural network by forc-
ing layers to represent tree structures (Kim et al.,
2017; Maillard et al., 2017; Choi et al., 2018; Nic-
ulae et al., 2018; Williams et al., 2018a; Liu and
Lapata, 2018). Maillard et al. (2017) also op-
erates on a chart but, rather than modeling dis-
crete trees, uses a soft-gating approach to mix
representations of constituents in each given cell.
While these models showed consistent improve-
ment over comparable baselines, they do not seem
to explicitly capture syntactic or semantic struc-
tures (Williams et al., 2018a). Nangia and Bow-
man (2018) introduced the ListOps task where the
latent structure is essential to predict correctly the
downstream prediction. Surprisingly, the models
of Williams et al. (2018a) and Choi et al. (2018)
failed. Much recent work in this context relies
on latent variables, though we are not aware of
any work closely related to ours. Differentiable
structured layers in neural networks have been ex-
plored for semi-supervised parsing, for example
by learning an auxiliary task on unlabelled data
(Peng et al., 2018) or using a variational autoen-
coder (Corro and Titov, 2019).

Besides research focused on inducing task-
specific structures, another line of work, grammar
induction, focused on unsupervised induction of
linguistic structures. These methods typically rely
on unlabeled texts and are evaluated by comparing
the induced structures to actual syntactic annota-
tion (Klein and Manning, 2005; Shen et al., 2018;
Htut et al., 2018).

8 Conclusions

We introduced a novel approach to latent tree
learning: a relaxed version of stochastic dif-
ferentiable dynamic programming which allows
for efficient sampling of projective dependency
trees and enables end-to-end differentiation. We
demonstrate effectiveness of our approach on both

synthetic and real tasks. The analyses confirm im-
portance of the tree constraint. Future work will
investigate constituency structures and new neural
architectures for latent structure incorporation.
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A Neural Parametrization

(Implementation) We implemented our neural
networks with the C++ API of the Dynet library
(Neubig et al., 2017). The continuous relaxation
of the parsing algorithm is implemented as a cus-
tom computation node.

(Training) All networks are trained with Adam
initialized with a learning rate of 0.0001 and
batches of size 64. If the dev score did not im-
prove in the last 5 iterations, we multiply the learn-
ing rate by 0.9 and load the best known model on
dev. For the ListOps task, we run a maximum of
100 epochs, with exactly 100 updates per epoch.
For NLI and SST tasks, we run a maximum of
200 epochs, with exactly 8500 and 100 updates
per epoch, respectively.

All MLPs and GCNs have a dropout ratio of
0.2 except for the ListOps task where there is no
dropout. We clip the gradient if its norm exceed 5.

A.1 ListOps Valency Tagging
(Dependency Parser) Embeddings are of size
100. The BiLSTM is composed of two stacks
(i.e. we first run a left-to-right and a right-to-left
LSTM, then we concatenate their outputs and fi-
nally run a left-to-right and a right-to-left LSTM
again) with one single hidden layer of size 100.
The initial state of the LSTMs are fixed to zero.

The MLPs of the dotted attention have 2 layers
of size 100 and a ReLU activation function

(Tagger) The unique embedding is of size 100.
The GCN has a single layer of size 100 and a
ReLU activation. Then, the tagger is composed
of a MLP with a layer of size 100 and a ReLU
activation followed by a linear projection into the
output space (i.e. no bias, no non-linearity).

A.2 Natural Language Inference
All activation functions are ReLU. The inter-
attention part and the classifier are exactly the
same than in the model of Parikh et al. (2016).

(Embeddings) Word embeddings of size 300
are initialized with Glove and are not updated dur-
ing training. We initialize 100 unknown word em-
beddings where each value is sampled from the
normal distribution. Unknown words are mapped
using a hashing method.

(GCN) The embeddings are first passed through
a one layer MLP with an output size of 200. The

dotted attention is computed by two MLP with two
layers of size 200 each. Function f(), g() and h()
in the GCN layers are one layer MLPs without ac-
tivation function. The σ activation function of a
GCN is ReLU. We use dense connections for the
GCN.

A.3 Sentiment Classification
(Embeddings) We use Glove embeddings of
size 300. We learn the unknown word embed-
dings. Then, we compute context sensitive em-
beddings with a single-stack/single-layer BiLSTM
with a hidden-layer of size 100.

(GCN) The dotted attention is computed by two
MLP with one layer of size 300 each. There is no
distance bias in this model. Function f(), g() and
h() in the GCN layers are one layer MLPs without
activation function. The σ activation function of a
GCN is ReLU. We do not use dense connections
in this model.

(Output) We use a max-pooling operation on
the GCN outputs followed by an single-layer MLP
of size 300.

B Illustration of the Continuous
Relaxation

Too give an intuition of the continuous relaxation,
we plot the arg max function and the penalized
arg max in Figure 4. We plot the first output for
input (x1, x2, 0).

C ListOps Training

We plot tagging accuracy and attachment score
with respect to the training epoch in Figure 5. On
the one hand, we observe that the non-stochastic
versions converges way faster in both metrics: we
suspect that it develops an alternative protocol to
pass information about valencies from LSTM to
the GCN. On the other hand, MC sampling may
have a better exploration of the search space but it
is slower to converge.

We stress that training with MC estimation re-
sults in the latent tree corresponding (almost) per-
fectly to the gold grammar.

D Fast differentiable dynamic program
implementation

In order to speed up training, we build a a fast the
differentiable dynamic program (DDP) as a cus-
tom computational node in Dynet and use it in a
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Figure 4: (a) Single output of an arg max function. The derivative is null almost everywhere, i.e. there is no
descent direction. (b) Single output of the differentiable relaxation. The derivatives are non-null.

static graph. Instead of relying on masking, we
add an input the DDP node that contains the sen-
tence size : therefore, even if the size of the graph
is fixed, the cubic-time algorithm is run on the true
input length only. Moreover, instead of allocating
memory with the standard library functionnality,
we use the fast scratch memory allocator of Dynet.
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Figure 5: Accuracy of tagging and attachment score of the latent tree during training. (red solid line) Non-
stochastic training with forward relaxation. (blue dashed line) MC training with forward relaxation. (black
dotted) Non-stochastic training with backward relaxation. (green dashdotted) MC with backward relaxation.


