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Abstract

Comprehending multi-turn spoken conversa-
tions is an emerging research area, present-
ing challenges different from reading com-
prehension of passages due to the interactive
nature of information exchange from at least
two speakers. Unlike passages, where sen-
tences are often the default semantic model-
ing unit, in multi-turn conversations, a turn is
a topically coherent unit embodied with imme-
diately relevant context, making it a linguis-
tically intuitive segment for computationally
modeling verbal interactions. Therefore, in
this work, we propose a hierarchical attention
neural network architecture, combining turn-
level and word-level attention mechanisms, to
improve spoken dialogue comprehension per-
formance. Experiments are conducted on a
multi-turn conversation dataset, where nurses
inquire and discuss symptom information with
patients. We empirically show that the pro-
posed approach outperforms standard atten-
tion baselines, achieves more efficient learning
outcomes, and is more robust to lengthy and
out-of-distribution test samples.

1 Introduction

Reading comprehension has attracted much inter-
est in the past couple years, fueled by avid neural
modeling investigations. Given a certain textual
content, the goal is to answer a series of questions
based on implicit semantic understanding. Previ-
ous work has focused on passages like Wikipedia
(Rajpurkar et al., 2016) or news articles (Hermann
et al., 2015). Recently, dialogue comprehension in
the form of cloze tests and multi-choice questions
has also started to spur research interest (Ma et al.,
2018; Sun et al., 2019). Different from passages,
human-to-human dialogues are a dynamic and in-
teractive flow of information exchange, which are

often informal, verbose and repetitive.1 This leads
to lower information density and more topic dif-
fusion, since the spoken content of a conversation
is determined by two speakers, each with his/her
own thought process and potentially distracting
and parallel streams of thoughts.

To address such challenges, we propose to uti-
lize a hierarchical attention mechanism for di-
alogue comprehension, which has shown to be
effective in various natural language processing
tasks (Yang et al., 2016; Choi et al., 2017; Hsu
et al., 2018). The hierarchical models successively
capture contextual information at different levels
of granularity, leveraging coarse-grained attention
to reduce the potential distraction in finer-grained
attention but at the same time exploit finer-grained
attention to distill key information for downstream
tasks more precisely and efficiently.

While in document tasks sentences are the de-
fault semantic modeling unit at the coarse-grained
level, utterances might be a more suitable counter-
part in spoken dialogues, as dialogues often con-
sist of incomplete sentences. However, a single
utterance/sentence which usually implies informa-
tion from one speaker is insufficient for grasping
the full relevant context, as the interactive infor-
mation from the interlocutor is often necessary. In
multi-turn dialogues, each turn is one round of in-
formation exchange between speakers, thus mak-
ing it a linguistically intuitive segment for mod-
eling verbal communications. Thus, we postulate
that for spoken dialogue comprehension, it is more
effective to model conversations turn by turn using
a multi-granularity design.

In this work, we introduce a hierarchical neu-

1One needs to process information on the spot during con-
versations, hence a particular concept could take rounds of
interactions to confirm the information is conveyed correctly
before moving on to the next topic, while for passages the
reader can process the information at his own pace.
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Figure 1: Turn-based hierarchical architecture for dialogue comprehension: tokens in purple are the indicators of
dialogue turns, and their indices are used to select question-aware hidden states (Green) for turn-level attention
calculation. The turn with higher attentive score (Yellow) contributes more in scoring word-level attentions (Red).

ral attention architecture, integrating turn-level at-
tention with word-level attention for multi-turn
dialogue comprehension in a question-answering
manner, where we evaluate performance on a cor-
pus preserving linguistic features from real-world
spoken conversation scenarios. In particular, we
examine how our approach is able to address chal-
lenges from limited training data scenarios and
from lengthy and out-of-distribution test samples.

2 Hierarchical Attention Architecture

The proposed architecture of modeling multi-level
attention for dialogue comprehension is shown in
Figure 1. The model design is based on extractive
question answering, and consists of the follow-
ing layers: a sequence encoding layer, a question-
aware modeling layer, a turn-level attention layer,
a word-level attention layer, and an answer pointer
layer. We elaborate on the details below.

2.1 Sequence Encoding Layer
Given a t-length sequence of word embedding
vectors S = {w0, w1, ...wt}, a bi-directional long
short-term memory (Bi-LSTM) layer (Schuster
and Paliwal, 1997) is used to encode S to a hid-
den representation, H = {h0, h1, ...ht} ∈ Rt×d,
where d is the hidden dimension. We obtain the
content representation Hc by encoding the dia-
logue sequence and concatenating the forward and
backward information:

hci = [LSTMForward
wc

i
;LSTMBackward

wc
i

] (1)

and extracting the last hidden state of question en-
coding as the question representation hq.

2.2 Question-Aware Modeling Layer
We concatenate each step of Hc with the question
hq as in aspect-modeling (Wang et al., 2016), then
obtain the question-aware modeling H

′
via a Bi-

LSTM layer.

h
′
i = [LSTMForward

[hci ;h
q ] ;LSTMBackward

[hci ;h
q ] ] (2)

2.3 Turn-Level Attention Layer
We design the turn-level attention to score the di-
alogue turns explicitly, so the more salient turns
will obtain higher scores, which is similar to (Hsu
et al., 2018). However, instead of calculating the
sentence-level attention using a separate recurrent
component, we directly obtain the turn represen-
tations Hturn by collecting hidden states from
H

′
with the turn-level segment position indices

T turn = {tturn0 , tturn1 , ...tturnm }, where m is the
turn number of the dialogue content. More specif-
ically, in a two-party conversation, each continu-
ous utterance span between the speakers will be
labeled as in one turn segment, and tturni+1 − tturni

is the length of the ith turn.
Then the turn-level attentive score is calculated

via a dense layer and softmax normalization:

Aturn = softmax(WαH
turn + bα) (3)

2.4 Word-Level Attention Layer
In our hierarchical architecture, to mitigate ad-
verse effects of spurious word-level attention from
words in less attended turns, we utilize turn-level
salient scores to modulate word-level attentions.
Thus, we broadcast each aturni in Aturn with its
turn length to obtain A

′
in dialogue length, and
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then multiply H
′

with A
′

to obtain the contextual
sequence C

′
. Then the word-level attention Aword

is calculated on C
′
, and multiplied with H

′
to ob-

tain the contextual sequence C
′′
.

Aword = softmax(Wβ(H
′∗A′

) + bβ) (4)

2.5 Answer Pointer Layer

Contextual sequences C
′
, C

′′
and question hq are

concatenated together and fed to a LSTM model-
ing layer. Then a dense layer with softmax nor-
malization is applied for answer span prediction
(Wang and Jiang, 2016).

Ms/e = LSTM[C′ ;C′′ ;hq ] (5)

Ps/e = softmax(WγMs/e + bγ) (6)

where each ps/pe indicates the probability of being
the start/end position of the answer span.

2.6 Loss function

Cross-entropy loss function is used as the metric
between the predicted label and the ground-truth
distribution. The total loss Ltotal contains the loss
from answer span (Wang and Jiang, 2016) and
from turn-level attentive scoring similar to (Hsu
et al., 2018), with a weight λ ∈ [0, 1].

Ltotal = Lspan + λLturn attn (7)

3 Experiments

3.1 Corpus & Data Processing

Dialogue Dataset: We evaluated the proposed
approach on a spoken dialogue comprehension
dataset, consisting of nurse-to-patient symptom
monitoring conversations. This corpus was in-
spired by real dialogues in the clinical setting
where nurses inquire about symptoms of patients
(Liu et al., 2019). Linguistic structures at the se-
mantic, syntactic, discourse and pragmatic lev-
els were abstracted from these conversations to
construct templates for simulating multi-turn di-
alogues. The informal styles of expressions, in-
cluding incomplete sentences, incorrect grammar
and diffuse flow of topics were preserved.

A team of linguistically trained personnel re-
fined, substantiated, and corrected the automati-
cally simulated dialogues by enriching verbal ex-
pressions through different English speaking pop-
ulations in Asia, Europe and the U.S., validating

Figure 2: Examples of segmented turns in our corpus.
The default segmented turn is an adjacency pair of ut-
terances from two speakers (Yellow). To ensure a turn
spans across semantically congruent utterances, neigh-
boring utterances could be merged according to a set of
rules derived from spoken features, like n-gram repeti-
tion (Green), back-channeling (Blue), self-pause (Red)
and interlocutor interruption (Gray).

logical correctness through checking if the con-
versations were natural, reasonable and not dis-
obeying common sense, and verifying the clin-
ical content by consulting certified and regis-
tered nurses. These conversations cover 9 top-
ics/symptoms (e.g. headache, cough). For each
conversation, the average word number is 255 and
the average turn number is 15.5.
Turn Segmentation: In a smooth conversation,
one turn is an adjacency pair of two utterances
from two speakers (Sacks et al., 1974). However,
in real scenarios, the conversation flow is often
disrupted by verbal distractions such as interlocu-
tor interruption, back-channeling, self-pause and
repetition (Schlangen, 2006). We thus annotated
these verbal features from transcripts of the real-
world dialogues and integrated them in the tem-
plates, which are used to generate the simulated di-
alogue data. We subsequently merged the adjacent
utterances from speakers considering the features
and the intents to form turns (see Figure 2). This
procedure ensures semantic congruence of each
turn. Then the segment indices of turns were la-
beled for turn-level context collection.
Annotations for Question Answering: For the
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comprehension task, questions were raised to
query different attributes of a specified symp-
tom; e.g., How frequently did you experience
headaches? Answer spans in the dialogues were
labeled with start and end indices, and turns con-
taining the answer span were annotated for turn-
level attention training.

3.2 Baseline Models

We implemented the proposed turn-based hierar-
chical attention (HA) model, and compared it with
several baselines:
Pointer LSTM: We implemented a Pointer net-
work for QA (Vinyals et al., 2015). The content
and question embedding are concatenated and fed
to a two-layer Bi-LSTM, then the answer span is
predicted as in Section 2.5.
Bi-DAF: We implemented the Bi-Directional At-
tention Flow network (Seo et al., 2017) as an
established baseline, which fuses question-aware
and context-aware attention.
R-Net: We implemented R-Net (Wang et al.,
2017), another established baseline, which in-
troduces self-attention to implicitly model multi-
level contextual information.
Utterance-based HA: To evaluate the effective-
ness of turn-level modeling, we implemented an
utterance-based model as the control, by treating
every utterance as a single segment.

3.3 Training Configuration

Pre-trained word embeddings from Glove (Pen-
nington et al., 2014) were utilized and fixed during
training. Out-of-vocabulary words were replaced
with the [unk] token. The hidden size and embed-
ding dimension were set to 300. Adam optimizer
(Kingma and Ba, 2015) was used with batch size
of 64 and learning rate of 0.001. For the model-
ing layers, dropout rate was set to 0.2 (Srivastava
et al., 2014). The weight λ in the loss function
was set to 1.0. During training, the validation-
based early stop strategy was applied. During pre-
diction, we selected answer spans using the maxi-
mum product of ps and pe, with a constraint such
that 0 ≤ e− s ≤ 10.

3.4 Evaluation: Comparison with Baselines

Evaluation was conducted on the dialogue corpus
described in Section 3.1, where the training, vali-
dation and test sets were 40k, 3k and 3k samples
of multi-turn dialogues, respectively. We adopted

Model EM Score F1 Score
Pointer LSTM 77.85 82.73
Bi-DAF 87.24 88.67
R-Net 88.93 90.41
Utterance-based HA 88.59 90.12
Turn-based HA (Proposed) 91.07 92.39

Table 1: Comparison with baseline models.

Figure 3: Results on different sizes of training data.

Exact Match (EM) and F1 score in SQuAD as met-
rics (Rajpurkar et al., 2016). Results in Table 1
show that while the utterance-based HA network
is on par with established baselines, the proposed
turn-based HA model obtains more gains, achiev-
ing the best EM and F1 scores.

3.5 Evaluation in Low-Resource Scenarios
Limited amount of training data is a major pain
point for dialogue-based tasks, as it is time-
consuming and labor-intensive to collect and an-
notate natural dialogues at a large-scale. We ex-
pect the hierarchical structure to result in more ef-
ficient learning capabilities. We conducted experi-
ments on a range of training sizes (from 3k to 40k)
with a fixed-size test set (3k samples). As shown
in Figure 3, the turn-based HA model outperforms
all other models significantly when the training set
is smaller than 20k.

3.6 Lengthy Sample Evaluation
Spoken conversations are often verbose with low
information density scattered with topics not cen-
tral to the main dialogue theme, especially since
speakers chit-chat and get distracted during task-
oriented discussions. To evaluate such scenarios,
we adopted model-independent ADDSENT (Jia
and Liang, 2017), where we randomly extracted
sentences from SQuAD and inserted them before
or after topically coherent segments. The average
length of the augmented test set (3k samples), in-
creased from 255 to 900. As shown in Table 2,
the proposed turn-based model compares favor-
ably when modeling lengthy dialogues.
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Model EM Score F1 Score
Pointer LSTM 67.11 (-10.74) 72.67 (-10.06)
Bi-DAF 77.45 (-9.79) 79.55 (-9.12)
R-Net 79.96 (-8.97) 82.26 (-8.15)
Utterance-based HA 78.92 (-9.67) 80.72 (-9.40)
Turn-based HA 85.25 (-5.82) 87.18 (-5.21)

Table 2: Lengthy sample evaluation. Bracketed values
denote absolute decrease of model performance in Sec-
tion 3.6.

Model EM Score F1 Score
Pointer LSTM 60.99 (-16.86) 68.94 (-13.79)
Bi-DAF 74.58 (-12.66) 76.42 (-12.25)
R-Net 78.73 (-10.20) 80.38 (-10.03)
Utterance-based HA 77.84 (-10.75) 79.77 (-10.35)
Turn-based HA 82.50 (-8.57) 84.08 (-8.31)

Table 3: Out-of-distribution evaluation. Bracketed val-
ues denote absolute decrease of model performance in
Section 3.7.

3.7 Out-of-Distribution Evaluation

Another evaluation was performed on an aug-
mented set of dialogue samples, by adding three
out-of-distribution symptom entities (bleeding,
cold/flu, and sweating) to the corresponding con-
versations (3k samples). This was conducted on
the well-trained models in Section 3.4. As shown
in Table 3, the proposed turn-based HA model
is the most robust in answering questions related
to unseen symptoms/topics while till performing
well on in-domain symptoms, thus showing poten-
tial generalization capabilities.

In summary, our overall experimental results
demonstrate that the proposed hierarchical method
achieves higher learning efficiency with robust
performance. Moreover, the turn-based model
significantly outperforms the utterance-based one,
empirically verifying that it is appropriate to use
turns as the basic semantic unit in coarse-grained
attention for modeling dialogues.

4 Related Work

Machine comprehension of passages has achieved
rapid progress lately, benefiting from large-scale
datasets (Rajpurkar et al., 2016; Kocisky et al.,
2018), semantic vector representations (Penning-
ton et al., 2014; Peters et al., 2018; Devlin et al.,
2019), and end-to-end neural modeling (Wang
et al., 2017; Hu et al., 2018). The attention mech-
anism enables neural models to more flexibly fo-
cus on salient contextual segments (Luong et al.,
2015; Vaswani et al., 2017), and is further im-

proved by hierarchical designs for document pro-
cessing tasks (Yang et al., 2016; Choi et al., 2017).
Multi-level attention could be fused in hidden rep-
resentations (Wang et al., 2017) or calculated ex-
plicitly (Hsu et al., 2018).

There is an established body of work study-
ing how humans take turns speaking during con-
versations to better understand when and how to
generate more natural dialogue responses (Sacks
et al., 1974; Wilson et al., 1984; Schlangen, 2006).
Utterance-level attention has also been applied to
context modeling for different dialogue tasks such
as dialogue generation (Serban et al., 2016) and
state tracking (Dhingra et al., 2017). Recently,
there is emerging interest in machine comprehen-
sion of dialogue content (Ma et al., 2018; Sun
et al., 2019). To the best of our knowledge, our
work is the first in exploiting turn-level attention
in neural dialogue comprehension.

5 Conclusion

We proposed to comprehend dialogues by exploit-
ing a hierarchical neural architecture through in-
corporating explicit turn-level attention scoring to
complement word-level mechanisms. We con-
ducted experiments on a corpus embodying verbal
distractors inspired from real-world spoken dia-
logues that interrupt the coherent flow of conversa-
tion topics. Our model compares favorably to es-
tablished baselines, performs better when there is
limited training data, and is capable of addressing
challenges from low information density of spo-
ken dialogues and out-of-distribution samples.
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