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Abstract

We present open domain response generation
with meta-words. A meta-word is a structured
record that describes various attributes of a re-
sponse, and thus allows us to explicitly model
the one-to-many relationship within open do-
main dialogues and perform response genera-
tion in an explainable and controllable man-
ner. To incorporate meta-words into genera-
tion, we enhance the sequence-to-sequence ar-
chitecture with a goal tracking memory net-
work that formalizes meta-word expression as
a goal and manages the generation process to
achieve the goal with a state memory panel and
a state controller. Experimental results on two
large-scale datasets indicate that our model
can significantly outperform several state-of-
the-art generation models in terms of response
relevance, response diversity, accuracy of one-
to-many modeling, accuracy of meta-word ex-
pression, and human evaluation.

1 Introduction

Human-machine conversation is a fundamental
problem in NLP. Traditional research focuses
on building task-oriented dialog systems (Young
et al., 2013) to achieve specific user goals such as
restaurant reservation through limited turns of dia-
logues within specific domains. Recently, building
a chatbot for open domain conversation (Vinyals
and Le, 2015) has attracted increasing attention,
not only owing to the availability of large amount
of human-human conversation data on internet,
but also because of the success of such systems in
real products such as the social bot Xiaolce (Shum
et al., 2018) from Microsoft.

A common approach to implementing a chat-
bot is to learn a response generation model within
an encoder-decoder framework (Vinyals and Le,

*Corresponding author.

Message: last week I have a nice trip to New York!
Meta-word:  Act: yes-no question | Len: 8 | Copy: true | Utts: false | Spe: medium
Resp 1: Is New York more expensive than California?
Meta-word:  Act: wh-question | Len: 17 | Copy: false | Utts: true | Spe: high
Response 2:  Cool, sounds great! What is the tallest building in this city, Chrysler building?
Meta-word:  Act: statement | Len: 13 | Copy: false | Utts: true | Spe: low
Response 3: 1 don’t know what you are talking about. But it seems good.

Table 1: An example of response generation with meta-
words. The underlined word means it is copied from
the message, and the word in bold means it corre-
sponds to high specificity.

2015; Shang et al., 2015). Although the architec-
ture can naturally model the correspondence be-
tween a message and a response, and is easy to ex-
tend to handle conversation history (Serban et al.,
2016; Xing et al., 2018) and various constraints
(Li et al., 2016; Zhou et al., 2018), it is notori-
ous for generating safe responses such as “I don’t
know” and “me too” in practice. A plausible rea-
son for the “safe response” issue is that there ex-
ists one-to-many relationship between messages
and responses. One message could correspond
to many valid responses and vice versa (Zhang
et al., 2018a). The vanilla encoder-decoder archi-
tecture is prone to memorize high-frequency pat-
terns in data, and thus tends to generate similar
and trivial responses for different messages. A
typical method for modeling the relationship be-
tween messages and responses is to introduce la-
tent variables into the encoder-decoder framework
(Serban et al., 2017; Zhao et al., 2017; Park et al.,
2018). It is, however, difficult to explain what
relationship a latent variable represents, nor one
can control responses to generate by manipulating
the latent variable. Although a recent study (Zhao
et al., 2018) replaces continuous latent variables
with discrete ones, it still needs a lot of post hu-
man effort to explain the meaning of the variables.

In this work, we aim to model the one-to-many
relationship in open domain dialogues in an ex-
plainable and controllable way. Instead of using
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latent variables, we consider explicitly represent-
ing the relationship between a message and a re-
sponse with meta-words'. A meta-word is a struc-
tured record that characterizes the response to gen-
erate. The record consists of a group of vari-
ables with each an attribute of the response. Each
variable is in a form of (key, type, value) where
“key” defines the attribute, “value” specifies the
attribute, and “type” € {r,c} indicates whether
the variable is real-valued () or categorical (c).
Given a message, a meta-word corresponds to one
kind of relationship between the message and a re-
sponse, and by manipulating the meta-word (e.g.,
values of variables or combination of variables),
one can control responses in a broad way. Table
1 gives an example of response generation with
various meta-words, where “Act”, “Len”, “Copy”,
“Utts”, and “Spe” are variables of a meta-word
and refer to dialogue act, response length (includ-
ing punctuation marks), if copy from the message,
if made up of multiple utterances, and specificity
level (Zhang et al., 2018a) respectively’. Advan-
tages of response generation with meta-words are
three-folds: (1) the generation model is explain-
able as the meta-words inform the model, devel-
opers, and even end users what responses they
will have before the responses are generated; (2)
the generation process is controllable. The meta-
word system acts as an interface that allows devel-
opers to customize responses by tailoring the set
of attributes; (3) the generation approach is gen-
eral. By taking dialogue acts (Zhao et al., 2017),
personas (Li et al., 2016), emotions (Zhou et al.,
2018), and specificity (Zhang et al., 2018a) as at-
tributes, our approach can address the problems in
the existing literature in a unified form; and (4)
generation-based open domain dialogue systems
now become scalable, since the model supports
feature engineering on meta-words.

The challenge of response generation with
meta-words lies in how to simultaneously ensure
relevance of a response to the message and fi-
delity of the response to the meta-word. To tackle
the challenge, we propose equipping the vanilla
sequence-to-sequence architecture with a novel
goal tracking memory network (GTMN) and craft-
ing a new loss item for learning GTMN. GTMN

"We start from single messages. It is easy to extend the
proposed approach to handle conversation history.

2For ease of understanding, we transformed “copy ratio”
and “specificity” used in our experiments into categorical
variables.

sets meta-word expression as a goal of generation
and dynamically monitors expression of each vari-
able in the meta-word during the decoding pro-
cess. Specifically, GTMN consists of a state mem-
ory panel and a state controller where the former
records status of meta-word expression and the
latter manages information exchange between the
state memory panel and the decoder. In decoding,
the state controller updates the state memory panel
according to the generated sequence, and reads out
difference vectors that represent the residual of the
meta-word. The next word from the decoder is
predicted based on attention on the message rep-
resentations, attention on the difference vectors,
and the word predicted in the last step. In learn-
ing, besides the negative log likelihood, we fur-
ther propose minimizing a state update loss that
can directly supervise the learning of the memory
network under the ground truth. We also propose
a meta-word prediction method to make the pro-
posed approach complete in practice.

We test the proposed model on two large-scale
open domain conversation datasets built from
Twitter and Reddit, and compare the model with
several state-of-the-art generation models in terms
of response relevance, response diversity, accu-
racy of one-to-many modeling, accuracy of meta-
word expression, and human judgment. Evalu-
ation results indicate that our model can signifi-
cantly outperform the baseline models over most
of the metrics on both datasets.

Our contributions in this paper are three-folds:
(1) proposal of explicitly modeling one-to-many
relationship and explicitly controlling response
generation in open domain dialogues with multi-
ple variables (a.k.a., meta-word); (2) proposal of
a goal tracking memory network that naturally al-
lows a meta-word to guide response generation;
and (3) empirical verification of the effectiveness
of the proposed model on two large-scale datasets.

2 Related Work

Neural response generation models are built upon
the encoder-decoder framework (Sutskever et al.,
2014). Starting from the basic sequence-to-
sequence with attention architecture (Vinyals and
Le, 2015; Shang et al., 2015), extensions under the
framework have been made to combat the “safe
response” problem (Mou et al., 2016; Tao et al.,
2018); to model the hierarchy of conversation his-
tory (Serban et al., 2016, 2017; Xing et al., 2018);
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to generate responses with specific personas or
emotions (Li et al., 2016; Zhou et al., 2018); and
to speed up response decoding (Wu et al., 2018).
In this work, we also aim to tackle the ‘“safe re-
sponse” problem, but in an explainable, control-
lable, and general way. Rather than learning with
a different objective (e.g., (Li et al., 2015)), gen-
eration from latent variables (e.g., (Zhao et al.,
2017)), or introducing extra content (e.g., (Xing
et al., 2017)), we explicitly describe relationship
between message-response pairs by defining meta-
words and express the meta-words in responses
through a goal tracking memory network. Our
method allows developers to manipulate the gener-
ation process by playing with the meta-words and
provides a general solution to response generation
with specific attributes such as dialogue acts.

Recently, controlling specific aspects in text
generation is drawing increasing attention (Hu
et al., 2017; Logeswaran et al., 2018). In the con-
text of dialogue generation, Wang et al. (2017)
propose steering response style and topic with hu-
man provided topic hints and fine-tuning on small
scenting data; Zhang et al. (2018a) propose learn-
ing to control specificity of responses; and very
recently, See et al. (2019) investigate how con-
trollable attributes of responses affect human en-
gagement with methods of conditional training
and weighted decoding. Our work is different
in that (1) rather than playing with a single vari-
able like specificity or topics, our model simulta-
neously controls multiple variables and can take
controlling with specificity or topics as special
cases; and (2) we manage attribute expression in
response generation with a principled approach
rather than simple heuristics like in (See et al.,
2019), and thus, our model can achieve better ac-
curacy in terms of attribute expression in gener-
ated responses.

3 Problem Formalization

Suppose that we have a dataset D =
{(Xi, M;, ) }Y.,, where X; is a message,
Y; is a response, and M; = (mj1,...,m;;) is a
meta-word with my g (mi,j.k, m,"j.t, mi,j.v)
the j-th variable and m; ;.k, m;;.t, and m; ;.v
the key, the type, and the value of the variable
respectively. Our goal is to estimate a generation
probability P(Y'|X, M) from D, and thus given
a new message X with a pre-defined meta-word
M, one can generate responses for X according

to P(Y|X, M). In this work, we assume that M
is given as input for response generation. Later,
we will describe how to obtain M with X.

4 Response Generation with
Meta-Words

In this section, we present our model for response
generation with meta-words. We start from an
overview of the model, and then dive into details
of the goal tracking memory enhanced decoding.

4.1 Model Overview

Figure 1 illustrates the architecture of our
goal tracking memory enhanced sequence-to-
sequence model (GTMES2S). The model equips
the encoder-decoder structure with a goal tracking
memory network that comprises a state memory
panel and a state controller. Before response de-
coding, the encoder represents an input message
as a hidden sequence through a bi-directional re-
current neural network with gated recurrent units
(biGRU) (Chung et al., 2014), and the goal track-
ing memory network is initialized by a meta-word.
Then, during response decoding, the state mem-
ory panel tracks expression of the meta-word and
gets updated by the state controller. The state con-
troller manages the process of decoding at each
step by reading out the status of meta-word expres-
sion from the state memory panel and informing
the decoder of the difference between the status
and the target of meta-word expression. Based on
the message representation, the information pro-
vided by the state controller, and the generated
word sequence, the decoder predicts the next word
of the response.

In the following section, we will elaborate the
goal tracking memory enhanced decoding, which
is the key to having a response that is relevant to
the message and at the same time accurately re-
flects the meta-word.

4.2 Goal Tracking Memory Network

The goal tracking memory network (GTMN) dy-
namically controls response generation according
to the given meta-word via cooperation of the state
memory panel and the state controller. It informs
the decoder at the first time to what extend the
meta-word has been expressed. For local attributes
such as response length®, the dynamic control

3Local attributes refer to the attributes whose values are
location sensitive during response generation. For example,
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Figure 1: Architecture of goal tracking memory enhanced sequence-to-sequence model.

strategy is more reasonable than static strategies
such as feeding the embedding of attributes to the
decoder like in conditional training in (See et al.,
2019). This is because if the goal is to generate a
response with 5 words and 2 words have been de-
coded, then the decoder needs to know that there
are 3 words left rather than always memorizing
that 5 words should be generated.

4.2.1 State Memory Panel

Suppose that the given meta-word M consists of
[ variables, then the state memory panel M is
made up of [ memory cells {M;}!_, where Vi €
{1,...,1}, M, is in a form of (key, goal, value)
which are denoted as M.k, M;.g, and M;.v re-
spectively. We define Rep(-) as a representation
getting function which can be formulated as
Rep(m;.k) = B(m;.k),
Rep(mi.v) = {U(B(mi.v)), mi.t =c (1)
v m;.v X o(B(m;.k)),m;.t =,
where m; is the i-th variable of M, o(-) is a sig-
moid function, and B(+) returns the bag-of-words
representation for a piece of text. M; is then ini-
tialized as:
M.k = Rep(m;.k),
M;.g = Rep(m;.v), ?2)
M;.vg =0.

M;.k € R? stores the key of m;, and M;.g €
R? stores the goal for expression of m; in genera-
tion. Thus, the two items are frozen in decoding.
M;.v € RY refers to the gray part of the progress
bar in Figure 1, and represents the progress of ex-
pression of m; in decoding. Hence, it is updated
by the state controller after each step of decoding.

length of the remaining sequence varies after each step of de-
coding. In contrary, some attributes, such as dialogue acts,
are global attributes, as they are reflected by the entire re-
sponse.

4.2.2 State Controller

As illustrated by Figure 1, the state controller
stays between the encoder and the decoder, and
manages the interaction between the state mem-
ory panel and the decoder. Let s; be the hidden
state of the decoder at step t. The state controller
first updates M;.vs_1 to M;.v; based on s; with
a state update operation. It then obtains the dif-
ference between M;.g and M;.v; from the state
memory panel via a difference reading operation,
and feeds the difference to the decoder to predict
the ¢-th word of the response.

State Update Operation. The operation in-
cludes SUB and ADD as two sub-operations. In-
tuitively, when the status of expression surpasses
the goal, then the state controller should execute
the SUB operation (stands for “subtract”) to trim
the status representation; while when the status of
expression is inadequate, then the state controller
should use the ADD operation to enhance the sta-
tus representation. Technically, rather than com-
paring M;.v;_1 with M;.g and adopting opera-
tions accordingly, we propose a soft way to up-
date the state memory panel with SUB and ADD,
since (1) it is difficult to identify over-expression
or sub-expression by comparing two distributed
representations; and (2) the hard way will break
differentiablility of the model. Specifically, we de-
fine g; € R%*! as a gate to control the use of SUB
or ADD where g;(i) € R? is the i-th element of
gi. Let APUB(3) € R? and APPP (i) € R? be
the changes from the SUB operation and the ADD
operation respectively, then M;.v;_; is updated as

V(i) = Miwio1 — go(i) o AFVP(4),

. , ADD . 3
Mivy = V(@) + (1 = ge(i)) 0 A7 (2),

where o means element-wise multiplication, and
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g:(1), AFUB(i), and AAPP(4) can be defined as

9+(i) = o (WySi(i) + by) “4)

and
a0 o (W] s+ [F]) o
respectively with W, € R p, € RI,

W{SUB,ADD} c RdXSd’ and b{SUB,ADD} c R

parameters. S;(i) = M;.k ® M;.v;_1 @ s; where
@ is a concatenation operator.

Difference Reading Operation. For each vari-
able in the meta-word M, the operation represents
the difference between the status of expression and
the goal of expression as a vector, and then applies
an attention mechanism to the vectors to indicate
the decoder the importance of variables in gen-
eration of the next word. Formally, suppose that
d§ € R is the difference vector for m; € M at
step ¢, then d! is defined as

dz = (Mi.g — M;.v) & (Mi.go Mi.vy). (6)

With (df, ..., d}) as a difference memory, the dif-
ference reading operation then takes s; as a query
vector and calculates attention over the memory as

l
O Zi:l a ( ) 7
al = softmax((s;) " (Ud?)),
where (al, ..., a}) are attention weights, and U €
R4 is a parameter.

4.3 Response Decoding

In decoding, the hidden state s; is calculated by
GRU(s4_1, [e(yi—1) @ C4]), where e(y;_1) € R?
is the embedding of the word predicted at step
t — 1, and C; is a context vector obtained from
attention over the hidden states of the input mes-
sage X given by the biGRU based encoder. Let
Hy = (hx,a,...,hx,) be the hidden states of
X, then C} is calculated via

Tl'
Cy= § _, anghx
=

exp(et,;) (8)
Ty ’
> kZy exp(er)

€tj = UL;F tanh (Wsst—l + Whhxyj + bd)7

Qt,j =

where Uy, W,, Wp, and by are parameters, and
s¢—1 is the hidden state of the decoder at step £ — 1.

With the hidden state s; and the distance vector
o; returned by the state controller, the probability

distribution for predicting the ¢-th word of the re-
sponse is given by

p(y:) = softmax(Wple(y:) ® or ® s¢] +bp),  (9)

where y; is the ¢-th word of the response with e(y;)
its embedding, and W), and b,, are parameters.

S Learning Method

To perform online response generation with meta-
words, we need to (1) estimate parameters of
GTMES2S by minimizing a loss function; and (2)
learn a model to predict meta-words for online
messages.

5.1 Loss for Model Learning

The first loss item is the negative log likelihood
(NLL) of D, which is formulated as

1 N
_110gP(Yi\Xi,Mz‘)7 (10)

Lyrp(©) = N i

where O is the set of parameters of GTMES2S.
By minimizing NLL, the supervision signals in D
may not sufficiently flow to GTMN, as GTMN
is nested within response decoding. Thus, be-
sides NLL, we propose a state update loss that di-
rectly supervises the learning of GTMN with D.
The idea is to minimize the distance between the
ground truth status of meta-word expression and
the status stored in the state memory panel. Sup-
pose that y;.; is the segment of response Y gen-
erated until step ¢, then Vm; € M, we consider
two cases: (1) 3F;(+) that F;(y1..) maps yp.; to the
space of m;.v. As an example, response length be-
longs to this case with F;(y1+) = t; (2) it is hard
to define an F;(-) that can map y;.; to the space
of m;.v. For instance, dialogue acts belong to this
case since it is often difficult to judge the dialogue
act from part of a response. For case (1), we define
the state update loss as

Lho(m) =3, IMove = Rep(Fiwa))l, (1)

where T is the length of Y and ||-|| refers to Lo
norm. For case (2), the loss is defined as

Ly (mi) = | M;.vr — Rep(mi.v)]. (12)

The full state update loss Lsy7(O) for D is then
given by

N 1

> limay € CilLsy (may) + 1ma; € Ca] Ly (ma ),
i=1 j=1

(13)
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where C; and Cs represent sets of variables belong-
ing to case (1) and case (2) respectively, and I(+) is
an indicator function. The loss function for learn-
ing of GTMES2S is finally defined by

L(©) = Lnrr(©) + ALsu(O), (14)
where A acts as a trade-off between the two items.

5.2 Meta-word Prediction

We assume that values of meta-words are given
beforehand. In training, the values can be ex-
tracted from ground truth. In test, however,
since only a message is available, we propose
sampling values of a meta-word for the mes-
sage from probability distributions estimated from
{(X;, M;))}Y, C D. The sampling approach
not only provides meta-words to GTMNES2S, but
also keeps meta-words diverse for similar mes-
sages. Formally, let 1%, be the last hidden state of
a message X processed by a biGRU, then Vm; €
M, we assume that m;.v obeys a multinomial dis-
tribution with the probability p; parameterized as
softmax (W™ pE, + bme), if m;.t = c; other-
wise, m;.v obeys a normal distribution with p;
and log(c?) parameterized as W/'h%, + bt and
W h% + b7 respectively. In distribution estima-
tion, we assume that variables in a meta-word are
independent, and jointly maximize the log likeli-
hood of {(M;|X;)}, and the entropy of the dis-
tributions as regularization.

6 Experiments

We test GTMNES2S on two large-scale datasets.

6.1 Datasets

We mine 10 million message-response pairs from
Twitter FireHose, covering 2-month period from
June 2016 to July 2016, and sample 10 mil-
lion pairs from the full Reddit data*. As pre-
processing, we remove duplicate pairs, pairs with
a message or a response having more than 30
words, and messages that correspond to more than
20 responses to prevent them from dominating
learning. After that, there are 4, 759, 823 pairs left
for Twitter and 4, 246, 789 pairs left for Reddit.
On average, each message contains 10.78 words
in the Twitter data and 12.96 words in the Reddit
data. The average lengths of responses in the Twit-
ter data and the Reddit data are 11.03 and 12.75 re-
spectively. From the pairs after pre-processing, we

*nttps://redd.it/3bxlg?

randomly sample 10k pairs as a validation set and
10k pairs as a test set for each data, and make sure
that there is no overlap between the two sets. After
excluding pairs in the validation sets and the test
sets, the left pairs are used for model training. The
test sets are built for calculating automatic met-
rics. Besides, we randomly sample 1000 distinct
messages from each of the two test sets and re-
cruit human annotators to judge the quality of re-
sponses generated for these messages. For both
the Twitter data and the Reddit data, top 30, 000
most frequent words in messages and responses
in the training sets are kept as message vocabular-
ies and response vocabularies. In the Twitter data,
the message vocabulary and the response vocab-
ulary cover 99.17% and 98.67% words appearing
in messages and responses respectively. The two
ratios are 99.52% and 98.8% respectively in the
Reddit data. Other words are marked as “UNK”.

6.2 Meta-word Construction

As a showcase of the framework of GTMNES2S,
we consider the following variables as a meta-
word: (1) Response Length (RL): number of
words and punctuation marks in a response. We
restrict the range of the variable in {1,...,25}
(i.e., responses longer than 25 are normalized as
25), and treat it as a categorical variable. (2) Di-
alog Act (DA): we employ the 42 dialogue acts
based on the DAMSL annotation scheme (Core
and Allen, 1997). The dialogue act of a given re-
sponse is obtained by the state-of-the-art dialogue
act classifier in (Liu et al., 2017) learned from the
Switchboard (SW) 1 Release 2 Corpus (Godfrey
and Holliman, 1997). DA is a categorical vari-
able. (3) Multiple Utterances (MU): if a response
is made up of multiple utterances. We split a re-
sponse as utterances according to “.”, “?” and
and remove utterances that are less than 3 words.
The variable is “true” if there are more than 1 ut-
terance left, otherwise it is “false”. (4) Copy Ra-
tio (CR): inspired by COPY-NET (Gu et al., 2016)
which indicates that humans may repeat entity
names or even long phrases in conversation, we
incorporate a “‘copy mechanism” into our model
by using copy ratio as a soft implementation of
COPY-NET. We compute the ratio of unigrams
shared by a message and its response (divided by
the length of the response) with stop words and top
1000 most frequent words in training excluded.
CR is a real-valued variable. (5) Specificity (S):

[ I
L]
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following SC-Seq2Seq (Zhang et al., 2018b), we
calculate normalized inverse word frequency as a
specificity variable. The variable is real-valued.
Among the five variables, RL, CR, and S corre-
spond to the state update loss given by Equation
(11), and others correspond to Equation (12).

6.3 Baselines

We compare GTMNES2S with the following
baseline models: (1) MMI-bidi: the sequence-
to-sequence model with response re-ranking in
(Li et al., 2015) learned by a maximum mu-
tual information objective; (2) SC-Seq2Seq: the
specificity controlled Seq2Seq model in (Zhang
et al., 2018b); (3) kg-CVAE: the knowledge-
guided conditional variational autoencoders in
(Zhao et al.,, 2017); and (4) CT: the condi-
tional training method in (See et al., 2019) that
feeds the embedding of pre-defined response at-
tributes to the decoder of a sequence-to-sequence
model. Among the baselines, CT exploits the
same attributes as GTMNES2S, SC-Seq2Seq uti-
lizes specificity, and kg-CVAE leverages dia-
logue acts. All models are implemented with
the recommended parameter configurations in the
existing papers, where for kg-CVAE, we use
the code shared at https://github.com/
snakeztc/NeuralDialog-CVAE, and for
other models without officially published code, we
code with TensorFlow. Besides the baselines, we
also compare GTMNES2E learned from the full
loss given by Equation (14) with a variant learned
only from the NLL loss, in order to check the ef-
fect of the proposed state update loss. We denote
the variant as GTMNES2S w/o SU.

6.4 Evaluation Metrics

We conduct both automatic evaluation and human
evaluation. In terms of automatic ways, we eval-
uate models from four aspects: relevance, diver-
sity, accuracy of one-to-many modeling, and ac-
curacy of meta-word expression. For relevance,
besides BLEU (Papineni et al., 2002), we follow
(Serban et al., 2017) and employ Embedding Av-
erage (Average), Embedding Extrema (Extrema),
Embedding Greedy (Greedy) as metrics. To eval-
uate diversity, we follow (Li et al., 2015) and use
Distinct-1 (Distl) and Distinct-2 (Dist2) as met-
rics which are calculated as the ratios of distinct
unigrams and bigrams in the generated responses.
For accuracy of one-to-many modeling, we utilize
A-bow precision (A-prec), A-bow recall (A-rec),

E-bow precision (E-prec), and E-bow recall (E-
rec) proposed in (Zhao et al., 2017) as metrics.
For accuracy of meta-word expression, we mea-
sure accuracy for categorical variables and square
deviation for real-valued variables. Metrics of rel-
evance, diversity, and accuracy of meta-word ex-
pression are calculated on the 10k test data based
on top 1 responses from beam search. To mea-
sure the accuracy of meta-word expression for a
generated response, we extract values of the meta-
word of the response with the methods described
in Section 6.2, and compare these values with the
oracle ones sampled from distributions. Metrics
of accuracy of one-to-many modeling require a
test message to have multiple reference responses.
Thus, we filter the test sets by picking out mes-
sages that have at least 2 responses, and form
two subsets with 166 messages for Twitter and
135 messages for Reddit respectively. On aver-
age, each message corresponds to 2.8 responses
in the Twitter data and 2.92 responses in the Red-
dit data. For each message, 10 responses from a
model are used for evaluation. In kg-CVAE, we
follow (Zhao et al., 2017) and sample 10 times
from the latent variable; in SC-Seq2Seq, we vary
the specificity in {0.1,0.2,...,1}; and in both CT
and GTMNES2S, we sample 10 times from the
distributions. Top 1 response from beam search
under each sampling or specificity setting are col-
lected as the set for evaluation.

In terms of human evaluation, we recruit 3 na-
tive speakers to label top 1 responses of beam
search from different models. Responses from all
models for all the 1000 test messages in both data
are pooled, randomly shuffled, and presented to
each of the annotators. The annotators judge the
quality of the responses according to the follow-
ing criteria: +2: the response is not only relevant
and natural, but also informative and interesting;
+1: the response can be used as a reply, but might
not be informative enough (e.g.,“Yes, I see” etc.);
0: the response makes no sense, is irrelevant, or is
grammatically broken. Each response receives 3
labels. Agreements among the annotators are mea-
sured by Fleiss’ kappa (Fleiss and Cohen, 1973).

6.5 Implementation Details

In test, we fix the specificity variable as 0.5 in SC-
Seq2Seq, since in (Zhang et al., 2018a), the au-
thors conclude that the model achieves the best
overall performance under the setting. For kg-
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Dataset Models Relevance Diversity One-to-Many
’ BLEU | Average | Greedy | Extreme | Distl | Dist2 | A-prec | A-rec | E-prec | E-rec
MMI-bidi | 2.92 0.787 0.181 0.394 6.35 20.6 0.853 | 0.810 | 0.601 | 0.554
kg-CVAE 1.83 0.766 0.175 0.373 8.65 29.7 0.862 | 0.822 | 0.597 | 0.545
Twitter SC-Seq2Seq | 2.57 0.776 0.182 0.387 6.87 22.5 0.857 | 0.815 | 0.594 | 0.551
CT | 332 0.792 0.181 0.402 8.04 26.9 0.859 | 0.813 | 0.596 | 0.550
GTMNES2S w/o SU | 3.25 0.793 0.183 0.405 7.59 284 | 0861 | 0.819 | 0.598 | 0.554
GTMNES2S 3.39 0.810 0.182 0.413 8.41 30.5 0.886 | 0.839 | 0.610 | 0.560
MMI-bidi 1.82 0.752 0.171 0.369 6.12 20.3 0.821 | 0.775 | 0.587 | 0.542
kg-CVAE 1.89 0.745 0.171 0.357 8.47 28.7 0.827 | 0.781 | 0.583 | 0.531
Reddit SC-Seq2Seq 1.95 0.752 0.176 0.362 5.94 19.2 0.823 | 0.778 | 0.581 | 0.536
CT | 243 0.751 0.172 0.383 8.62 334 | 0.827 | 0.783 | 0.587 | 0.540
GTMNES2S w/o SU | 2.75 0.757 0.174 0.382 8.47 32.6 0.832 | 0.791 | 0.594 | 0.548
GTMNES2S | 2.95 0.760 0.172 0.386 10.35 | 36.3 0.841 | 0.795 | 0.602 | 0.554

Table 2: Results on relevance, diversity, and accuracy of one-to-many modeling. Numbers in bold mean that
improvement over the best baseline is statistically significant (t-test, p-value < 0.01).

Dataset Metaword Type SC-Seq2Seq kg-CVAE CT  GTMNES2S w/o SU GTMNES2S
RL ¢ - - 97% 95.6% 98.6%
DA ¢ - 582%  60.9% 61.2% 62.6%
Twitter MU ¢ - - 98.8% 99.5% 99.4%
CR r - - 0.176 0.178 0.164
S r 0.195 - 0.130 0.158 0.103
RL ¢ - - 94.5% 95.1% 96.7%
DA ¢ - 557%  59.9% 55.9% 61.2%
Reddit MU ¢ - - 99.2% 98.7% 99.4%
CR r - - 0.247 0.253 0.236
N r 0.143 - 0.118 0.112 0.084

Table 3: Results on accuracy of meta-word expression. Numbers in bold mean that improvement over the best

baseline is statistically significant (t-test, p-value < 0.01).

CVAE, we follow (Zhao et al., 2017) and pre-
dict a dialogue act for a message with an MLP.
GTMNES?2S and CT leverage the same set of at-
tributes. Thus, for fair comparison, we let them
exploit the same sampled values in generation. In
GTMNES2S, the size of hidden units of the en-
coder and the decoder, and the size of the vectors
in memory cells (i.e., d) are 512. Word embed-
ding is randomly initialized with a size of 512. We
adopt the Adadelta algorithm (Zeiler, 2012) in op-
timization with a batch size 200. Gradients are
clipped when their norms exceed 5. We stop train-
ing when the perplexity of a model on the valida-
tion data does not drop in two consecutive epochs.
Beam sizes are 200 in MMI-bidi (i.e., the size used
in (Li et al., 2015)) and 5 in other models.

6.6 Evaluation Results

Table 2 and Table 3 report evaluation results
on automatic metrics. On most of the metrics,
GTMNES2S outperforms all baseline methods,
and the improvements are significant in a statis-
tical sense (t-test, p-value < 0.01). The results
demonstrate that with meta-words, our model can
represent the relationship between messages and
responses in a more effective and more accurate
way, and thus can generate more diverse responses

without sacrifice on relevance. Despite leverag-
ing the same attributes for response generation,
GTMNES?2S achieves better accuracy than CT on
both one-to-many modeling and meta-word ex-
pression, indicating the advantages of the dynamic
control strategy over the static control strategy,
as we have analyzed at the beginning of Section
4.2. Without the state update loss, there is sig-
nificant performance drop for GTMNES2S. The
results verified the effect of the proposed loss in
learning. Table 4 summarizes human evaluation
results. Compared with the baseline methods and
the variant, the full GTMNES2S model can gen-
erate much more excellent responses (labeled as
“2”) and much fewer inferior responses (labeled
as “0”). Kappa values of all models exceed 0.6,
indicating substantial agreement over all annota-
tors. The results further demonstrate the value of
the proposed model for real human-machine con-
versation. kg-CVAE gives more informative re-
sponses, and also more bad responses than MMI-
bidi and SC-Seq2Seq. Together with the contra-
diction on diversity and relevance in Table 2, the
results indicate that latent variable is a double-
bladed sword: the randomness may bring interest-
ing content to responses and may also make re-
sponses out of control. On the other hand, there
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Dataset Models 2 1 0 Avg  kappa

MMI-bidi  16.6% 51.7% 31.7% 0.85 0.65

kg-CVAE 23.1% 409% 36% 0.87 0.78
SC-Seq2Seq 21.2% 48.5% 30.3% 091 0.61

CT 27.6% 38.4% 34% 094 0.71

GTMNES2S w/o SU ~ 27%  39.1% 33.9% 0.93 0.64
GTMNES2S 332% 37.7% 29.1% 1.04 0.71

MMI-bidi 44% 58.1% 37.5% 0.67 0.79

kg-CVAE 13.7% 44.6% 41.7% 0.72 0.68
SC-Seq2Seq  9.9% 512% 389% 0.71 0.78

CT 165% 482% 353% 081 0.73

GTMNES2S w/o SU  15.7% 473% 37% 0.79 0.66
GTMNES2S 19.2% 47.5% 333% 0.86 0.76

Twitter

Reddit

Table 4: Results on the human evaluation. Ratios are
calculated by combining labels from the three judges.

Multiple  Dialog Length

Copy
S
utterances Act

Dataset pecificity PPL

70.19
67.23
62.13
50.36
42.05
38.57

72.43
65.17
61.92
49.67
41.78
37.96

X

Twitter

RN NN NP
AN N NS
NSNS X X X
el
NN X X X X8
S
WX X X X X

Reddit

NN
NN NS X X
NN SN X X X
NN X X X X
A X X X X X

Table 5: Contribution of different attributes.

are no random variables in our model, and thus, it
can enjoy a well-trained language model.

6.7 Discussions

In this section, we examine effect of different at-
tributes by adding them one by one to the gen-
eration model. Besides, we also illustrate how
GTMNES?2S tracks attribute expression in re-
sponse generation with test examples.

Contribution of attributes. Table 5 shows per-
plexity (PPL) of GTMNES2S with different sets
of attributes on the validation data. We can see that
the more attributes are involved in learning, the
lower PPL we can get. By leveraging all the 5 at-
tributes, we can reduce almost 50% PPL from the
vanilla encoder-decoder model (i.e., the one with-
out any attributes). The results not only indicate
the contribution of different attributes to model fit-
ting, but also inspire us the potential of the pro-
posed framework, since it allows further improve-
ment with more well designed attributes involved.

Case Study. Figure 2 illustrates how our model
controls attributes of responses with the goal
tracking mechanism, where distance between the
value of a memory cell (i.e., M;.v;) during gener-

Message: mm so should i just pull the ring out than ?
kg-CVAE: where is the ring ?
MMI-bidi: you don’t want to that
SC-Seq2Seq: you should not do such things

GTMNES2S: i ‘Il just pull the ring out creepier

N

GTMNES2S i
w/o SU:

‘Il pull the ring on the ring

Message: i will not give up until you take an actual guess
kg-CVAE: open your mouth
MMI-bidi: whatyou 're talking about ? ? ?
SC-Seq2Seq: i 'm not sure about that .

GTMNES2S: why are you so mean to me ? i ‘m pretty special

GTMNES2s What do you mean ? you ‘re not a normalperson.
w/o SU:

Figure 2: Examples of response generation from the
Twitter test data. Up: the heat map is defined by
| M;.vs— M,.g| normalized to [0, 1], where M refers
to CR. Below: M in the heat map refers to MU.

ation and the goal of the memory cell (i.e., M;.g)
is visualized via heat maps. In the first example,
the full model gradually reduces the distance be-
tween the value and the goal of copy ratio expres-
sion with the generation process moving on. As
a result, it just copies “pull the ring out” from the
message, which makes the response informative
and coherent. On the other hand, without the state
update loss, GTMNES2S w/o SU makes a mistake
by copying “ring” twice, and the distance between
the value and the goal is out of control. In the
second example, we visualize the expression of
MU, a categorical attribute. Compared with real-
valued attributes, categorical attributes are easier
to express. Therefore, both the full model and
GTMNES2S w/o SU successfully generate a re-
sponse with multiple utterances, although the dis-
tance between the value and the goal of MU ex-
pression in GTMNES2S w/o SU is still in a mess.

7 Conclusions

We present a goal-tracking memory enhanced
sequence-to-sequence model for open domain re-
sponse generation with meta-words which explic-
itly define characteristics of responses. Evalua-
tion results on two datasets indicate that our model
significantly outperforms several state-of-the-art
generative architectures in terms of both response
quality and accuracy of meta-word expression.
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