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Abstract

There are many different ways in which exter-
nal information might be used in an NLP task.
This paper investigates how external syntac-
tic information can be used most effectively
in the Semantic Role Labeling (SRL) task.
We evaluate three different ways of encod-
ing syntactic parses and three different ways
of injecting them into a state-of-the-art neural
ELMo-based SRL sequence labelling model.
We show that using a constituency represen-
tation as input features improves performance
the most, achieving a new state-of-the-art for
non-ensemble SRL models on the in-domain
CoNLL’05 and CoNLL’12 benchmarks.1

1 Introduction

Properly integrating external information into neu-
ral networks has received increasing attention re-
cently (Wu et al., 2018; Li et al., 2017; Strubell
et al., 2018). Previous research on this topic can
be roughly categorized into three classes: i) In-
put: The external information are presented as ad-
ditional input features (i.e., dense real-valued vec-
tors) to the neural network (Collobert et al., 2011).
ii) Output: The neural network is trained to pre-
dict the main task and the external information in a
multi-task approach (Changpinyo et al., 2018). iii)
Auto-encoder: This approach, recently proposed
by Wu et al. (2018), simultaneously combines the
Input and Output during neural models training.
The simplicity of these methods allow them to ap-
ply to many NLP sequence tasks and various neu-
ral model architectures.

However, previous studies often focus on inte-
grating word-level shallow features such as POS
or chunk tags into the sequence labelling tasks.
Syntactic information, which encodes the long-
range dependencies and global sentence structure,
has not been studied as carefully. This paper fills

1Our model source code is available in https://
github.com/GaryYufei/bestParseSRL

this gap by integrating syntactic information to the
sequence labelling task. We address three ques-
tions: 1) How should syntactic information be en-
coded as word-level features? 2) What is the best
way of integrating syntactic information? and 3)
What effect does the choice of syntactic represen-
tation have on the performance?

We study these questions in the context of Se-
mantic Role Labelling (SRL). A SRL system ex-
tracts the predicate-argument structure of a sen-
tence.2 Syntax was an essential component of
early SRL systems (Xue and Palmer, 2004; Pun-
yakanok et al., 2008). The state-of-the-art neu-
ral SRL systems use a neural sequence labelling
model without any syntax knowledge (He et al.,
2018, 2017; Tan et al., 2018). We show below that
injecting external syntactic knowledge into a neu-
ral SRL sequence labelling model can improve the
performance, and our best model sets a new state-
of-the-art for a non-ensemble SRL system.

In this paper we express the external syntac-
tic information as vectors of discrete features, be-
cause this enables us to explore different ways of
injecting the syntactic information into the neural
SRL model. Specifically, we propose three dif-
ferent syntax encoding methods: a) a full con-
stituency tree representation (Full-C); b) an SRL-
specific span representation (SRL-C); and c) a
dependency tree representation (Dep). For (a)
we adapt the constituency parsing representation
from (Gómez-Rodrı́guez and Vilares, 2018) and
encode the tree structure as a set of features for
word pairs. For (b), we use a categorical repre-
sentation of the constituency spans that are most
relevant to SRL tasks based on (Xue and Palmer,
2004). Finally, (c) we propose a discrete vector
representation that encodes the head-modifier re-
lationships in the dependency trees.

We evaluate the effectiveness of these encod-
ings using three different integration methods on

2who did what to whom, where and when

https://github.com/GaryYufei/bestParseSRL
https://github.com/GaryYufei/bestParseSRL
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the SRL CoNLL’05 and CoNLL’12 benchmarks.
We show that using either of the constituency
representations in either the Input or the Auto-
Encoder configurations produces the best perfor-
mance. These results are noticeably better than a
strong baseline and set a new state-of-the-art for
non-ensemble SRL systems.

2 Related Work

Semantic Role Labeling (SRL) generally refers to
the PropBank style of annotation (Palmer et al.,
2005). Broadly speaking, prior work on SRL
makes use of syntactic information in two differ-
ent ways. Carreras and Màrquez (2005); Prad-
han et al. (2013) incorporate constituent-structure
span-based information, while Hajič et al. (2009)
incorporate dependency-structure information.

This information can be incorporated into
an SRL system in several different ways.
Swayamdipta et al. (2018) use span information
from constituency parse trees as an additional
training target in a multi-task learning approach,
similar to one of the approaches we evaluate here.
Roth and Lapata (2016) use an LSTM model to
represent the dependency paths between predi-
cates and arguments and feed the output as the in-
put features to their SRL system. Marcheggiani
and Titov (2017) use Graph Convolutional Net-
work (Niepert et al., 2016) to encode the depen-
dency parsing trees into their LSTM-based SRL
system. Xia et al. (2019) represent dependency
parses using position-based categorical features of
tree structures in a neural model. Strubell et al.
(2018) use dependency trees as a supervision sig-
nal to train one of attention heads in a self-attentive
neural model.

3 Syntactic Representation

This section introduces our representations of con-
stituency and dependency syntax trees.

3.1 Full-C: Full Constituency Representation

Gómez-Rodrı́guez and Vilares (2018) propose a
full representation of constituency parsing trees
where the string position between wi and wi+1 is
associated with the pair (n(wi)− n(wi−1), l(wi))
where n(wi) is the number of common ancestors
between (wi, wi+1) and l(wi) is the non-terminal
label at the lowest common ancestor3. For sim-

3The full constituency trees can be reconstructed from
this representation, details refer to (Gómez-Rodrı́guez and

Figure 1: Examples of Full-C (n(w), r(w) and l(w))
and SRL-C (SRL-Cons). reported is the predicate
word. The blue non-terminals are candidate con-
stituents in the SRL-C. The circled number is the ex-
traction order.

plicity, we define r(wi) = n(wi) − n(wi−1)
throughout this paper. 4

This encoding method transforms the whole
constituency parsing tree into n−1 (r(wi), l(wi))
feature pairs for a length-n sentence. We assign
(r(wi), l(wi)) to the wi (0 < i ≤ n−1) and leave
a padding symbol N to the wn. We treat r(wi) and
l(wi) as two separate categorical features for each
word. We refer this representation as the Full-C
(Figure 1).

3.2 SRL-C: SRL Span Representation

Xue and Palmer (2004) show only a small frac-
tion of the constituents in the parse trees are use-
ful for the SRL task given the predicate word. That
means encoding the full constituency parsing tree
may introduce redundant information.

Therefore, we preserve the constituent spans
that are most likely to be useful for the predicate
word in the trees. We re-use the pruning algorithm
in (Xue and Palmer, 2004). Their algorithm col-
lects the potential argument constituents by walk-
ing up the tree to the root node recursively, which
filters out many irrelevant constituents from the
syntax trees with 99.3% of the ground truth argu-
ments preserved.

We encode the output of this rule-based pruning
algorithm using a standard BIO (Begin-Inside-
Outside) annotation scheme. The words that are

Vilares, 2018)
4In (Gómez-Rodrı́guez and Vilares, 2018), both r(wi)

and n(wi) is applicable for this encoding method. Our pi-
lot experiments show that r(wi) works much better than the
absolute representation n(wi).
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outside any candidate constituent receive the tag
O. The words that are beginning of a candidate
constituent receive the tag B, and the words that
are inside a candidate constituent receive the tag I.
We use the tag A to label words in prepositional
phrases. We refer this representation as the SRL-
C (Figure 1).

3.3 Dep: Dependency Tree Representation

The seeds already are in the script
Left 0 1 0 2 0 0 1

Right 0 0 0 1 1 0 0
RG 1 2 1 4 -1 1 -2

Edge L L N R R L R
DL det nsubj dep root prep det pobj

root

det

nsubj

dep prep det
pobj

Figure 2: Features from Dependency Tree.

The dependency tree representation encodes
key aspects of the head-modifier relationships
within the sentence. We also consider encod-
ing constituent edge information. The following
word-level features have been proposed:

a) #left/right Dependents (Left / Right). The
number of dependents a word has on the left
and right side.

b) Right/Left-most Dependent (Edge). Whether
the word is the Right/Left/None-most depen-
dent of its governor.

c) Relative Distance to Governor (RG). The
relative distance between the word and its
governor.

d) Dependency Label (DL). The label describ-
ing the relationship between each pair of de-
pendent and governor.

We refer this representation as the Dep (Figure
25).

4 Injecting External Information

In this section, we introduce three different meth-
ods for integrating external syntactic information
into the neural SRL system (Figure 3):

5In this example, we assume the “root” is the first word of
the sentence from the left.

Figure 3: Model Architecture. Blue indicates the base-
line model; Red indicates the multi-task output compo-
nent; Green indicates the external feature component.

Baseline Our baseline system is a stacked bi-
LSTM architecture (He et al., 2017). We use
ELMo (Peters et al., 2018) as word embeddings
and a CRF output decoder on the top of LSTM, as
shown in Figure 3.

Input This approach represents the external cat-
egorical features as trainable, high dimensional
dense vector token embeddings, which are con-
catenated with the representation vectors of ELMo
in the baseline model. The syntactic parse trees
that are used as the input features are produced
by Kitaev and Klein (2018) (for constituency pars-
ing). The dependency trees are produced by
transforming the constituency trees using Stan-
ford CoreNLP toolkit. This ensures that the con-
stituency and dependency parses have a similar
error distribution, helping to control for parsing
quality. Our constituency and dependency parses
score a state-of-the-art 95.4 F1 and 96.4% UAS on
the WSJ test set respectively. We used a 20-fold
cross-validation procedure to produce the data for
the external syntactic input.

Output In this approach, our model predicts
both SRL sequence tags and syntactic features (en-
coded as the word-level features above) simultane-
ously. We use a log loss for each categorical fea-
ture. The final training loss is the multi-task objec-
tive LSRL−

∑m
f=1 log pf (y

?
f ), where pf (yf ) is the

probability of generating yf as the f th feature (m
features in total, m = 1, 2, 5 for SRL-C, Full-C
and Dep respectively) and y?f is the ground truth
for the f th feature. Gold training data was used
as the external syntactic information for the multi-
task output setting, as this external information is
not required at test time.

Auto-encoder Following Wu et al. (2018), we
use external information as input features and as
a multi-task training objective simultaneously, so
the system is behaving somewhat like an auto-
encoder. This auto-encoder has to reproduce the
syntactic information in its output that it is fed in
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its input, encouraging it to incorporate this infor-
mation in its internal representations. The input
and output representations are the same as above.

5 Experiments

We evaluate 10 different models (the 3 ways
of using external information by 3 different en-
codings of syntax and a baseline model) on
CoNLL’05 (Carreras and Màrquez, 2005) and
CoNLL’12 (Pradhan et al., 2013) benchmarks, un-
der the evaluation setting where the gold predicate
is given. The CoNLL’05 benchmark uses WSJ
and Brown test as in-domain and out-domain eval-
uation respectively.

5.1 Main Results

Table 1 shows the effect of using the three different
kinds of external syntactic information in the three
different ways just described. When used as input
features, all three representations improve over our
baseline system. This shows that syntactic repre-
sentations provide additional useful information,
which is beyond the dynamic context embeddings
from ELMo, to SRL task.

Syntax Representations Models using con-
stituency representations are 0.3% - 0.6% bet-
ter than the models using the dependency repre-
sentations. This might be because constituents
align more directly with SRL arguments and con-
stituency information is easier to use.

Inject. Model
CoNLL’05 CoNLL’12

WSJ Brown Test

- Baseline 87.7 78.1 85.8

Input
Full-C 88.1 78.9 86.4
SRL-C 88.2 79.3 86.4

Dep 87.9 78.4 86.1

Output
Full-C 87.7 78.4 85.9
SRL-C 87.9 78.5 85.9

Dep 87.6 78.9 85.8
Auto

Encoder

Full-C 88.2 77.7 86.3
SRL-C 88.2 79.0 86.4

Dep 87.6 78.1 85.7

Table 1: Injecting External Syntax Information. Bold
number is the best performance in each column, same
below.

The SRL-C is slightly better than the Full-C
for in-domain evaluation. The advantages of the
SRL-C approach are greater on the out-of-domain

(Brown) evaluation, with a margin of 0.4%. This
could be because Full-C is more sensitive to pars-
ing errors than SRL-C. When we compare gold
and automatic parser representations in Brown de-
vice data, 10.5% of the words get different Full-C
features while this only 7.9% get different SRL-C
features.

External Information Injection Table 1 shows
at least on this task, multi-task learning does not
perform as well as adding external information
as additional input features. Both the Input and
Auto-Encoder methods work equally well. We
conclude that the extra complexity of the auto-
encoder model is not justified. In particular, Dep
with auto-encoder hurts SRL accuracy (0.6% be-
hind the model with the constituency features).

5.2 Comparison with existing systems

We compare our best system (SRL-C used as
Input) with previous work in Table 2. We im-
prove upon the state-of-the-art results for non-
ensemble SRL models on in-domain test by 0.6%
and 0.2% on CoNLL’05 and CoNLL’12 respec-
tively. Our model also achieves a competitive re-
sult on CoNLL’05 Brown Test. Comparing with
the strong ensemble model in (Ouchi et al., 2018),
our model is only 0.3% and 0.6% lower in two
benchmarks respectively.

Model
CoNLL’05 CoNLL’12

WSJ Brown Test

ELMo Baseline 87.7 78.1 85.8
Strubell et al. (2018) 86.0 76.5 -

Xia et al. (2019) 86.9 76.8 -
He et al. (2018) 87.4 80.4 85.5

Ouchi et al. (2018) 87.6 78.7 86.2
Our best model 88.2 79.3 86.4

Xia et al. (2019)§ 87.8 78.8 -
Ouchi et al. (2018)§ 88.5 79.6 87.0

Table 2: Comparison with existing systems. § indicates
ensemble models.

5.3 Using Gold Parse Trees

Finally, we conduct an oracle experiment where all
syntactic features are derived from gold trees. Our
model performance improves by around 3% - 4%
F1 score (see Table 3). This bounds the improve-
ment in SRL that one can expect with improved
syntactic parses.
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Model
CoNLL’05 CoNLL’12

WSJ Brown Test

Our best model 88.2 79.3 86.4
Full-C 92.2 83.5 91.4
SRL-C 91.7 83.4 90.3

Dep 91.9 83.3 91.1

Table 3: SRL Performance with Gold Trees

6 Conclusion and Future Work

This paper evaluated three different ways of repre-
senting external syntactic parses, and three differ-
ent ways of injecting that information into a state-
of-the-art SRL system. We showed that repre-
senting the external syntactic information as con-
stituents was most effective. Using the exter-
nal syntactic information as input features was
far more effective than a multi-task learning ap-
proach, and just as effective as an auto-encoder
approach. Our best system sets a new state-of-the-
art for non-ensemble SRL systems on in-domain
data.

In future work we will explore how external in-
formation is best used in ensembles of models for
SRL and other tasks. For example, is it better for
all the models in an ensemble to use the same ex-
ternal information, or is it more effective if they
make use of different kinds of information? We
will also investigate whether the choice of method
for injecting external information has the same im-
pact on other NLP tasks as it does on SRL.
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