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Abstract

Most of the recently proposed neural models
for named entity recognition have been purely
data-driven, with a strong emphasis on get-
ting rid of the efforts for collecting external
resources or designing hand-crafted features.
This could increase the chance of overfitting
since the models cannot access any supervi-
sion signal beyond the small amount of anno-
tated data, limiting their power to generalize
beyond the annotated entities. In this work, we
show that properly utilizing external gazetteers
could benefit segmental neural NER models.
We add a simple module on the recently pro-
posed hybrid semi-Markov CRF architecture
and observe some promising results.

1 Introduction

In the past few years, neural models have become
dominant in research on named entity recognition
(NER) (Lample et al., 2016; Ma and Hovy, 2016;
Chiu and Nichols, 2016, inter alia), as they ef-
fectively utilize distributed representations learned
from large-scale unlabeled texts (Pennington et al.,
2014; Peters et al., 2018; Devlin et al., 2018, inter
alia), while avoiding the huge efforts required for
designing hand-crafted features or gathering exter-
nal lexicons. Results from modern neural NER
models have achieved new state-of-the-art per-
formance over standard benchmarks such as the
popular CoNLL 2003 shared task dataset (Tjong
Kim Sang and De Meulder, 2003).

An end-to-end model with the property of let-
ting the data speak for itself seems to be appeal-
ing at first sight. However, given that the amount
of labeled training data for NER is relatively small
when compared with other tasks with millions
of training examples, the annotated entities could
only achieve a rather limited coverage for a the-
oretically infinite space of variant entity names.
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Moreover, current neural architectures heavily rely
on the word form due to the use of word embed-
dings and character embeddings, which could lead
to a high chance of overfitting. ! For instance,
all the appearances of the single token Clinton in
the CoNLL 2003 dataset are person names, while
in practice it is also possible to refer to loca-
tions.> Data-driven end-to-end models trained on
that dataset could implicitly bias towards predict-
ing PERSON for most occurrences of Clinton even
under some contexts when it refers to a location.

On the other hand, for frequently studied lan-
guages such as English, people have already
collected dictionaries or lexicons consisting of
long lists of entity names, known as gazetteers.
Gazetteers could be treated as an external source
of knowledge that could guide models towards
wider coverage beyond the annotated entities in
NER datasets. In traditional log-linear named en-
tity taggers (Ratinov and Roth, 2009; Luo et al.,
2015), gazetteers are commonly used as discrete
features in the form of whether the current token
or current span is appearing in the gazetter or not.
There does not seem to be any reason for a neural
model not to utilize the off-the-shelf gazetters.

In this paper, we make a simple attempt in uti-
lizing gazetteers in neural NER. Building on a re-
cently proposed architecture called hybrid semi-
Markov conditional random fields (HSCRFs)
where span-level scores are derived from token-
label scores, we introduce a simple additional
module that scores a candidate entity span by the
degree it softly matches the gazetteer. Experimen-
tal studies over CoNLL 2003 and OntoNotes show
the utility of gazetteers for neural NER models.

'In fact, traditional feature-based models also suffer from
similar overfitting issues when trained on limited data, but
in practice they could be easily spotted and fixed due to the
transparency of linear feature weights.

’See e.g., https://en.wikipedia.org/wiki/
Clinton_ (disambiguation)
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2  Framework

2.1 Hybrid semi-Markov CRFs

Our approach is by nature based on the hy-
brid semi-Markov conditional random fields
(HSCRFs) proposed by Ye and Ling (2018), which
connect traditional CRFs (Lafferty et al., 2001)
and semi-Markov CRFs (Sarawagi and Cohen,
2005) by simultaneously leveraging token-level
and segment-level scoring information.

Lets = (s1,...,sp) denote a segmentation of
input sequence x = (x1,...,2,), Where a seg-
ment s; = (tj,u;,y;) represents a span with a

start position t;, an end position u;, and a la-
bel y; € Y. We assume that all segments have
positive lengths and the start position of the first
segment is always 1, then the segmentation s sat-

isfies &1 = 1, u, = n, u; —t; > 0, and
tj+1 = Uj—i-lfOI‘l < j < p Letl =
(l1,...,1,) be the corresponding token-level la-
bels of x. A traditional semi-CRF (Sarawagi

and Cohen, 2005) gives a segmentation of an in-
put sequence and assign labels to each segment
in it. For named entity recognition tasks, a cor-
rect segmentation of the sentence Scottish Labour
Party narrowly backs referendum should be
s = ((1,3,0RG), (4,4,0),(5,5,0), (6,6,0)),
and the token-level label sequence under a
BILOU tagging scheme ° should become 1 =
(B-ORG,I-ORG,L-ORG,0,0,0,).
HSCRFs inherit the definition of segmentation
probability from traditional semi-CRFs. Given a
sequence X = (z1, ..., Ty), the probability of seg-
mentation s = (sq,...,sp) is defined as

score(s, X)

Pr(s | x) = 5,

(D

where score(s,x) = [[_; ¥(yj, yj+1, X, £, uj),
and Z(x) = ) score(s’, x) is the normalization
term. Note that 3,41 is defined as a special (END).
The Viterbi algorithm could be used for decod-
ing, i.e., getting the most likely segmentation for a
query sentence.

HSCRFs employ a specific method to calcu-
late the segment score using token-level labels,
with the score potential function v (-) defined

as T/J(Z/ja Yji+1,X, tj7uj) €eXp (Cf)j + byj’yj+1)’

3In the BILOU scheme, a model should learn to identify
the Beginning, the Inside and the Last tokens of multi-token
chunks as well as Outside tokens and Unit-length chunks.

where

Zaz L@

Uj
_§ : HSCRF
(bj - Ptoken l,,V
i=t;

and by, ., is the segment label transition score
from y; to y;+1, Proken (li, w;) calculates the score
of the ¢-th token being classified into token-level
label [; , v/, is the feature representation vector of
the i-th token z;, and a,; is the weight parameter
vector for token label ;. In HSCRFs, v/ is the con-
catenation of (1) BILSTM encoded representation
Vi, (2) Vu; — Vi;, and (3) emb(i — t; + 1), the
position embedding in the segment.

2.2 Gazetteer-enhanced sub-tagger

The most naive attempt could be treating each
gazetteer entity as an additional labeled training
sentence, but we found consistently decreased per-
formance in our initial experiments, as this would
introduce a shift of label distribution given that
the amount of gazetteer entity entries are typically
large. Therefore, it seems more natural to utilize
gazetteers in a separate module rather than naively
using them as augmented data.

The structure of HSCRFs makes it straightfor-
ward to introduce a scoring scheme for candidate
spans based on gazetteers. Following the scoring
scheme of HSCRFs, we train a span classifier in
the form of a sub-tagger and extract token-level
features at the same time. Let z = (z1,...,2)
be an entity in the gazetteer with a corresponding
label m. This span-level label can be expanded
into token-level labels mq,...,my. For exam-
ple, the entity Scottish Labour Party is labeled as
(B—ORG,I-ORG, L—ORG) and Berlin is la-
beled as (U—LOC) under the BILOU scheme.
Similar to Equation 2, the scoring function of our
sub-tagger is defined as

k

subtag ger
%roken m“ Z ?

=1

¢(m7 Z) =

E Wmlz

3)
where v/ is defined in Section 2.1 and wy,, is the
weight parameter vector for token label m;. We
calculate sigmoid(¢(m,z)) as the probability of
category m and minimize the cross-entropy loss
for training this sub-tagger.

The token-level BILOU scores derived from
the sub-tagger are larger at scale. We rescale
the scores with the tanh activation function
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and concatenate them with the corresponding to-
ken representation v/ (defined in Section 2.1).
Thus, an additional soft dictionary feature vec-
tor ; = @,,en tanh (cpfgf(’;gger(m,zi)) is de-
rived for each token in a segment, where € is
the concatenation operation and M is the set of
all BILOU scheme token-level labels. The final
¢; for soft dictionary enhanced HSCREF is:

Uj Uj
b =Y o) =D bl i, @)
1=t; 1=t;

where p; = m; @ v, and blTZ_ is the new weight
parameter for token label /;.

The HSCRF model and the sub-tagger derived
from it are linear in the way they calculate the span
scores. Unlike other semi-CRF models (Zhuo
et al., 2016; Zhai et al., 2017; Sato et al., 2017)
which utilize neural approaches to derive span
scores from word-level representations, HSCRF
calculates span score by summing up word-level
scores inside a span along BILOU paths con-
strained by tag m;’s.

This sub-tagger could be analogously treated as
playing the role of soft dictionary look-ups, as op-
posed to the traditional way that activates a dis-
crete feature only for hard token/span matches.

3 Experiments

3.1 Gazetteers

We use the gazetteers contained in the publicly
available UIUC NER system (Khashabi et al.,
2018). The gazetteers were originally collected
from the web and Wikipedia, consisting of around
1.5 million entities grouped into 79 fine-grained
categories. We trimmed and mapped these groups
into CoNLL-formatted NER tags (see Appendix
for details) with about 1.3 million entities kept.

3.2 Dataset

Evaluation is performed on the CoNLL-2003 En-
glish NER shared task dataset (Tjong Kim Sang
and De Meulder, 2003) and the OntoNotes 5.0
dataset (Pradhan et al., 2013). We follow the stan-
dard train/development/test split described in the
original papers along with previous evaluation set-
tings (Chiu and Nichols, 2016).

3.3 Training

Due to the space limit, we leave hyperparameter
details to the supplementary materials. *

Word representation The representation for a
word consists of three parts: pretrained 50-
dimensional GloVe word embedding (Penning-
ton et al., 2014), contextualized ELMo embed-
ding (Peters et al., 2018), along with a convo-
lutional character encoder trained from randomly
initialized character embeddings, following previ-
ous work (Ye and Ling, 2018).

Gazetteer-enhanced sub-tagger We randomly
split the gazetteer entities for training (80%) and
validation (20%), and sampled 1 million non-
entity n-grams (the maximal n is 7) from the
CoNLL 2003 training set excluding named enti-
ties as negative samples (O labels). We applied
early stopping on validation loss when training the
sub-tagger.

3.4 Alternative baselines with gazetteers

Many previous NER systems (Ratinov and Roth,
2009; Passos et al., 2014; Chiu and Nichols, 2016)
make use of discrete gazetteer features by directly
concatenating them with word-level representa-
tions. Apart from simple discrete feature concate-
nation, we also compare our framework with an-
other baseline that utilizes gazetteer embedding as

*Our implementation is available at: https://
github.com/lyutyuh/acll9_subtagger
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an additional feature. We add a single embedding
layer for discrete gazetteer features. To be more
specific, if a text span corresponds to multiple tags
in the gazetteer, we sum all the embedded vector
as the final gazetteer tag representation. Other-
wise, if a text span has no corresponding tags in
the gazetteer, a zero vector of the same dimension
will be chosen. Then, the gazetteer tag represen-
tation is concatenated with each word-level repre-
sentation inside a span.

3.5 Results

Table 1 shows the results on the CoNLL 2003
dataset and OntoNotes 5.0 dataset respectively.
HSCRFs using gazetteer-enhanced sub-tagger
outperform the baselines, achieving comparable
results with those of more complex or larger mod-
els on CoNLL 2003 and new state-of-the-art re-
sults on OntoNotes 5.0. We also attached some
out-of-domain analysis in the Appendix.

Test Set F1-score(+std)
Model CoNLL OntoNotes
Ma and Hovy (2016) 91.21 -
Lample et al. (2016) 90.94 -
Liu et al. (2018) 91.244+0.12 -
Devlin et al. (2018) 92.8 -
Chiu and Nichols (2016)°> | 91.62+0.33  86.28+0.26
Ghaddar and Langlais *18 | 91.73+0.10  87.95+£0.13
Peters et al. (2018) 92.22+40.10  89.04+0.27
Clark et al. (2018) 92.6 +0.1 88.840.1
Akbik et al. (2018) 93.09+0.12 89.71
HSCRF 92.544+0.11 89.38+0.11
HSCREF + concat 92.52+0.09 89.73£0.19
HSCREF + gazemb 92.63+0.08 89.77+0.20
HSCREF + softdict 92.75+0.18  89.94+0.16

Table 1: Results on CoNLL 2003 and OntoNotes 5.0

To better attribute the improments of our model,
we split the test sets into four non-overlapped sub-
sets according to whether an entity appears in the
train set and gazetteer or not, and collect results
respectively. We evaluate the performance of our
systems on these subsets. Details of the evaluation
of each system are shown in Table 2 and Table 3.

We observe that our current approach of sub-
tagger soft-dictionary matching consistently im-
proves over baseline approaches on most subsets,
while direct concatenating discrete gazetteer fea-
tures or using gazetteer embedding have some-
times decrease the performance. However, the re-

>This work also introduced discrete gazetteer features.
We tried their scheme on our gazetteer but we only found con-
sistently decreased performance over the baseline HSCRF.

sults on CoNLL and OntoNotes reveal slightly dif-
ferent patterns for the feature concatenation base-
line and the gazetteer embedding baseline, making
it difficult to analyze the underlying reasons. We
leave more systematic experimental studies over
the baselines to future work.

We also evaluate the gazetteer sub-tagger on the
held-out data of the gazetteer to analyze the po-
tential impact of this module. For predictions,
we choose the labels with the highest possibility.
If none of the label receives a probability greater
than 50%, the sample will be labeled as not being
an entity. The results are reported in Table 4.

We can see that while the sub-tagger mod-
ule could help a lot in identifying person names
(PER) and organization names (ORG), currently
the worst-performing category is the miscella-
neous type (MISC), which is possibly a result of
the diversity in this category. Improving the pre-
diction of such entities might further provide per-
formance gains for named entity recognition in
general.

4 Discussion

Experimental results demonstrate the usefulness
of gazetteer knowledge and show some promis-
ing results from our initial attempt to make use
of gazetteer information. The sub-tagger has an
advantage over hard matching with the capability
of recognizing entity names not appearing in but
being similar to those contained in the gazetteer.
Table 5 lists some examples that the baselines
failed to recognize as a complete entity name,
while the sub-tagger enhanced system managed
to do it. We checked a few cases for which only
the sub-tagger enhanced model got correct predic-
tions, and found terms with similar patterns from
the gazetteer while not in training data as in Ta-
ble 6. The gazetteer possesses an abundance of
similar terms that enables generalization to out-of-
gazetteer items.

In summary, we show that gazetteer-enhanced
modules could be useful for neural NER models.
Future directions will include trying similarly en-
hanced modules on other different types of seg-
mental models (Kong et al., 2016; Liu et al., 2016;
Zhuo et al., 2016; Zhai et al., 2017; Sato et al.,
2017), along with richer representations for fur-
ther gain. Also, we would like to further explore
the possibility to use domain-specific gazetteers or
dictionaries to boost the performance of NER in
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Subset (number of entities with proportions)
Model neither gazetteer only training set only both
2042 (36.5%) 655 (11.7%) 1765 (31.5%) 1131 (20.2%)
HSCRF 84.41 8137 82.86 | 97.26 9838 97.82 | 96.72 99.09 97.89 | 96.58 99.84 98.18
HSCRF+gazemb | 85.07 81.72 83.36 | 96.21 98.57 97.38 | 96.85 99.06 97.94 | 96.42 99.85 98.11
HSCRF+concat | 8529 81.34 83.27 | 96.11 98.68 97.38 | 96.90 99.35 98.11 | 9637 9991 98.11
HSCRF+softdict | 84.93 82.16 83.52 | 9740 98.53 97.96 | 97.07 99.31 98.18 | 96.54 9991 98.19
Table 2: Detailed test set performance (Precision, Recall, F1) on CoNLL.
Subset (number of entities with proportions)
Model neither gazetteer only training set only both
2765 (36.5%) 720 (9.5%) 3601 (47.6%) 470 (6.2%)
HSCRF 80.15 7042 7497 | 9531 96.48 95.89 | 92.55 9891 95.62 | 9546 99.66 97.52
HSCRF+gazemb | 8041 71.41 7564 | 9470 96.53 95.60 | 92.38 9891 9553 | 95.15 9948 97.27
HSCRF+concat | 80.29 72.13 7599 | 9582 96.71 96.26 | 93.16 98.95 9597 | 95.13 99.52 97.27
HSCRF+softdict | 80.58 73.36 76.80 | 96.38 96.46 9642 | 93.25 9896 96.01 | 9580 99.62 97.67
Table 3: Detailed test set performance (Precision, Recall, F1) on OntoNotes.
Tag __ Type various domains (Shang et al., 2018), beyond the
Precision | Recall F1 dard
PER | 9673 | 97.08 | 9691 standard corpora.
LOC 83.98 86.20 | 85.08
ORG | 9499 | 87.09 | 90.87 Acknowledgement
MISC 87.11 72.02 | 78.85
Overall 94.39 92.65 9351 We thank all the anonymous reviewers for helpful

Table 4: Sub-tagger evaluation by category. We re-
port the overall recall, precision, and F1 scores of the
CoNLL tag set sub-tagger.

HSCRF+softdict | U.N. Interim Force in Lebanon
ORG
HSCRF+gazemb | U.N. Interim Force in Lebanon
ORG LOC
HSCRF U.N. Interim Force in Lebanon
ORG LOC
HSCRF+softdict | Hector “Macho” Camacho
PER
HSCRF+gazemb | Hector “Macho” Camacho
PER PER
HSCRF Hector “ Macho” Camacho
PER PER PER
HSCRF+softdict | Bodman, Longely & Dahling
ORG
HSCRF+gazemb | Bodman, Longely & Dahling
PER ORG
HSCRF Bodman, Longely & Dahling
PER —  ORG

Table 5: Examples from CoNLL 2003 dev set that
the soft-dictionary enhanced model classified correctly
while other baselines failed.

Special Security Force Bangladesh
Islamic Army in Iraq
Grand Army of the Republic
Hector “Macho” Charles ““Chaflif” White
Camacho Carlos Carlaq Santos
Orlando “Cachaito” Lopez
Ransomes, Sims & Jefferies
Cravath, Swaine & Moore
Drinker, Biddle & Reath

U.N. Interim
Force in Lebanon

Bodman, Longely
& Dahling

Table 6: Terms similar to CoNLL 2003 dev set entities
appearing in the gazetteer.

suggestions, especially Reviewer #1 for the thor-
ough comments containing more than 1,500 words
in total, from which many points proved to be
valuable for improving our initial draft.
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