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Abstract

Open information extraction (IE) is the task of
extracting open-domain assertions from natu-
ral language sentences. A key step in open
IE is confidence modeling, ranking the ex-
tractions based on their estimated quality to
adjust precision and recall of extracted asser-
tions. We found that the extraction likelihood,
a confidence measure used by current super-
vised open IE systems, is not well calibrated
when comparing the quality of assertions ex-
tracted from different sentences. We propose
an additional binary classification loss to cal-
ibrate the likelihood to make it more globally
comparable, and an iterative learning process,
where extractions generated by the open IE
model are incrementally included as training
samples to help the model learn from trial and
error. Experiments on OIE2016 demonstrate
the effectiveness of our method.1

1 Introduction

Open information extraction (IE, Sekine (2006);
Banko et al. (2007)) aims to extract open-domain
assertions represented in the form of n-tuples
(e.g., was born in; Barack Obama; Hawaii) from
natural language sentences (e.g., Barack Obama
was born in Hawaii). Open IE started from rule-
based (Fader et al., 2011) and syntax-driven sys-
tems (Mausam et al., 2012; Corro and Gemulla,
2013), and recently has used neural networks for
supervised learning (Stanovsky et al., 2018; Cui
et al., 2018; Sun et al., 2018; Duh et al., 2017; Jia
et al., 2018).

A key step in open IE is confidence model-
ing, which ranks a list of candidate extractions
based on their estimated quality. This is impor-
tant for downstream tasks, which rely on trade-
offs between the precision and recall of extracted

1Code and data are available at https://github.
com/jzbjyb/oie_rank
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Figure 1: Iterative rank-aware learning.

assertions. For instance, an open IE-powered
medical question answering (QA) system may re-
quire its assertions in higher precision (and conse-
quently lower recall) than QA systems for other
domains. For supervised open IE systems, the
confidence score of an assertion is typically com-
puted based on its extraction likelihood given by
the model (Stanovsky et al., 2018; Sun et al.,
2018). However, we observe that this often yields
sub-optimal ranking results, with incorrect extrac-
tions of one sentence having higher likelihood
than correct extractions of another sentence. We
hypothesize this is due to the issue of a disconnect
between training and test-time objectives. Specif-
ically, the system is trained solely to raise like-
lihood of gold-standard extractions, and during
training the model is not aware of its test-time be-
havior of ranking a set of system-generated asser-
tions across sentences that potentially include in-
correct extractions.

To calibrate open IE confidences and make
them more globally comparable across different
sentences, we propose an iterative rank-aware
learning approach, as outlined in Fig. 1. Given ex-
tractions generated by the model as training sam-
ples, we use a binary classification loss to explic-
itly increase the confidences of correct extractions
and decrease those of incorrect ones. Without
adding additional model components, this train-
ing paradigm naturally leads to a better open IE
model, whose extractions can be further included
as training samples. We further propose an iter-

https://github.com/jzbjyb/oie_rank
https://github.com/jzbjyb/oie_rank
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ative learning procedure that gradually improves
the model by incrementally adding extractions to
the training data. Experiments on the OIE2016
dataset (Stanovsky and Dagan, 2016) indicate that
our method significantly outperforms both neural
and non-neural models.

2 Neural Models for Open IE

We briefly revisit the formulation of open IE and
the neural network model used in our paper.

2.1 Problem Formulation

Given sentence s = (w1, w2, ..., wn), the goal of
open IE is to extract assertions in the form of tu-
ples r = (p,a1,a2, ...,am), composed of a sin-
gle predicate and m arguments. Generally, these
components in r need not to be contiguous, but to
simplify the problem we assume they are contigu-
ous spans of words from s and there is no overlap
between them.

Methods to solve this problem have recently
been formulated as sequence-to-sequence gener-
ation (Cui et al., 2018; Sun et al., 2018; Duh
et al., 2017) or sequence labeling (Stanovsky et al.,
2018; Jia et al., 2018). We adopt the second for-
mulation because it is simple and can take ad-
vantage of the fact that assertions only consist of
words from the sentence. Within this framework,
an assertion r can be mapped to a unique BIO
(Stanovsky et al., 2018) label sequence y by as-
signing O to the words not contained in r, Bp/Ip
to the words in p, and Bai /Iai to the words in ai
respectively, depending on whether the word is at
the beginning or inside of the span.

The label prediction ŷ is made by the model
given a sentence associated with a predicate of in-
terest (s, v). At test time, we first identify verbs
in the sentence as candidate predicates. Each sen-
tence/predicate pair is fed to the model and extrac-
tions are generated from the label sequence.

2.2 Model Architecture and Decoding

Our training method in § 3 could potentially
be used with any probabilistic open IE model,
since we make no assumptions about the model
and only the likelihood of the extraction is re-
quired for iterative rank-aware learning. As
a concrete instantiation in our experiments, we
use RnnOIE (Stanovsky et al., 2018; He et al.,
2017), a stacked BiLSTM with highway con-
nections (Zhang et al., 2016; Srivastava et al.,

2015) and recurrent dropout (Gal and Ghahra-
mani, 2016). Input of the model is the concate-
nation of word embedding and another embedding
indicating whether this word is predicate:

xt = [Wemb(wt),Wmask(wt = v)].

The probability of the label at each position is cal-
culated independently using a softmax function:

P (yt|s, v) ∝ exp(Wlabelht + blabel),

where ht is the hidden state of the last layer. At
decoding time, we use the Viterbi algorithm to re-
ject invalid label transitions (He et al., 2017), such
as Ba2 followed by Ia1 .2

We use average log probability of the label se-
quence (Sun et al., 2018) as its confidence:3

c(s, v, ŷ) =

∑|s|
t=1 logP (ŷt|s, v)

|s|
. (1)

The probability is trained with maximum likeli-
hood estimation (MLE) of the gold extractions.
This formulation lacks an explicit concept of
cross-sentence comparison, and thus incorrect ex-
tractions of one sentence could have higher confi-
dence than correct extractions of another sentence.

3 Iterative Rank-Aware Learning

In this section, we describe our proposed binary
classification loss and iterative learning procedure.

3.1 Binary Classification Loss
To alleviate the problem of incomparable confi-
dences across sentences, we propose a simple bi-
nary classification loss to calibrate confidences to
be globally comparable. Given a model θ′ trained
with MLE, beam search is performed to generate
assertions with the highest probabilities for each
predicate. Assertions are annotated as either posi-
tive or negative with respect to the gold standard,
and are used as training samples to minimize the
hinge loss:

θ̂ = argmin
θ

E
s∈D

v,ŷ∈gθ′ (s)

max (0, 1− t · cθ(s, v, ŷ)), (2)

2This formulation cannot easily handle coordination,
where multiple instances of an argument are extracted for a
single predicate, so we use a heuristic of keeping only the first
instance of an argument.

3The log probability is normalized by the length of the
sentence to avoid bias towards short sentences. The original
confidence score in RnnOIE is slightly different from ours.
Empirically, we found them to perform similarly.
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Input: training data D, initial model θ(0)

Output: model after convergence θ
t← 0 # iteration
E ← ∅ # generated extractions
while not converge do
E ← E ∪ {(s, v, ŷ)|v, ŷ ∈ gθ(t)(s), ∀s ∈ D}
θ(t+1) ← argmin

θ
E

(s,v,ŷ)∈E
max (0, 1− t · cθ(s, v, ŷ))

t← t+ 1;
end

Algorithm 1: Iterative learning.

Train Dev. Test

# sentence 1 688 560 641
# extraction 3 040 971 1 729

Table 1: Dataset statistics.

where D is the training sentence collection, gθ′
represents the candidate generation process, and
t ∈ {1,−1} is the binary annotation. cθ(s, v, ŷ)
is the confidence score calculated by average log
probability of the label sequence.

The binary classification loss distinguishes pos-
itive extractions from negative ones generated
across different sentences, potentially leading to a
more reliable confidence measure and better rank-
ing performance.

3.2 Iterative Learning

Compared to using external models for confidence
modeling, an advantage of the proposed method is
that the base model does not change: the binary
classification loss just provides additional supervi-
sion. Ideally, the resulting model after one-round
of training becomes better not only at confidence
modeling, but also at assertion generation, sug-
gesting that extractions of higher quality can be
added as training samples to continue this training
process iteratively. The resulting iterative learning
procedure (Alg. 1) incrementally includes extrac-
tions generated by the current model as training
samples to optimize the binary classification loss
to obtain a better model, and this procedure is con-
tinued until convergence.

4 Experiments

4.1 Experimental Settings

Dataset We use the OIE2016 dataset (Stanovsky
and Dagan, 2016) to evaluate our method, which
only contains verbal predicates. OIE2016 is au-
tomatically generated from the QA-SRL dataset
(He et al., 2015), and to remove noise, we remove

extractions without predicates, with less than two
arguments, and with multiple instances of an ar-
gument. The statistics of the resulting dataset are
summarized in Tab. 1.

Evaluation Metrics We follow the evalua-
tion metrics described by Stanovsky and Da-
gan (2016): area under the precision-recall curve
(AUC) and F1 score. An extraction is judged as
correct if the predicate and arguments include the
syntactic head of the gold standard counterparts.4

Baselines We compare our method with both
competitive neural and non-neural models, includ-
ing RnnOIE (Stanovsky et al., 2018), OpenIE4,5

ClausIE (Corro and Gemulla, 2013), and PropS
(Stanovsky et al., 2016).

Implementation Details Our implementation is
based on AllenNLP (Gardner et al., 2018) by
adding binary classification loss function on the
implementation of RnnOIE.6 The network con-
sists of 4 BiLSTM layers (2 forward and 2 back-
ward) with 64-dimensional hidden units. ELMo
(Peters et al., 2018) is used to map words into con-
textualized embeddings, which are concatenated
with a 100-dimensional predicate indicator em-
bedding. The recurrent dropout probability is set
to 0.1. Adadelta (Zeiler, 2012) with ε = 10−6 and
ρ = 0.95 and mini-batches of size 80 are used to
optimize the parameters. Beam search size is 5.

4.2 Evaluation Results
Tab. 4 lists the evaluation results. Our base model
(RnnOIE, § 2) performs better than non-neural
systems, confirming the advantage of supervised
training under the sequence labeling setting. To
test if the binary classification loss (E.q. 2, § 3)
could yield better-calibrated confidence, we per-
form one round of fine-tuning of the base model
with the hinge loss (+Binary loss in Tab. 4).
We show both the results of using the confidence
(E.q. 1) of the fine-tuned model to rerank the
extractions of the base model (Rerank Only),
and the end-to-end performance of the fine-tuned
model in assertion generation (Generate). We

4The absolute performance reported in our paper is
much lower than the original paper because the authors
use a more lenient lexical overlap metric in their released
code: https://github.com/gabrielStanovsky/
oie-benchmark.

5https://github.com/dair-iitd/
OpenIE-standalone

6https://allennlp.org/models#
open-information-extraction

https://github.com/gabrielStanovsky/oie-benchmark
https://github.com/gabrielStanovsky/oie-benchmark
https://github.com/dair-iitd/OpenIE-standalone
https://github.com/dair-iitd/OpenIE-standalone
https://allennlp.org/models#open-information-extraction
https://allennlp.org/models#open-information-extraction
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sentence old new labelrank rank

A CEN forms an important but small part of a Local Strategic Partnership . 3 1 3

An animal that cares for its young but shows no other sociality traits is said

to be “ subsocial” .

2 2 7

A casting director at the time told Scott that he had wished that he’d met

him a week before ; he was casting for the “G.I. Joe” cartoon.

1 3 7

Table 2: Case study of reranking effectiveness. Red for predicate and blue for arguments.

sentence label

A Democrat , he became the youngest mayor in Pittsburgh’s history in September

2006 at the age of 26 .

3

A motorcycle speedway long-track meeting , one of the few held in the UK, was staged
at Ammanford.

7

Table 3: Case study of generation effectiveness. Red for predicate and blue for arguments.
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Figure 2: AUC and F1 at different iterations.

found both settings lead to improved performance
compared to the base model, which demonstrates
that calibrating confidence using binary classifi-
cation loss can improve the performance of both
reranking and assertion generation. Finally, our
proposed iterative learning approach (Alg. 1, § 3)
significantly outperforms non-iterative settings.

We also investigate the performance of our iter-
ative learning algorithm with respect to the num-
ber of iterations in Fig. 2. The model obtained at
each iteration is used to both rerank the extractions
generated by the previous model and generate new
extractions. We also report results of using only
positive samples for optimization. We observe the
AUC and F1 of both reranking and generation in-
creases simultaneously for the first 6 iterations and
converges after that, which demonstrates the effec-

System AUC F1

Non-neural Systems
PropS .006 .065
ClausIE .026 .144
OpenIE4 .034 .164

Neural Systems
Base Model (RnnOIE) .050 .204
+Binary loss (§ 3.1), Rerank Only .091 .225
+Binary loss (§ 3.1), Generate .092 .260
+Iterative Learning (§ 3.2) .125 .315

Table 4: AUC and F1 on OIE2016.

tiveness of iterative training. The best performing
iteration achieves AUC of 0.125 and F1 of 0.315,
outperforming all the baselines by a large margin.
Meanwhile, using both positive and negative sam-
ples consistently outperforms only using positive
samples, which indicates the necessity of exposure
to the errors made by the system.

Case Study Tab. 2 compares extractions from
RnnOIE before and after reranking. We can see
the order is consistent with the annotation after
reranking, showing the additional loss function’s
efficacy in calibrating the confidences; this is par-
ticularly common in extractions with long argu-
ments. Tab. 3 shows a positive extraction discov-
ered after iterative training (first example), and a
wrong extraction that disappears (second exam-
ple), which shows that the model also becomes
better at assertion generation.
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overgenerated wrong missing
predicate argument argument

41% 38% 21%

Table 5: Proportions of three errors.

Error Analysis Why is the performance still rel-
atively low? We randomly sample 50 extractions
generated at the best performing iteration and con-
duct an error analysis to answer this question. To
count as a correct extraction, the number and or-
der of the arguments should be exactly the same
as the ground truth and syntactic heads must be in-
cluded, which is challenging considering that the
OIE2016 dataset has complex syntactic structures
and multiple arguments per predicate.

We classify the errors into three categories and
summarize their proportions in Tab. 5. “Overgen-
erated predicate” is where predicates not included
in ground truth are overgenerated, because all the
verbs are used as candidate predicates. An ef-
fective mechanism should be designed to reject
useless candidates. “Wrong argument” is where
extracted arguments do not coincide with ground
truth, which is mainly caused by merging multi-
ple arguments in ground truth into one. “Missing
argument” is where the model fails to recognize
arguments. These two errors usually happen when
the structure of the sentence is complicated and
coreference is involved. More linguistic informa-
tion should be introduced to solve these problems.

5 Conclusion

We propose a binary classification loss function to
calibrate confidences in open IE. Iteratively op-
timizing the loss function enables the model to
incrementally learn from trial and error, yielding
substantial improvement. An error analysis is per-
formed to shed light on possible future directions.
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