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Abstract

Keyphrases, that concisely describe the high-
level topics discussed in a document, are very
useful for a wide range of natural language
processing tasks. Though existing keyphrase
generation methods have achieved remarkable
performance on this task, they generate many
overlapping phrases (including sub-phrases or
super-phrases) of keyphrases. In this paper, we
propose the parallel Seq2Seq network with the
coverage attention to alleviate the overlapping
phrase problem. Specifically, we integrate the
linguistic constraints of keyphrases into the
basic Seq2Seq network on the source side, and
employ the multi-task learning framework on
the target side. In addition, in order to prevent
from generating overlapping phrases with cor-
rect syntax, we introduce the coverage vector
to keep track of the attention history and to de-
cide whether the parts of source text have been
covered by existing generated keyphrases. The
experimental results show that our method can
outperform the state-of-the-art CopyRNN on
scientific datasets, and is also more effective
in news domain.

1 Introduction

Automatic keyphrase prediction recommends a set
of representative phrases that are related to the
main topics discussed in a document (Liu et al.,
2009). Since keyphrases can provide a high-level
topic description of a document, they are bene-
ficial for a wide range of natural language pro-
cessing tasks such as information extraction (Wan
and Xiao, 2008), text summarization (Zhang et al.,
2017) and question answering (Tang et al., 2017).
However, the performance of existing methods is
still far from satisfactory (Hasan and Ng, 2014).
The main reason is that it is very challenging to
determine whether a phrase or sets of phrases can
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accurately capture main topics that are presented
in the document.

Existing approaches for keyphrase prediction
can be broadly divided into extraction and gener-
ation methods. The conventional extraction meth-
ods directly select important consecutive words or
phrases from the target document as keyphrases.
This means that the extracted keyphrases must
appear in the target document. In comparison
with extraction methods, the generation methods
choose keyphrases from a predefined vocabulary
regardless of whether the generated keyphrases
appear in the target document. CopyRNN (Meng
et al., 2017) is the first to employ the sequence-to-
sequence (Seq2Seq) framework (Sutskever et al.,
2014) to generate keyphrases for documents. This
method is able to predict absent keyphrases that do
not appear in the target document.

Following the CopyRNN, a few extensions of
Seq2Seq framework have been proposed to help
better generate keyphrases. Through analyzing the
results generated by these approaches, we find out
that there are many overlapping phrases of cor-
rect (author-labeled) keyphrases. For example,
in experimental results of CopyRNN, the author-
labeled keyphrases are “Internet” and “Distributed
decision” but the predicted are “Internet held” and
“Distributed”, respectively. There are two short-
comings that lie in the overlapping phrases. First,
the correct keyphrase is not generated but its over-
lapping phrases are predicted as keyphrases. Sec-
ond, the existing generation approaches often pre-
dict the keyphrase and its overlapping phrases as
keyphrases. However, the overlapping phrases
of keyphrases are not keyphrases in most cases.
The more accurate description for this overlap-
ping problem and shortcomings will be given in
the next section, including the problem formula-
tion and seriousness found in experimental results
of the state-of-the-art CopyRNN.
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Sub-problems and formulations No.
Seriousness of the problem (top-k, k=10)

|Pi|/|Ol| (%)
|Pn

i |/|On
l | (%)

n = 1 n = 2 n = 3 n ≥ 4

p /∈ Ok
pb ∈ Ok - 1 6.62 0 2.69 21.49 47.15

pu ∈ Ok - 2 11.10 23.98 3.30 1.71 0.81

p ∈ Ok

pb ∈ Ok
Top(p) > Top(pb) 3 5.58 0 5.09 17.44 17.36

Top(p) < Top(pb) 4 7.25 0 4.73 28.89 17.46

pu ∈ Ok
Top(p) > Top(pu) 5 1.41 0.85 2.39 0.63 0.24

Top(p) < Top(pu) 6 10.77 9.78 14.84 5.53 1.41

Total 42.73 34.61 33.04 75.69 84.43

Table 1: Problem formulation and seriousness in experimental results of CopyRNN.

In this paper, we propose a parallel Seq2Seq
network (ParaNet) with the coverage attention to
alleviate the overlapping phrase problem. Specif-
ically, we exploit two standalone encoders to en-
code separately the source text and syntactic con-
straints into network on the source side, and then
applies multi-task learning framework to generate
the keyphrases and part-of-speech (POS) tags for
words in keyphrases on the target side. Most of
keyphrases are noun phrases and they commonly
consist of nouns and adjectives. The syntactic
constraints are helpful to prevent from generat-
ing the overlapping phrases of keyphrases that are
not noun phrases, e.g., “internet held” (which con-
tains a verb). In addition, in order to prevent from
generating overlapping phrases of keyphrases with
correct syntax, we introduce the coverage vector
(proposed in (Tu et al., 2016)) to keep track of the
attention history and to decide whether the parts
of source text have been covered by the existing
generated keyphrases.

The remaining of this paper is organized as fol-
lows. In the next section, we analyze the overlap-
ping phrase problem in existing generation meth-
ods. We summarize related methods to keyphrase
prediction, especially for keyphrase generation in
Section 3. The proposed method is presented in
Section 4. Finally, we show the experiments and
results before concluding the paper.

2 Analysis of the Overlapping Problem

In this section, we first formalize the overlapping
phrase problem, and then present its seriousness
by analyzing statistics obtained from CopyRNN.

Let p=wiwi+1...wi+m be a phrase with lengths
m+1 over a finite word dictionary D, i.e., wi∈D.
we define the phrase pb = wi+jwi+j+1...wi+j+k

(j ≥ 0, j + k ≤ m) as a sub-phrase of p. Con-
versely, we define the phrase p as a super-phrase
of pb and denote the super-phrase of p as pu. Over-
lapping relations exist between phrase p and its
sub/super-phrase pb/pu. Let Ol be a set of author-
labeled keyphrases, and Ok be a set of the gen-
erated keyphrases at top-k predictions, in which
each generated phrase may be correct or incorrect.
We assume that p is an author-labeled keyphrase,
i.e., p ∈ Ol, and its sub-phrase pb and super-
phrase pu are not keyphrases, i.e., pb, pu /∈Ol. Let
Top(px) be the rank of predicted keyphrase px in
Ok. Top(p) > Top(px) means that the rank of
Top(p) is higher than Top(px).

The overlapping phrase problem can be divided
into two main problems according to whether p is
generated at the top-k results. These two problems
are further subdivided into six sub-problems, for-
mulated as shown in Table 1. The formulations
No.1-2 shown in Table 1 mean that the author-
labeled keyphrase p is not predicted, and only one
of its sub-phrases pb or super-phrases pu is gen-
erated. The formulations No.3-6 in Table 1 mean
that the author-labeled keyphrase p and one of its
sub-phrases pb or super-phrases pu are generated.
In addition, Top(p) < Top(pb/pu) is worse than
Top(p)>Top(pb/pu). Note that p, pb and pu are
rarely generated simultaneously.

We next present the seriousness of this problem
through analyzing statistics obtained from exper-
imental results of CopyRNN on dataset KP20k.
We first calculate the proportion of the keyphrases
suffering from the i-th sub-problem in all correct
keyphrases, i.e., |Pi|/|Ol|, where Pi is defined as
Pi = {p|p ∈ Ol ∧ p suffers from the i-th sub-
problem}, |Pi| and |Ol| are respectively the size of
Pi and Ol. We select top-k (k=10) phrases gen-
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erated by CopyRNN as the final predictions. As
the results of |Pi|/|Ol| shown in Table 1, a total of
42.73% keyphrases suffer from this problem.

In addition, we calculate the proportion of the
keyphrases with the length nwhich suffer from the
i-th sub-problem in all correct keyphrases with the
same length, i.e., |Pn

i |/|On
l |, where Pn

i and On
l

are the subsets of Pi andOl, respectively, in which
the length of each keyphrase is n (i.e., keyphrase
is n-gram). Table 1 also shows the seriousness of
the sub-problems of overlapping phrase problem
with varying n of n-grams. As the results show,
we can observe that the long keyphrases can easily
suffer from the sub-phrase problem (i.e., pb∈Ok)
and the short keyphrases can easily suffer from the
super-phrase problem (i.e., pu∈Ok in Table 1).

Although the overlapping problem restricts the
performance of existing methods, it also gives us
an opportunity to help better generate keyphrases
as the overlapping phrases are often very close to
the correct keyphrases.

3 Related Works

As mentioned in Section 1, existing approaches
for keyphrase prediction can be broadly divided
into extraction and generation methods. The ex-
traction methods can be further classified into
supervised and unsupervised approaches. The
supervised approaches treat keyphrase extrac-
tion as a binary classification task, in which a
learning model is trained on the features of la-
beled keyphrases to determine whether a candi-
date phrase is a keyphrase (Witten et al., 1999;
Medelyan et al., 2009; Gollapalli et al., 2017).
In contrast, the unsupervised approaches directly
treat keyphrase extraction as a ranking problem,
scoring each candidate using different kinds of
techniques such as clustering (Liu et al., 2009), or
graph-based ranking (Mihalcea and Tarau, 2004;
Wan and Xiao, 2008).

This work is mainly related to keyphrase gener-
ation approaches which have been proven to be ef-
fective in the keyphrase prediction task. Following
CopyRNN (Meng et al., 2017) which is the first to
generate absent keyphrases using Seq2Seq frame-
work, the few extensions have been proposed to
help better generate keyphrases.

In CopyRNN, model training heavily relies on
massive amounts of labeled data, which is often
unavailable especially for the new domains. To
solve this problem, Ye and Wang (2018) proposed

a semi-supervised keyphrase generation model by
leveraging both abundant unlabeled data and lim-
ited labeled data. CopyRNN does not model the
one-to-many relationship between the document
and keyphrases. Therefore, keyphrase generation
only depends on the source document and ignores
constraints on the correlation among keyphrases.
To overcome this drawback, Chen et al. (2018)
proposed a Seq2Seq network with correlation con-
straints for keyphrase generation. Chen et al.
(2019) proposed a title-guided Seq2Seq network
to use title of source text to improve performance.
However, these methods did not consider the lin-
guistic constraints of keyphrases.

4 Methodology

4.1 Problem Definition

Given a text datasetD={xi,pi}Ni=1, where xi is a
source document, pi = {pi,j}Mi

j=1 is the keyphrase
set of xi, andN is the number of documents. Both
the document xi and keyphrase pi,j are sequences
of words, denoted as xi = (x

(i)
1 , x

(i)
2 , ..., x

(i)
Li
) and

pi,j = (y
(i,j)
1 , y

(i,j)
2 , ..., y

(i,j)
Lij

), where Li and Lij

are the length of word sequence of xi and pi,j . The
goal of a keyphrase generation is to design a model
to map each document x into the keyphrase set p.

4.2 Model Overview

Figure 1 illustrates the overview of the proposed
method. The method consists of two components,
which are the parallel encoders and decoders. The
parallel encoders consist of the word encoder and
syntactic information encoder, which are used to
compress the source text and its syntactic infor-
mation into the hidden vectors. The parallel de-
coders contain the keyphrase decoder and POS tag
decoder, which are different decoders and used to
generate the keyphrases and POS tags of words in
keyphrases. During the training process, these two
tasks boost each other providing strong represen-
tation for source text. In addition, we employ the
coverage attention to alleviate generating the over-
lapping phrases of keyphrases.

4.3 Basic Seq2Seq Model

Our approach is based on a Seq2Seq framework
which consists of an encoder and a decoder. Both
the encoder and decoder are implemented with re-
current neural networks (RNN). The encoder con-
verts the variable-length source word sequence
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Figure 1: The overview of the proposed approach.

x=(x1, x2, ..., xL) into a set of hidden represen-
tation vector {hi}Li=1, by iterating the following
equation:

hi = fe(xi,hi−1) (1)

where where fe is a non-linear function in encoder.
The decoder decompresses the context vector

and generate the variable-length target keyphrase
y = (y1, y2, ..., yL′) word by word, through the
conditional language model:

p(yi|y1,...,i−1,x) = g(yi−1, si, ci) (2)

where g is a softmax function, and si is a decoder
hidden vector calculated as:

si=fd(yi−1, si−1, ci) (3)

where fd is a non-linear function in decoder. ci is
a context vector, calculated as a weight sum over
source hidden vector h:

ci =
∑L

j=1 αi,jhj (4)

αi,j =
exp(a(si−1,hj))∑L

k=1 exp(a(si−1,hk))
(5)

where a(si−1,hj) is an alignment function that
measures the similarity between si−1 and hj .

Pure generation mode can not predict keyphrase
which consists of out-of-vocabulary words. Thus,
Meng et al. (2017) first introduced a copy mecha-
nism (Gu et al., 2016) to predict out-of-vocabulary
by directly copying words from source text. Con-
sequently, the probability of generating a target
word yi (i.e., Equ. 2) is modified as:

p(yi|y<i,x) = pg(yi|y<i,x) + pc(yi|y<i,x) (6)

where y<i represents y1,...,i−1 and pc is the proba-
bility of copying, calculated as:

pc(yi|y<i,x) =
1

Z

∑
j:xj=yi

exp(φ(xj)), yi∈X

φ(xj) = σ(h>j Wc)si

(7)

where σ is a non-linear function, X is the set of
unique words in source text x, Wc is a learned pa-
rameter matrix andZ is the sum for normalization.

4.4 Parallel Seq2Seq Model
Most of keyphrases are noun phrases which com-
monly consist of nouns and adjectives (Gollapalli
and Caragea, 2014). Hence, the syntactic informa-
tion is useful for improving keyphrase generation
performance. Although conventional generation
model is capable of implicitly learning the syntac-
tic information from source text, it can not capture
a lot of deep syntactic structural details (Shi et al.,
2016). To overcome this shortcoming, we propose
a parallel Seq2Seq model which deeply integrates
the following additional syntactic information into
the basic Seq2Seq model:

• POS tag: Keyphrases are commonly noun
phrases with a specified part-of-speech (POS)
patterns (Hulth, 2003). In supervised ap-
proaches for keyphrase extraction, POS tags
assigned to words have been chosen as one
type of important syntactic features, used to
train the classifier (Hasan and Ng, 2014; Gol-
lapalli et al., 2017). We incorporate the POS
tags into Seq2Seq network to capture the syn-
tactic combinations of keyphrases.



5228

Sentence: The framework is useful for deciding the parameter estimation in probabilistic retrieval models
POS tags: DT NN VBZ JJ IN VBG DT NN NN IN JJ NN NNS
Phrase tags: NP NP VP ADJP PP VP NP NP NP PP NP NP NP

Table 2: An example of word sequence with both POS and phrase tags.

• Phrase tag: Phrase tags assigned to words are
also one type of important syntactic features
in supervised extraction approaches, since
the words in keyphrase commonly share the
same phrase tags (Gollapalli et al., 2017).
Therefore, we integrate the phrase tags into
Seq2Seq network to capture the inherent syn-
tactic structure of keyphrases.

We use Stanford Parser1 (Finkel et al., 2005) to ob-
tain the 32 POS tags and 16 phrase tags of words.
An example is shown in Table 2 with both POS
and phrase tags, and the author-labeled keyphrase
is highlighted in bold.

4.4.1 Parallel Encoders
The proposed model encodes word sequence and
tag sequences (including POS and phrase tags) in
parallel. We use the RNN encoder to produce the
set of word hidden vector {hw} from the source
document x, and produce the set of syntactic tag
hidden vector {ht} from the POS and phrase tags.
We create the look-up based embedding matrices
for word, POS tag and phrase tag, and concatenate
the embeddings of POS tag and phrase tag into a
long vector as input of the tag encoder.

We employ two methods to combine the word
and syntactic tag hidden vectors into a unified hid-
den vector h. The first method is inspired by the
Tree-LSTM (Tai et al., 2015), which can selec-
tively incorporate the information from each child
node. The cell and hidden vectors are calculated
by following transition equations:

ii = σ(Wi
wh

w
i +Wi

th
t
i) (8)

fwi = σ(Wfw
w hw

i +Wfw
t ht

i) (9)

f ti = σ(Wft
w hw

i +Wft
t ht

i) (10)

oi = σ(Wo
wh

w
i +Wo

th
t
i) (11)

ui = tanh(Wu
wh

w
i +Wu

t h
t
i) (12)

ci = ii � ui + fwi � cwi + f ti � cti (13)

hi = oi � tanh(ci) (14)

where cwi and cti are the cell vectors of word and
tag, hw

i and ht
i are the hidden vectors of word and

1https://nlp.stanford.edu/software/lex-parser.shtml

tag, and σ is the sigmoid function. Each of ii, fwi ,
f ti , oi and ui denotes an input gate, a forget gate
of word, a forget gate of syntactic tag, an output
gate, and a vector for updating the memory cell,
respectively. More details are given in (Tai et al.,
2015).

The second method is the line transformation
followed by the hyperbolic tangent function:

hi = tanh(Wl
wh

w
i +Wl

th
t
i). (15)

4.4.2 Parallel Decoders
The proposed method consists of two parallel
decoders: keyphrase decoder and POS tag de-
coder. The keyphrase decoder is used to generate
a set of keyphrases for documents. Although the
keyphrase decoder also can learn syntactic struc-
tures of keyphrases to some extent, it fails to cap-
ture deep syntactic details. In order to supervise
the syntactic combinations of keyphrase, the POS
tag decoder is employed to generate a series of
POS tags of words in keyphrases. Note that the
POS tag decoder in our model serves as a training-
assisted role and is not used in the testing.

The probability of predicting each POS tag of
word is given as follows:

p(ti|t<i,x) = gt(ti−1, s
t
i, ci) (16)

where gt is a softmax function, sti is a hidden vec-
tor of POS tag decoder.

4.5 Coverage Attention

Repetition is a common problem for the Seq2Seq
models and is especially serious when gener-
ating text sequence, such as machine transla-
tion (Tu et al., 2016) and automatic text summa-
rization (See et al., 2017). The reason for this is
that the traditional attention mechanisms focus on
calculating the attention weight of the current time
step, ignoring the distribution of weights in his-
tory. There can be no doubt that existing Seq2Seq
models for keyphrase generation also suffer from
this problem, i.e., generating sub-phrases or super-
phrases of keyphrases. We employ the coverage
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Dataset #PKPs #AKPs #Abs #1-grams #2-grams #3-grams #4-grams #>4-grams

Inspec 3,564 1,349 500 510/100 1,743/548 910/399 275/180 126/122

Krapivin 1,299 1,040 400 256/101 700/631 254/233 74/55 15/20

NUS 1,333 1,128 211 434/167 632/576 204/234 53/88 10/63

SemEval 625 841 100 162/107 309/398 113/204 28/60 13/72

KP20k 66,468 39,055 20,000 26,249/6,076 26,755/19,883 10,486/9,196 2,312/2,708 666/1,192

Table 3: Summary of Datasets.

model, used in works (Tu et al., 2016; See et al.,
2017), to alleviate this problem.

In the coverage model, we maintain a cover-
age vector co to help adjust the future attention
through keeping track of the attention history, cal-
culated as:

coi,j = coi−1,j + αi,j (17)

where the coverage vector coi,j is used to measure
the attention coverage degree of word xj at step i.
More details are shown in (Tu et al., 2016; See
et al., 2017).

Finally, we integrate coverage vector the at-
tention mechanism, by modifying the alignment
function in Equation (5) as:

a(si−1,hj , coi−1,j) =

v>c tanh(Wssi−1 +Whhj +Wcocoi−1,j)
(18)

where vc, Ws, Wh, and Wco are the learnable
weight parameters.

4.6 Overall Loss Function

Given the set of data pairs {xi,yi}Ni=1, where x
is the word sequence of the source text, y is the
word sequence of its keyphrase, and y is the word
of keyphrase y. The loss function consists of two
parts. The first is the negative log-likelihood of the
target words in keyphrase, calculated as:

Lw(θ) = −
N∑
i=1

Li∑
k=1

log(p(yik|yi<k,x
i; θw)) (19)

where Li is the length of keyphrase y, and θw is
the parameter of this task.

The second loss function is the negative log-
likelihood of the POS tags of words in keyphrases,
calculated as follows:

Lt(θ) = −
N∑
i=1

Li∑
k=1

log(p(tik|ti<k,x
i; θt)) (20)

where t is the POS tag, and θt are the parameter.
The final goal is to jointly minimize the two losses
with Adam optimizer (Kingma and Ba, 2015):

L = (1− λ)Lw + λLt (21)

where λ is a hyper-parameter to tune the impacts
of the two tasks.

5 Experiment

5.1 Datasets
We use the dataset collected by Meng et al. (2017)
from various online digital libraries, which con-
tains about 568K articles2. Following Meng et al.
(2017), we use about 530K articles for training the
model, 20k articles for validating the model, and
20k articles (i.e., KP20k) for testing the model.
Similar to Meng et al. (2017), we also test the
model on four widely used public datasets from
the computer science domain: Inspec (Hulth and
Megyesi, 2006), Krapivin (Krapivin et al., 2009),
NUS (Nguyen and Kan, 2007), and SemEval-2010
(Kim et al., 2010).

The datasets are summarized in Table 3 along
with the number of present keyphrase (#PKPs), the
number of absent keyphrase (#AKPs), the number
of articles (#Abs.), the number of present/absent 1-
grams, 2-grams, 3-grams, 4-grams and more than
4-grams (#>4-grams), in each collection.

5.2 Experimental Settings
In the training dataset, input text is the concate-
nation of the title and abstract of the scientific ar-
ticles. Following the work (Meng et al., 2017),
all numbers in text are mapped to a special token
<digit>. The syntactic tags include 32 POS tags
and 16 phrase tags. The size of word vocabulary is
set to 50,000, the size of word embeddings is set to
150, and the size of embeddings of two syntactic
tags is set to 50. All embeddings are randomly ini-
tialized with uniform distribution in [-0.1,0.1], and

2https://github.com/memray/seq2seq-keyphrase
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Method Inspec Krapivin NUS SemEval KP20k
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

BL∗ 0.223 0.313 0.249 0.216 0.249 0.268 0.176 0.194 0.270 0.230
CopyRNN 0.278 0.342 0.311 0.266 0.334 0.326 0.293 0.304 0.333 0.262

ConNet 0.265 0.321 0.309 0.256 0.336 0.329 0.294 0.302 0.325 0.257

ParaNetL 0.289 0.353 0.326 0.277 0.354 0.342 0.307 0.303 0.351 0.282
ParaNetT 0.292 0.355 0.327 0.281 0.360 0.349 0.313 0.309 0.357 0.287

ParaNetL+CoAtt 0.292 0.354 0.330 0.279 0.357 0.342 0.308 0.306 0.355 0.283
ParaNetT +CoAtt 0.296 0.357 0.329 0.282 0.360 0.350 0.311 0.312 0.360 0.289

Table 4: Comparisons of predicting present keyphrases on five scientific datasets.

learned during training. The size of hidden vec-
tor is fixed at 300. The weight parameter used to
tune the impacts of the two tasks is set to λ=0.3.
The initial learning rate of Adam optimizer is set
to 10−4, and the dropout rate is set to 0.5. We use
the beam search to generate multiple phrases. The
max depth of beam search is set to 6, and the beam
size is set to 200.

5.3 Comparative Methods
We compare our method with extraction and gen-
eration approaches. Extraction methods consist of
three unsupervised and two supervised methods.
Unsupervised extraction methods include TF-IDF,
TextRank (Mihalcea and Tarau, 2004) and Sin-
gleRank (Wan and Xiao, 2008). Supervised ex-
traction methods include Maui (Medelyan et al.,
2009) and KEA (Witten et al., 1999). To clearly
represent the experimental results, we select the
best-performing method (BL∗) from these extrac-
tion baselines with best-performing parameters for
each dataset to compare with our method. The
generation baselines are state-of-the-art Copy-
RNN (Meng et al., 2017) and ConNet, which in-
puts the concatenation of word embeddings and
two syntactic tag embeddings into CopyRNN.

The proposed method includes four models: (1)
ParaNetL, using the hyperbolic tangent function
(i.e., Equ. 15) to combine two hidden vectors of
words and syntactic tag generated by encoder; (2)
ParaNetT , using the tree-LSTM to combine two
hidden vectors; (3) ParaNetL+CoAtt, ParaNetL
with the coverage attention; (4) ParaNetT+CoAtt,
ParaNetT with the coverage attention.

5.4 Evaluation Metrics
Almost all previous works on keyphrase predic-
tion use precision (P), recall (R), F1-score (F1) to
evaluate the results (Manning et al., 2010).

P =
#c

#p
, R =

#c

#l
, F1 =

2PR

P+R
, (22)

where #c is the number of correctly predicted
keyphrases, #p is the total number of pre-
dicted keyphrases, and #l is the total number
of author-labeled standard keyphrases. Follow-
ing the study (Meng et al., 2017), we employ
top-N macro-averaged F1-score (F1) for evaluat-
ing present keyphrases and recall (R) for evalu-
ating absent keyphrases. We use Porter’s stem-
mer3 to remove words’ suffix before determining
the match of two keyphrases.

5.5 Results and Analysis

5.5.1 Prediction of Present Keyphrases
The experimental results are shown in Table 4, in
which the F1 at top-5 and top-10 predictions are
given and the best scores are highlighted in bold.
We compare our method with the best-performing
extractive method (BL∗), which can only extract
the keyphrases that appear in the source text (i.e.,
present keyphrases).

We first compare our proposed method with the
conventional keyphrases extraction methods. The
results show that even the worst one in our models
(i.e., ParaNetL) has a large margin over the best-
performing extraction method (BL∗) on all of the
test datasets. Secondly, we further compare our
method with CopyRNN, and the results indicate
that our worst ParaNetL still achieves better per-
formance than CopyRNN. Note that ConNet does
not perform as well as we expect, and is slightly
worse than CopyRNN on most datasets. The main
reason for this may be that directly concatenating
embeddings of two syntactic tags and words intro-
duces much noise into the encoder, such as POS
tag of verb.

Finally, we compare our different models. From
the results shown in Table 4, we can observe that
ParaNetT is more effective than ParaNetL. This
means that, in combining the word and syntactic

3https://tartarus.org/martin/PorterStemmer/



5231

Method Inspec Krapivin NUS SemEval KP20k
R @ 10 R @50 R @10 R @50 R @10 R @50 R @10 R @50 R @10 R @50

CopyRNN 0.047 0.098 0.113 0.202 0.058 0.116 0.043 0.066 0.125 0.211
ConNet 0.041 0.083 0.094 0.184 0.059 0.117 0.041 0.057 0.119 0.203

ParaNetL 0.047 0.097 0.121 0.208 0.063 0.119 0.043 0.068 0.133 0.224
ParaNetT 0.054 0.098 0.127 0.214 0.069 0.127 0.044 0.069 0.136 0.228

ParaNetL+CoAtt 0.053 0.099 0.125 0.206 0.065 0.123 0.042 0.069 0.134 0.226
ParaNetT +CoAtt 0.060 0.103 0.125 0.214 0.068 0.125 0.044 0.071 0.137 0.228

Table 5: Comparisons of predicting absent keyphrases on five scientific datasets.

No. |Pi|/|Ol| (%)
|Pn

i |/|On
l | (%)

n = 1 n = 2 n = 3 n ≥ 4

1 5.05-1.57 0 1.93-0.76 16.52-4.97 37.33-9.82

2 9.87-1.23 21.57-2.41 2.77-0.53 1.50-0.21 0.78-0.03

3 4.90-0.68 0 4.47-0.62 14.99-2.45 16.55-0.81

4 5.82-1.43 0 4.23-0.50 21.42-7.47 16.62-0.84

5 1.37-0.04 0.82-0.03 2.33-0.06 0.62-0.01 0.24-0

6 9.82-0.95 8.80-0.98 13.52-1.32 5.33-0.20 1.44+0.03

Total 36.83 -5.90 31.19-3.42 29.25-3.79 60.38-15.31 72.96-11.47

Table 6: Comparisons of seriousness of the overlapping phrase problem between ParaNetT +CoAtt and CopyRNN.

tag hidden vectors form encoders, the tree-LSTM
model performs better than the hyperbolic tangent
function. The reason for this may be that the mul-
tiple gating functions in tree-LSTM help ParaNetT
to select the useful information from each encoder.
In addition, we can observe that coverage attention
mechanism can help to gain better performance in
generating present keyphrases. Among our pro-
posed models, ParaNetT+CoAtt achieves the best
performance on almost all test datasets.

5.5.2 Prediction of Absent Keyphrase
As mentioned in the work (Meng et al., 2017), the
Seq2Seq models can predict absent keyphrases.
Therefore, we only compare our method with
CopyRNN and ConNet, and evaluate the perfor-
mance within the recall of the top-10 and top-50
results to see how many absent keyphrases can be
correctly predicted.

The results are shown in Table 5. As the results
show, our worst model (ParaNetL) can correctly
predict more absent keyphrases than CopyRNN.
The main reason for this may be that the syntactic
tags provide more useful information for identify-
ing a part of absent keyphrases which have spe-
cial syntactic structures. In addition, we note that
ConNet is still slightly worse than CopyRNN in
predicting absent keyphrases.

Finally, we compare our four different models
for generating absent keyphrases. From the results

shown in Table 5, we can observe that ParaNetT
can correctly predict more absent keyphrases than
ParaNetL on all test datasets. As the results in
the present keyphrase generation, the tree-LSTM
model still performs better than the hyperbolic tan-
gent function in the absent keyphrase generation.
In addition, we can observe that coverage attention
mechanism can help to correctly predict more ab-
sent keyphrases. The reason for this may be that
the coverage vector can capture long-distance de-
pendencies. This will help to generate the absent
keyphrases which are the non-contiguous subse-
quences of source text. Among our proposed mod-
els, ParaNetT+CoAtt perform better than the other
three models on most test datasets.

5.5.3 Reduction of Overlapping Phrases
As mentioned in the Section 1, the important mo-
tivation for this work is to alleviate generating
the overlapping phrases of keyphrases. Table 6
shows the same statistics as Table 1, compared be-
tween the best performing model ParaNetT+CoAtt
and CopyRNN. From the results, we observe that,
compared with CopyRNN, ParaNetT+CoAtt can
significantly alleviate the overlapping phrase prob-
lem, especially for the sub-phrase problems No.1,
No.3 and No.4. For example, the proportion of the
keyphrases suffering from the overlapping prob-
lem in all keyphrases has dropped from 42.73% to
36.83%. In addition, we investigate the proportion
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Method F1@10 Method F1@10

TF-IDF 0.270 ParaNetL 0.186

TextRank 0.097 ParaNetT 0.188

SingleRank 0.256 ParaNetL+CoAtt 0.187

CopyRNN 0.164 ParaNetT +CoAtt 0.191

Table 7: Comparisons of different methods on DUC.

of the keyphrases with the length n which suffer
from the i-th sub-problem in all keyphrases with
the same length, i.e., |Pn

i |/|On
l |. We observe that

this proportion of 3-grams (n = 3) reduces most
significantly by up to 15.31%.

In addition to the reduction of the overlapping
phrases on KP20k dataset, compared with Copy-
RNN, ParaNetT+CoAtt can highly rank the cor-
rectly predicted keyphrases and rank lowly the
overlapping phrases of keyphrases. For example,
in the sub-problem No.3, ParaNetT+CoAtt can in-
crease the average ranking of correctly predicted
keyphrases from 6.50 to 5.95 at top-10 predictions,
and decrease the average ranking of sub-phrases of
keyphrases from 2.08 to 2.41.

5.5.4 Cross-Domain Testing

CopyRNN and ParaNet are supervised methods,
and are trained on a large-scale dataset in spe-
cific scientific domain. Similar to the work (Meng
et al., 2017), we expect that our supervised method
can learn universal language features that are also
effective in other corpora. We thus test our method
on new type of text, to see whether the method
will work when being transferred to a different
domain. We use the popular news article dataset:
DUC-2001 (Wan and Xiao, 2008) for our exper-
iments, which consists of 308 news articles and
2,488 manually labeled keyphrases.

The results are shown in Table 7. From these
results, we can observe that our models generate a
certain number of keyphrases in the new domain,.
Though the best ParaNetT+CoAtt falls behind the
unsupervised algorithms TF-IDF and SingleRank,
the worst ParaNetL significantly outperforms the
TextRank and CopyRNN. In addition, we note
that the overlapping phrase problem also exists in
DUC dataset. In the experiment, ParaNetT+CoAtt
can reduce the total proportion of keyphrases suf-
fering from the overlapping phrase problem from
21.96% to 19.13%.
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Figure 2: The influence of the weight λ (F1@10).

5.5.5 Influence of Weight Parameter
In this work, we propose the multi-task Seq2Seq
network for keyphrase generation, which jointly
learns the dominant task of predicting keyphrases
and the auxiliary task of predicting POS tags of
keyphrases. We employ the weight parameter λ
(in Equ. 21) to tune the impacts of the two tasks.

We conduct the experiment to illustrate the in-
fluence of the weight parameter λ in ParaNetL,
which does not use the coverage attention. The
results are shown in Figure 2, in which the F1 at
top-10 predictions are given on six datasets. We
observe that the performance of ParaNetL is influ-
enced by changes on the parameter λ. In general,
the performance slowly increases and then slowly
decreases on six datasets as λ grows. The best-
performing settings are λ = 0.5 on news dataset
DUC and λ=0.3 on other five scientific datasets,
which are finally used to balance two prediction
tasks in the comparison experiments.

6 Conclusion

In this study, we propose the parallel Seq2Seq net-
work with the coverage attention to alleviate the
overlapping problem (including sub-phrase and
super-phrase problems) in existing keyphrase gen-
eration methods. In particular, we incorporate the
linguistic constraints of keyphrases into the basic
Seq2Seq network, and employ multi-task learning
framework to enhance generation performance.
The experimental results show that the proposed
method can significantly outperform the state-of-
the-art CopyRNN on scientific datasets, and is also
effective in news domain.
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