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Abstract

Supplementing product information by ex-
tracting attribute values from title is a crucial
task in e-Commerce domain. Previous studies
treat each attribute only as an entity type and
build one set of NER tags (e.g., BIO) for each
of them, leading to a scalability issue which
unfits to the large sized attribute system in real
world e-Commerce. In this work, we propose
a novel approach to support value extraction
scaling up to thousands of attributes without
losing performance: (1) We propose to regard
attribute as a query and adopt only one glob-
al set of BIO tags for any attributes to reduce
the burden of attribute tag or model explosion;
(2) We explicitly model the semantic repre-
sentations for attribute and title, and develop
an attention mechanism to capture the interac-
tive semantic relations in-between to enforce
our framework to be attribute comprehensive.
We conduct extensive experiments in real-life
datasets. The results show that our model not
only outperforms existing state-of-the-art N-
ER tagging models, but also is robust and gen-
erates promising results for up to 8, 906 at-
tributes.

1 Introduction

Product attributes are vital to e-Commerce as plat-
forms need attribute details to make recommen-
dations and customers need attribute information
to compare products and make purchase decision-
s. However, attribute information is often noisy
and incomplete because of the inevitable hurdles
posed to retailers by the extremely huge and com-
plex e-Commerce attribute system. On the oth-
er hand, product titles which are carefully de-
signed by retailers are packed tightly with detail-
s to highlight all important aspects of product-
s. Figure 1 shows the product page of a ‘dress’
from AliExpress1 which is an emerging and fast-

1https://www.aliexpress.com/

Figure 1: Snapshot of a product page.

growth global e-Commerce platform. The prod-
uct title “2019 Summer Women Button Decorat-
ed Print Dress Off-shoulder Party Beach Sundress
Boho Spaghetti Long Dresses Plus Size FICUS-
RONG” contains attribute values: (1) already list-
ed in Item Specifics, such as ‘Women’ for Gen-
der, ‘Summer’ for Season, etc; (2) missing in Item
Specifics, such as ‘2019’ for Year, ‘Plus Size’ for
Size, etc. In this paper, we are interested in sup-
plementing attribute information from product ti-
tles, especially for the real world e-Commerce at-
tribute system with thousands of attributes built-in
and new attributes and values popping out every-
day.

Previous work (Ghani et al., 2006; Ling and
Weld, 2012; Sheth et al., 2017) on attribute value
extraction suffered from Closed World Assump-
tion which heavily depends on certain pre-defined
attribute value vocabularies. These methods were
unable to distinguish polysemy values such as
‘camel’ which could be the Color for a sweater
rather than its Brand Name, or find new attribute
values which have not been seen before. More re-
cently, many research works (More, 2016; Zheng
et al., 2018) formulate attribute value extraction
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problem as a special case of Named Entity Recog-
nition (NER) task (Bikel et al., 1999; Collobert
et al., 2011). They adopted sequence tagging mod-
els in NER as an attempt to address the Open
World Assumption purely from the attribute val-
ue point of view. However, such tagging approach
still failed to resolve two fundamental challenges
in real world e-Commerce domain:

Challenge 1. Need to scale up to fit the large
sized attribute system in the real world. Prod-
uct attribute system in e-Commerce is huge and
may overlap cross domains because each industry
designs its own standards. The attribute size typi-
cally falls into the range from tens of thousands to
millions, conservatively. For example, Sports
& Entertainment category from AliExpress
alone contains 344, 373 products (may vary dai-
ly) with 77, 699 attributes and 482, 780 values.
Previous NER tagging models have to introduce
one set of entity tags (e.g., BIO tags) for each at-
tribute. Thus, the large attribute size in reality ren-
ders previous works an infeasible choice to model
attribute extraction. Moreover, the distribution of
attributes is severely skewed. For example, 85%
of attributes appear in less than 100 Sports &
Entertainment products. Model performance
could be significantly degraded for such rarely oc-
curring attributes (e.g., Sleeve Style, Astronomy,
etc.) due to insufficient data.

Challenge 2. Need to extend Open World As-
sumption to include new attribute. With the
rapid development of e-Commerce, both new at-
tributes and values for newly launched product-
s are emerging everyday. For example, with the
recent announcement of ‘foldable mobile phone,
a new attribute Fold Type is created to describe
how the mobile phone can be folded with corre-
sponding new attribute values ‘inward fold’, ‘out-
ward fold’, etc. Previous NER tagging models
view each attribute as a separate entity type and
neglect the hidden semantic connections between
attributes. Thus, they all fail to identify new at-
tributes with zero manual annotations.

In this paper, to address the above two issues,
we propose a novel attribute-comprehension based
approach. Inspired by Machine Reading Compre-
hension (MRC), we regard the product title and
product attribute as ‘context’ and ‘query’ respec-
tively, then the ‘answer’ extracted from ‘contex-
t’ equals to the attribute value wanted. Specifi-
cally, we model the contexts of title and attribute

respectively, capture the semantic interaction be-
tween them by attention mechanism, and then use
Conditional Random Fields (CRF) (Lafferty et al.,
2001) as output layer to identify the correspond-
ing attribute value. The main contributions of our
work are summarized as follows:

• Model. To our knowledge, this is the first
framework to treat attribute beyond NER
type alone but leverage its contextual repre-
sentation and interaction with title to extract
corresponding attribute value.

• Learning. Instead of the common BIO set-
ting where each attribute has its own BIO
tags, we adopt a novel BIO schema with on-
ly one output tag set for all attributes. This
is enabled by our model designed to embed
attribute contextually rather than attribute tag
along. Then learning to extract thousands of
attributes first becomes feasible.

• Experiments. Extensive experiments in real
world dataset are conducted to demonstrate
the efficacy of our model. The proposed
attribute-comprehension based model outper-
forms state-of-the-art models by average 3%
in F1 score. Moreover, the proposed model
scales up to 8, 906 attributes with an overall
F1 score of 79.12%. This proves its ability to
produce stable and promising results for not
only low and rare frequency attributes, but al-
so new attributes with zero extra annotations.

To the best of our knowledge, this is the first
framework to address the two fundamental real
world issues for open attribute value extraction: s-
calability and new-attribute. Our proposed model
does not make any assumptions on attribute size,
attribute frequencies or the amount of additional
annotations needed for new attributes.

The rest of the paper is organized as follows.
Section 2 gives a formal problem statement for this
task. Section 3 depicts our proposed model in de-
tails. Section 4 lists the experimental settings of
this work. Section 5 reports the experimental re-
sults and analysis. Section 6 summarizes the relat-
ed work, followed by a conclusion in Section 7.

2 Problem Statement

In this section, we formally define the attribute
value extraction task. Given product title T and
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Figure 2: Architecture of the proposed attribute-comprehension open tagging model.

attributeA, our goal is to extract corresponding at-
tribute value for A from T . For example, the title
and attributes from Figure 1 are given as below:

• Product Title: 2019 Summer Women But-
ton Decorated Print Dress Off-shoulder Party
Beach Sundress Boho Spaghetti Long Dress-
es Plus Size FICUSRONG.

• Attributes: Season, Gender, Neckline

Considering the three attributes of interest, i.e.,
Season, Gender and Neckline, we aim to obtain
‘Summer’ for Season, ‘Women’ for Gender and
‘NULL’ for Neckline, where the former two at-
tributes are described in title but the latter is not
presented in title.

Formally, given the product title T =
{xt1, xt2, . . . , xtm} of length m and attribute A =
{xa1, xa2, . . . , xan} of length n, our model output-
s the tag sequence y = {y1, y2, . . . , ym}, yi ∈
{B, I,O}, where B and I denote the beginning
and inside tokens for the extracted attribute value
respectively, and O denotes outside of the value.

3 Attribute-Comprehension Open
Tagging Model

Previous work on sequence tagging built one
model for every attribute with a corresponding set

of attribute-specific tags. Such approach is unreal-
istic on real-life large sized attribute set because of
two reasons: (1) it is computationally inefficient
to model thousands of attributes; (2) very limited
data samples are presented for most attributes
resulting in non-guaranteed performance. To
tackle the two challenges raised in Section 1,
we propose a novel attribute-comprehension
based open tagging approach to attribute value
extraction. Figure 2 shows the architecture
of our proposed model. At first glance, our
model, adopting BiLSTM, attention and CRF
components, looks similar to previous sequence
tagging systems including BiLSTM (Huang et al.,
2015) and OpenTag (Zheng et al., 2018). But
in fact our model is fundamentally different
from previous works: unlike their strategy to
regard attribute as only tag, we model attribute
semantically, capture its semantic interaction
with title via attention mechanism, then generate
attribute-comprehension title representation to
CRF for final tagging. Next we will describe the
architecture of our model in detail.

Word Representation Layer. We map each word
in the title and attribute to a high-dimensional
vector space through the pre-trained Bidirectional
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Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) which is the
state-of-the-art language representation model.
For each word in a sentence, BERT generates a
particular word representation which considers
the specific contexts. Formally, BERT encodes
the title T and attribute A into a sequence of
word representations {wt

1, w
t
2, . . . , w

t
m} and

{wa
1 , w

a
2 , . . . , w

a
n}.

Contextual Embedding Layer. Long-Short Ter-
m Memory (LSTM) Neural Network (Hochreit-
er and Schmidhuber, 1997) addresses the vanish-
ing gradient problems and is capable of model-
ing long-term contextual information along the se-
quence. Bidirectional LSTM (BiLSTM) captures
the context from both past and future time step-
s jointly while vanilla LSTM only considers the
contextual information from the past.

In this work, we adopt two BiLSTMs to mod-
el the title and attribute representation individ-
ually. One BiLSTM is used to get hidden s-
tates as contextual representation of title Ht =
{ht1, ht2, . . . , htm}.

hti =
[−→
hti ;
←−
hti

]
= BiLSTM

(−−→
hti+1,

←−−
hti−1,w

t
i

)
Another BiLSTM is used to obtain the attribute

representation. Slightly different from the design
for title, we only use the last hidden state of BiL-
STM as the attribute representation ha since the
length of attribute is normally much shorter (i.e.,
no more than 5).

ha =
[−→
han;
←−
han

]
= BiLSTM

(−→
han,
←−
han,w

a
n

)
Attention Layer. In Natural Language Processing
(NLP), attention mechanism was first used in Neu-
ral Machine Translation (NMT) (Bahdanau et al.,
2014) and has achieved a great success. It is de-
signed to highlight the important information in
a sequence, instead of paying attention to every-
thing.

OpenTag (Zheng et al., 2018) uses self-
attention (Vaswani et al., 2017) to capture the im-
portant tokens in the title, but treats attribute only
as a type and neglects attribute semantic informa-
tion. Thus, OpenTag has to introduce one set of
tags (Ba, Ia) for each attribute a, leading to its
failure to be applicable in e-Commerce which has
ten of thousands attributes. Different from their

work, our model takes the hidden semantic inter-
action between attribute and title into considera-
tion by computing the similarities between the at-
tribute and each word in title. This means differ-
ent tokens in the title would be attended in order
to extract values for different attributes, resulting
in different weight matrix. Thus, our model is able
to handle huge amounts of attributes with only one
set of tags (B, I , O). Even for attributes that have
never been seen before, our model is able to identi-
fy tokens associated with it from the title by mod-
eling its semantic information.

We first compute the similarity between the at-
tribute and each word in title to obtain attention
vector S = {α1, α2, . . . , αm}. The attribute-
comprehension title is C = S � Ht, where �
represents element-wise. This vector indicates the
weighted sum of words in the title with respect to
the attribute. The similarity function between two
vectors is measured by cosine similarity:

αi = cosine
(
hti, h

a
)

Output Layer. The goal of this task is to predict
a tag sequence that marks the position of attribute
values in the title. CRF is often used in sequence
tagging model because it captures dependency be-
tween the output tags in a neighborhood. For ex-
ample, if we already know the tag of a token is I,
this decreases the probability of the next token to
be B.

We concatenate the title Ht and attribute-
comprehension title C to obtain a matrix M =[
Ht;C

]
, which is passed into the CRF layer to

predict tag sequence. Each column vector of M
expected to contain contextual information about
the word with respect to the title and attribute. The
joint probability distribution of tags y is given by:

Pr (y|T ;ψ) ∝
m∏
i=1

exp

(
K∑
k=1

ψkfk (yi−1, yi,Mi)

)
where ψk is corresponding weight, fk is the fea-
ture function, K is the number of features. The
final output is the best label sequence y∗ with the
highest conditional probability:

y∗ = argmaxyPr (y|u;ψ)

Training. For training this network, we use the
maximum conditional likelihood estimation:

L (ψ) =
N∑
i=1

Pr (yi|ui;ψ)

where N is the number of training instances.
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Groups Occurrence
# of

Attributes
Example of attributes

High [10,000,∞) 10 Gender, Brand Name, Model Number, Type, Material
Sub-high [1000, 10,000) 60 Feature, Color, Category, Fit, Capacity
Medium [100, 1000) 248 Lenses Color, Pattern, Fuel, Design, Application

Low [10, 100) 938 Heel, Shaft, Sleeve Style, Speed, Carbon Yarn
Rare [1, 10) 7,650 Tension, Astronomy, Helmet Light, Flashlight Pouch

Table 1: The statistics and examples of 8, 906 attributes with different frequencies in dataset AE-650K.

4 Experimental Setup

4.1 Dataset

We use 344, 373 products collected from AliEx-
press Sports & Entertainment category
as our dataset. For each product, their attributes
and corresponding values presented in Item Spe-
cific are retained as ground truth for evaluation.
The number of attributes varies greatly from dif-
ferent products. For example, up to 85 attributes
are listed in one GQBQ children sport shoes prod-
uct2. On average, each product contains about
10 attributes. We pair product title with its at-
tributes and values present in Item Specific to form
3, 383, 547 triples, i.e., {title, attribute, value} as
initial dataset.

In initial dataset, there are 513, 564 positive
triples (15%) whose value is included in title,
the remainder are negative triples whose value is
marked as ‘NULL’ as it is missing in title. We ran-
domly select 143, 846 negative triples, then com-
bine them with all positive triples to compose the
dataset AE-650K whose positive-negative ratio
is 4:1. Then this set of 657, 410 triples is parti-
tioned into training, development and test set with
the ratio of 7:1:2. In total, the AE-650k dataset
contains 8, 906 types of attributes and their distri-
butions are extremely uneven. In order to have
a deep insight into the attribute distribution, we
categorize them into five groups (i.e., High, Sub-
high, Medium, Low and Rare frequency) accord-
ing their occurrences. Table 1 shows the num-
ber of unique attributes in each frequency group
together with some examples. We observe that
high frequency attributes are more general (e.g.,
Gender, Material), while low and rare frequency
attributes are more product specific (e.g., Sleeve
Style, Astronomy). For example, one Barlow lens
product has value ‘Telescope Eyepiece for Astron-

2https://www.aliexpress.com/item/32956754932.html

Attributes Train Dev Test
Brand Name 50,413 5,601 14,055
Material 22,814 2,534 6,355
Color 5,594 621 1,649
Category 5,906 590 1,462
Total 84,727 9,346 23,521

Table 2: Statistics of dataset AE-110K.

omy 3. In addition, we find these attributes has
“long tail” phenomenon, that is, a small number
of general attributes can basically define a prod-
uct while there are a large number of specific at-
tributes to define products more detailedly. These
details are important in the accurate produces rec-
ommendation or other personalized services.

In order to make fair comparison between our
model and previous sequence tagging models
which cannot handle huge amounts of attributes,
we pick up the four frequent attributes (i.e., Brand
Name, Material, Color and Category) to com-
pose the second dataset AE-110k with a total of
117, 594 triples. Table 2 shows the statistics and
distributions of attributes in AE-110k.

Moreover, since the dataset is automatically
constructed based on Exact Match criteria by pair-
ing product title with its attributes and values
present in Item Specific, it may involve some
noises for positive triples. For example, the ti-
tle of a ‘dress’ contains ‘long dresses’, the word
‘long’ may be tagged as values for attributes
Sleeve Length and Dresses Length simultaneous-
ly. Thus we randomly sampled 1, 500 triples from
AE-650k for manual evaluation and the accuracy
of automatic labeling is 95.6%. This shows that
the dataset is high-quality.

3https://www.aliexpress.com/item/32735772355.html
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4.2 Evaluation Metrics

We use precision, recall and F1 score as evalua-
tion metrics denoted as P , R and F1. We follow
Exact Match criteria in which the full sequence of
extracted value need to be correct. Clearly, this
is a strict criteria as one example gets credit only
when the tag of each word is correct.

4.3 Baselines

To make the comparison reliable and reasonable,
three sequence tagging models serve as baselines
due to their reported superior tagging results like
OpenTag (Zheng et al., 2018) or their typical rep-
resentation (Huang et al., 2015).

• BiLSTM uses the pre-trained BERT model
to represent each word in title, then applies
BiLSTM to produce title contextual embed-
ding. Finally, a softmax function is exploited
to predict the tag for each word.

• BiLSTM-CRF(Huang et al., 2015) is consid-
ered to be the pioneer and the state-of-the-art
sequence tagging model for NER which us-
es CRF to model the association of predicted
tags. In this baseline, the hidden states gen-
erated by BiLSTM are used as input features
for CRF layer.

• OpenTag(Zheng et al., 2018) is the recent
sequence tagging model for this task which
adds self-attention mechanism to highlight
important information before CRF layer. S-
ince the source code of OpenTag is not avail-
able, we implement it using Keras.

4.4 Implementation Details

All models are implemented with Tensorflow
(Abadi et al., 2016) and Keras (Chollet et al.,
2015). Optimization is performed using Adam (K-
ingma and Ba, 2014) with default parameters. We
train up to 20 epochs for each model. The mod-
el that performs the best on the development set is
then used for the evaluation on the test set. For all
models, the word embeddings are pre-trained via
BERT and the dimension is 768. The dimension of
the hidden states in BiLSTM is set to 512 and the
minibatch size is fixed to 256. The BIO tagging
strategy is adopted. Note that only one global set
of BIO tags for any attributes is used in this work.

Attributes Models P
(%)

R
(%)

F1

(%)

Brand
Name

BiLSTM 95.08 96.81 95.94
BiLSTM-CRF 95.45 97.17 96.30
OpenTag 95.18 97.55 96.35
Our model-110k 97.21 96.68 96.94
Our model-650k 96.94 97.14 97.04

Material

BiLSTM 78.26 78.54 78.40
BiLSTM-CRF 77.15 78.12 77.63
Opentag 78.69 78.62 78.65
Our model-110k 82.76 83.57 83.16
Our model-650k 83.30 82.94 83.12

Color

BiLSTM 68.08 68.00 68.04
BiLSTM-CRF 68.13 67.46 67.79
Opentag 71.19 70.50 70.84
Our model-110k 75.11 72.61 73.84
Our model-650k 77.55 72.80 75.10

Category

BiLSTM 82.74 78.40 80.51
BiLSTM-CRF 81.57 79.94 80.75
Opentag 82.74 80.63 81.67
Our model-110k 84.11 80.80 82.42
Our model-650k 88.11 81.79 84.83

Table 3: Performance comparison between our mod-
el and three baselines on four frequent attributes. For
baselines, only the performance on AE-110K is re-
ported since they do not scale up to large set of at-
tributes; while for our model, the performances on both
AE-110K and AE-650K are reported.

5 Results and Discussion

We conduct a series of experiments under various
settings with the purposes to (1) make comparison
of attribute extraction performance on frequent at-
tributes with existing state-of-the-art models; (2)
explore the scalability of our model up to thou-
sands of attributes; and (3) examine the capability
of our model in discovering new attributes which
have not been seen before.

5.1 Results on Frequent Attributes

The first experiment is conducted on four frequent
attributes (i.e., with sufficient data) on AE-110k
and AE-650k datasets. Table 3 reports the com-
parison results of our two models (on AE-110k
and AE-650k datasets) and three baselines. It is
observed that our models are consistently ranked
the best over all competing baselines. This in-
dicates that our idea of regarding ‘attribute’ as
‘query’ successfully models the semantic informa-
tion embedded in attribute which has been ignored
by previous sequence tagging models. Besides, d-
ifferent from the self-attention mechanism only in-
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Figure 3: Performance of our model on 8, 906 at-
tributes in AE-650K dataset. ‘All’ stands for all at-
tributes while ‘High’, ‘Sub-high’, ‘Medium’, ‘Low’
and ’Rare’ denote the five frequency groups of at-
tributes defined in Table 1, respectively.

side title adopted by OpenTag, our interacted sim-
ilarity between attribute and title does attend to
words which are more relevant to current extrac-
tion.

In addition, our model is the only one that can
be applied to AE-650K dataset which contains
8, 906 types of attributes. From Table 3, we com-
pare the performance of our two models trained
on different sizes of triples. It is interesting to find
that extra training data on other attributes boosts
the performances of the target four attributes, and
outperforms the best baseline by average 3% in
F1 score. We believe the main reason is that al-
l the other attributes in AE-650k can be viewed
as relevant tasks from Multi-task (Caruana, 1997)
perspective. Usually, the model would take the
risk of over-fitting if it is only optimized upon the
target attributes due to unavoidable noises in the
dataset. However, the Multi-task learning implic-
itly increases training data of other relevant tasks
having different noise patterns and can average
these noise patterns to obtain a more general rep-
resentation and thus improve generalization of the
model.

5.2 Results on Thousands of Attributes

The second experiment is to explore the scalabili-
ty of models up to thousands of attributes. Clear-
ly, previous sequence tagging models fail to report
results on large amounts of tags for attributes. Us-
ing a single model to handle large amounts of at-
tributes is one advantage of our model. To verify
this characteristic, we compute Micro-P, Micro-R,
Micro-F1 on entire test set of AE-650k, as shown
in the leftmost set of columns of Figure 3. The per-
formances of our model on 8, 906 attributes reach
84.13%, 76.08% and 79.12%, respectively.

Attributes P (%) R (%) F1 (%)
Frame Color 63.16 48.00 54.55
Lenses Color 64.29 40.91 50.00
Shell Material 54.05 44.44 48.78
Wheel Material 70.59 37.50 48.98
Product Type 64.86 43.29 51.92

Table 4: Performance of our model in discovering val-
ues for new attributes.

In order to validate the robustness of our mod-
el, we also perform experiments on five attribute
frequency groups defined in Table 1. Their re-
sults are shown in Figure 3. We observe that our
model achieves Micro-F1 of 84.60% and 79.79%
for frequent attributes in ‘High’ and ‘Sub-high’
groups respectively. But more importantly, our
model achieves good performance (i.e., Micro-F1

66.06% and 53.94% respectively) for less frequen-
t attributes in ‘Medium’ and ‘Low’ groups, and
even a promising result (i.e., Micro-F1 35.70%)
for ‘Rare’ attributes which are presented less than
10 times. Thus, we are confident to conclude that
our model has the ability to handle large amounts
of attributes with only a single model.

5.3 Results of Discovering New Attributes

To further examine the ability of our model in dis-
covering new attributes which has never been seen
before, we select 5 attributes with relatively low
occurrences: Frame Color, Lenses Color, Shel-
l Material, Wheel Material, and Product Type. We
shuffle the AE-650K dataset to make sure they
are not in training and development set, and eval-
uate the performance for these 5 attributes. Ta-
ble 4 reports the results of discovering 5 new at-
tributes. It is not surprising to see that our model
still achieves acceptable performance (i.e., aver-
aged F1 50.85%) on new attributes with no addi-
tional training data. We believe that some data in
training set are semantically related to unseen at-
tributes and they provide hints to help the extrac-
tion.

To further confirm this hypothesis, we map at-
tributes features ha generated by contextual em-
bedding layer into two-dimensional space by t-
SNE (Rauber et al., 2016), as shown in Figure 4.
In Figure 4 the four colors of circles represent the
attributes of Color-related,4 Type-related, Materi-

4‘a-related’ denotes all attributes whose text contains the
substring a.
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Figure 4: Distribution between semantically related
new and existing attributes. E.g., Shell Material and
Wheel Material are new attributes while Material is
frequently known attributes.

al-related and others respectively, and the areas
are proportional to the frequency of attributes. An
interesting observation is that Color-related and
Material-related attributes are clustered into a s-
mall and concentrated area of two-dimensional s-
pace, respectively. Meanwhile, although Type and
Product Type are very close, the distribution of al-
l Type-related attributes is scattered in general. It
may be because Type is not a specifically defined
concept compared to Color or Material, the mean-
ing of a Type-related attribute is determined by
the word paired with Type. Therefore, we selec-
t two Type-related attributes adjacent to Material
and find they are Fabric Type and Plastic Type. In
fact, these two attributes are indeed relevant to the
material of products.

To verify the ability of our model to handle
a larger number of new attributes, we collec-
t additional 20, 532 products from new category
Christmas, and form 46, 299 triples as test set.
The Christmas test set contains 1, 121 types of
attributes, 708 of which are new attributes. Our
model achieves Micro-F1 of 66.37% on this test
set. This proves that our model has good gener-
alization and is able to transfer to other domains
with a large number of new attributes.

5.4 Attention Visualizations

To illustrate the attention learned from the product
in Figure 1, we plot the heat map of attention vec-
tors S for three attributes (Year, Color and Brand
Name) where the lighter the color is the higher the
weight is. Since each bar in the heat map repre-
sents the importance of a word in the title of each

Year Color Brand Name

Figure 5: The heat map of attention vector S.

attribute, it indirectly affects the prediction deci-
sion. By observing Figure 5, we see that our mod-
el indeed adjusts the attention vector according to
different attributes to highlight the value.

6 Related Work

Previous work for attribute value extraction use
rule-based extraction techniques (Vandic et al.,
2012; Gopalakrishnan et al., 2012) which use
domain-specific seed dictionary to spot key
phrase. Ghani et al. (2006) predefine a set of
product attributes and utilize supervised learning
method to extract the corresponding attributes val-
ues. An NER system was proposed by Putthivid-
hya and Hu (2011) for extracting product attributes
and values. In this work, supervised NER and
bootstrapping technology are combined to expand
the seed dictionary of attribute values. Howev-
er, these methods suffer from Limited World As-
sumption. More (2016) build a similar NER sys-
tem which leverage existing values to tag new val-
ues.

With the development of deep neural network,
several different neural network methods have
been proposed and applied in sequence tagging
successfully. Huang et al. (2015) is the first to
apply BiLSTM-CRF model to sequence tagging
task, but this work employ heavy feature engi-
neering to extract character-level features. Lam-
ple et al. (2016) utilize BiLSTM to model both
word-level and character-level information rather
than hand-crafted features, thus construct end-to-
end BiLSTM-CRF model for sequence tagging
task. Convolutional neural network (CNN) (Le-
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Cun et al., 1989) is employed to model character-
level information in Chiu and Nichols (2016)
which achieves competitive performance for two
sequence tagging tasks at that time. Ma and Hovy
(2016) propose an end to end LSTM-CNNs-CRF
model.

Recently, several approaches employ sequence
tagging model for attribute value extraction.
Kozareva et al. (2016) adopt BiLSTM-CRF mod-
el to tag several product attributes from search
queries with hand-crafted features. Furthermore,
Zheng et al. (2018) propose an end-to-end tag-
ging model utilizing BiLSTM, CRF, and Attention
without any dictionary and hand-crafted features.
Besides extracting attribute value from title, oth-
er related tasks have been defined. Nguyen et al.
(2011); Sheth et al. (2017); Qiu et al. (2015) ex-
tracted attribute-value pairs from specific product
description.

7 Conclusion

To extract product attribute values in e-Commerce
domain, previous sequence tagging models face t-
wo challenges, i.e., the huge amounts of product
attributes and the emerging new attributes and new
values that have not been seen before. To tack-
le the above issues, we present a novel architec-
ture of sequence tagging with the integration of
attributes semantically. Even if the attribute size
reaches tens of thousands or even millions, our ap-
proach only trains a single model for all attributes
instead of building one specific model for each at-
tribute. When labeling new attributes that have
not encountered before, by leveraging the learned
information from existing attributes which have
similar semantic distribution as the new ones, this
model is able to extract the new values for new
attributes. Experiments on a large dataset prove
that this model is able to scale up to thousands
of attributes, and outperforms state-of-the-art N-
ER tagging models.
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