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Abstract

Sequence-processing neural networks led to
remarkable progress on many NLP tasks. As
a consequence, there has been increasing in-
terest in understanding to what extent they
process language as humans do. We aim
here to uncover which biases such models
display with respect to “natural” word-order
constraints. We train models to communi-
cate about paths in a simple gridworld, us-
ing miniature languages that reflect or violate
various natural language trends, such as the
tendency to avoid redundancy or to minimize
long-distance dependencies. We study how
the controlled characteristics of our miniature
languages affect individual learning and their
stability across multiple network generations.
The results draw a mixed picture. On the one
hand, neural networks show a strong tendency
to avoid long-distance dependencies. On the
other hand, there is no clear preference for the
efficient, non-redundant encoding of informa-
tion that is widely attested in natural language.
We thus suggest inoculating a notion of “ef-
fort” into neural networks, as a possible way
to make their linguistic behavior more human-
like.

1 Introduction

Deep neural networks, and in particular
“sequence-to-sequence”  (Seq2Seq, Sutskever
et al., 2014) LSTM recurrent networks, attained
astounding successes in many linguistic domains
(Goldberg, 2017), but we still have a poor under-
standing of their language processing mechanisms
(Lake and Baroni, 2018). We study here whether
word-order constraints commonly observed in
natural language are also found as “inductive”
biases in recurrent networks. We consider three
such constraints. The first is temporal iconicity,
defined as the tendency of clauses denoting events
to reflect the chronological order of the denoted

events (as in Caesar’s veni, vidi, vici; Greenberg,
1963; Haiman, 1980; Newmeyer, 1992; Radden
and Dirven, 2007; Diessel, 2008; Marcus and
Calude, 2010; de Ruiter et al., 2018). The second
is the need to disambiguate the role of sentence
constituents, that can be achieved either by means
of fixed-word order (e.g., in an SVO language
the first noun phrase denotes the subject), or by
overting morphological markers (e.g., the subject
is marked with nominative case). As the two
mechanisms are redundant, a trade-off is generally
observed, where languages preferentially adopt
one or the other (Comrie, 1981; Blake, 2001).
Finally, we consider the general tendency of
languages to avoid or minimize long-distance
dependencies (Hawkins, 1994; Gibson, 1998;
Futrell et al.,, 2015). As Futrell et al. (2015)
observe, “I checked [it] out”, with one word
intervening between the verb and the particle
it composes with, ‘is easier or more efficient
to produce and comprehend’ than “I checked
[the place you recommended] out”, with four
intervening words.

We test whether such constraints affect LSTM-
based Seq2Seq models. To this end, we train them
as agents in a simple 2D gridworld environment,
in which they give and receive navigation instruc-
tions in hand-designed artificial languages satis-
fying or violating the constraints. We first study
which languages are harder to learn for individ-
ual agents. Then, we look at the cultural transmis-
sion of language characteristics through multiple
agent generations by means of the iterated learn-
ing paradigm (Kirby et al., 2014).!

Our results suggest a mixed picture. LSTM
agents are partially affected by natural constraints,
both in terms of learning difficulty and stability
of patterns through evolution. For example, they

'Code link: https://github.com/
facebookresearch/brica.
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show a strong tendency to avoid long-distance de-
pendencies. Still, some patterns are considerably
different from those encountered in human lan-
guage. In particular, LSTMs generally have a pref-
erence for the reverse version of an iconic lan-
guage, and only show a weak tendency towards
avoidance of redundant coding.

2 Related work

There is increasing interest in applying methods
from linguistics and psychology to gain insights
on the functioning of language processing net-
works, as witnessed by the recent BlackBoxNLP
workshop at EMNLP 2018 (Linzen et al., 2018).
In this context, researchers have looked at how
trained models solve different NLP tasks charac-
terizing their outputs and internal representation.
We instead focus directly on uncovering their “in-
nate” biases while learning a task.

We study whether LSTM-based Seq2Seq mod-
els deployed as communicating agents are sub-
ject to some of the natural pressures that charac-
terize the typology and evolution of human lan-
guages. In this respect, we connect to the recent
research line on language emergence in deep net-
work agents that communicate to accomplish a
task (e.g., Jorge et al., 2016; Havrylov and Titov,
2017; Kottur et al., 2017; Lazaridou et al., 2017;
Choi et al., 2018; Evtimova et al., 2018; Lazari-
dou et al., 2018; Mordatch and Abbeel, 2018).
Most of this work provides the agents with a basic
communication channel, and evaluates task suc-
cess and the emerging communication protocol
in an entirely bottom-up fashion. We train in-
stead our agents to communicate with simple lan-
guages possessing the properties we want to study,
and look at whether such properties make the lan-
guages easier or harder to learn. Other studies
(Lee et al., 2017b,a) had also seeded their agents
with (real) languages, but for different purposes
(letting them develop translation skills).

We introduce miniature artificial languages that
respect or violate specific constraints. Other stud-
ies have used such languages with human sub-
jects to test hypotheses about the origin of cross-
linguistically frequent patterns (see Fedzechkina
et al., 2016b, for a survey). We follow this ap-
proach to detect biases in Seq2Seq models. We
specifically rely on two different measures. First,
we evaluate the speed of learning a particular lan-
guage, assuming that the faster it is, the easier its

properties are for the agent (e.g., Tily et al., 2011;
Hupp et al., 2009). Second, we look at the cul-
tural evolution of a language by means of the iter-
ated language learning paradigm (see Kirby et al.,
2014, for a survey). That is, we investigate the
changes that modern Seq2Seq networks exposed
to a language through multiple generations intro-
duce, checking which biases they expose.

3 Experimental setup

3.1 Languages

Our environment is characterized by trajectories of
4 oriented actions (LEFT, RIGHT, UP, DOWN).
A trajectory contains from 1 to 5 segments, each
composed of maximally 3 steps in the same direc-
tion. A possible 3-segment trajectory is: LEFT
LEFT RIGHT UP UP UP, with (LEFT LEFT),
(RIGHT), and (UP UP UP) being its segments.

Fixed- and free-order languages In a fixed-
order language, a segment is denoted by a phrase
made of a command (C) and a quantifier (Q). An
utterance specifies an order for the phrases. For
example, in the forward-iconic language, 3-phrase
utterances are generated by the following rules:

1 U — P1 P2P3
P(1[2[3) = CQ
C — (left|right|up|down)
Q — (1]2[3)

Shorter and longer utterances are generated analo-
gously (a N-phrase utterance always has form P1
P2 ... PN). Importantly, the interpretation func-
tion associates PN to the N-th segment in a tra-
jectory, hence the temporal iconicity of the gram-
mar. For example, the utterance “left 2 right 1 up
3” denotes the 3-segment trajectory: LEFT LEFT
RIGHT UP UP UP.

The backward-iconic language is analogous,
but phrases are interpreted right-to-left. Non-
iconic languages use the same interpretation func-
tion associating PN to the N-th segment, but now
the grammar licenses phrases in a fixed order dif-
ferent from that of the trajectory. For example, 3-
phrase utterances might be generated by U — P2
P3 P1 (the trajectory above would be expressed
by: “right 1 up 3 left 2”). Relative phrase ordering
is fixed across utterances irrespective of length.
For example, 2-phrase utterances in the language
we just illustrated must be generated by U—P2 P1,
to respect the fixed-relative-ordering constraint for
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P2 and P1 with respect to the 3-phrase rule.

Fixed-order languages with (temporal ordering)
markers use the same utterance rules, but now
each phrase PN is also associated with an unam-
biguous marker. For example, the iconic+markers
language obeys the first rule in (1), but the phrases
are expanded by:

2) P1 — first CQ
P2 — second C Q
P3 — third C Q

In the iconic+markers language, the trajectory
above is expressed by “first left 2 second right 1
third up 3”.

A free-order language licenses the same phrase
structures as a fixed-order language and it uses
the same interpretation function, but now there
are rules expanding utterances with all possible
phrase permutations (e.g., 3-phrase utterances are
licensed by 6 rules: U — P1 P2 P3, U — P1
P3 P2, ...).> Both “second right 1 third up 3
first left 2” and “third up 3 second right 1 first
left 27 are acceptable utterances in the free-order
language with markers. Examples of trajectory-
to-utterance mappings of these artificial languages
are provided in Supplementary

Long-distance language We consider a long-
distance language where any phrase can be split
and wrapped around a single other phrase so that a
long-distance dependency is created between the
components of the outermost phrase.> We treat
long-distance dependencies as optional, as in lan-
guages in which they are optionally triggered, e.g.,
by information structure factors. We compare the
long-distance language to a local free-order lan-
guage lacking the long-distance split construction.
Since the long-distance option causes a combina-
torial explosion of possible orders, we limit trajec-
tories to 3 segments. At the same time, to have two
languages partially comparable in terms of variety
of allowed constructions, we extend the grammars
of both to license free order within a phrase. Fi-
nally, markers are prefixed to both the command
and the quantifier, to avoid ambiguities in the long-
distance case. Summarizing, the local language is
similar to the free-order+markers one above, but
markers are repeated before each phrase element,

Equivalently, a free-order language is generated in two
stages from a fixed-order one through a scrambling process.

3 Note also that this language is projective, excluding
cross-dependencies.

and extra rules allow the quantifier to precede or
go after the command, e.g., both of the follow-
ing structures are permitted: P1 — first Q first
C; P1 — first C first Q (“first left first 2”; “first 2
first left”). The long-distance grammar further in-
cludes rules where P1 has been split in two parts,
such as:

3) U — first C1 P2 first Q1 P3
U — first Q1 P2 first C1 P3

with CI and Q1 expandable into the usual termi-
nals (LEFT, RIGHT...and 1, 2, 3, respectively).*
The interpretation function associates a discontin-
uous {CN, QN} phrase with the N-th segment in
the trajectory. The first rule in (3) licenses the ut-
terance “first left second right second 1 first 2 third
up third 3”, denoting the example trajectory at the
beginning of this section. Similar rules are intro-
duced for all possible splits of a phrase around an-
other phrase (e.g., the elements of P2 around P1,
those of P1 around P3, etc.). Only one split is
allowed per-utterance. Examples of trajectory-to-
utterance mappings in the long and local-distance
languages are provided in Supplementary.

Datasets We generate sentences associated to all
possible trajectories in the environment (88572 in
the fixed- and free-order language environment,
972 in the local- and long-distance environment
experiments). We randomly split all possible dis-
tinct trajectory-utterance pairs into training (80%)
and test/validation sections (10% each).

3.2 Models

Architecture The agents are Encoder-Decoder
Seq2Seq architectures (Cho et al., 2014; Sutskever
et al.,, 2014) with single-layer LSTM recurrent
units (Hochreiter and Schmidhuber, 1997). In
light of the interactive nature of language, an agent
is always trained to be both a Speaker, taking a
trajectory as input and producing an utterance de-
scribing it, and as a Listener, executing the tra-
jectory corresponding to an input utterance. Input
and output vocabularies are identical, and contain
all possible actions and words.> When an agent
plays the Speaker role, it uses input action rep-
resentations and output word representations, and
conversely in the Listener role. We tie the embed-

“Equivalently, long-distance constructions are derived by
movement rules from canonical underlying structures.

SWord and action symbols are disjoint, e.g., the action
symbol ‘LEFT" is different from the word symbol ’left’.
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dings of the encoder input and of the decoder out-
put (Press and Wolf, 2016) making input and out-
put representations of words and actions coincide.
As a result, Speaker training affects the represen-
tations used in Listener mode and vice versa. Ex-
periments without tying (not reported) show simi-
lar results with slower convergence. We addition-
ally explore a standard attention mechanism (Bah-
danau et al., 2014).

Training We consider two scenarios. In indi-
vidual learning, an agent is taught a language
by interacting with a hard-coded ground-truth
“teacher”, represented by the training corpus. In
the iterated learning setup, a lineage of agents is
trained to speak and listen by interacting with a
“parent” agent. After convergence, an agent is
fixed and used as a parent to train the next child.

Individual learning We synchronously train the
agent to speak (from trajectory ¢ to utterance w)
and listen (from utterance wu to trajectory t). Train-
ing the Listener is similar to standard Seq2Seq
training with teacher forcing (Goodfellow et al.,
2016, p. 376). We change the training procedure
for the Speaker direction, as we must handle one-
to-many trajectory-to-utterance mappings in free-
order languages. We describe it below.

For each trajectory, we consider all correspond-
ing utterances equally probable. Given a trajec-
tory input, an agent must be able to produce,
with equal probability, all utterances that corre-
spond to the input. To achieve this, taking in-
spiration from the multi-label learning literature,
we fit the agent’s output distribution to minimize
KL-divergence from the uniform over target utter-
ances. We adopt the “Naive” method proposed by
Jin and Ghahramani (2003) (see Supplementary
for how we derive the loss function in Eq. (4)).

Formally, our languages map trajectories t; to
one (fixed-order) or multiple (free-order) utter-
ances {u}; = {u],u],. .}. The trajectory t is
fed into the encoder, which produces a represen-
tation of the action sequence. Next, the latter is
fed into the decoder along with the start-of-the-
sequence element vy = sos. At each step, the
decoder’s output layer defines a categorical distri-
bution pg(ux|uk—1, hi) over the next output word
ug. This distribution is conditioned by the previ-
ous word uj_1 and the hidden state h;. As with
the Listener, we use teacher forcing, so that the
distribution of each word is conditioned by the

ground-truth terms coming before it.
Overall, the model parameters @ are optimized
to minimize the loss £ over (t;, {u};):

|u|

Z > logpe(uklur-1, hjk)

ue{u}] k=1
“4)

In Eq. (4), n; denotes the number of target utter-
ances for the jth example, n; = [{u};|; u iter-
ates over the utterances {u};; and u;, enumerates
words in the utterance w as k varies. As the num-
ber of ground-truth utterances {u}; can be high,
we sub-sample n = 6 when training free- and
fixed-order languages.® This considerably speeds
up training without significantly harming perfor-
mance. We use all the possible utterances when
training on long-distance languages (n equals the
the number of all possible utterances).

For all studied languages, we perform a grid
search over hidden layer [16,20] and batch sizes
[16,32], and report test set results of the best
validation configuration for each language re-
initialized with 5 different seeds. We stop train-
ing if development set accuracy does not increase
for 5 epochs or when 500 epochs are reached. In
all scenarios, the optimization is performed with
the Amsgrad (Reddi et al., 2018) which is an im-
proved version of the standard Adam (Kingma and
Ba, 2014); we did not experiment with other opti-
mizers. We use the algorithm with its default pa-
rameters, as implemented in Pytorch (Paszke et al.,
2017).

Iterated learning At “generation 0” agent Ay,
is trained individually as described above. Once
Apg, is trained, we fix its parameters and use it to
train the next-generation agent, Ag,. Ap,, after
training, is in its turn fixed and used to train the
next agent Ag,, etc. At each iteration, the child
agent Ag, , is trained to imitate its parent Ag, as
follows. Suppose that, given ¢, the parent agent
produces n’ utterances {u} = {a!,a? ..a"}
(these utterances are obtained by sampling from
the parent’s decoder and can be identical). Then,
we train the child agent to: (a) listen: map each ut-
terance 4’ to the trajectory ¢, and (b) speak: given

Sampling is trivial in the latter case, since {1}, contains
a single utterance. Note that in this case the loss £ reduces
to the negative log-likelihood. This allows us to use the same
loss function for free- and fixed-order languages.

"We use the same number 7 defined in individual learning
section.
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Generation i+ 1

Figure 1: Iterated learning. Language is transmitted
to a child agent Ay, , by teaching it to speak imitat-
ing the utterances of parent Ag, given the same input
trajectories (dashed lines) and to listen to the parent
utterances, converting them to trajectories (continuous
lines). After training, former child Ag,,, becomes the
parent of a new agent Ag, .
the trajectory t, produce the utterance w4 that is
within {@} (Fig. 1). Importantly, even if the par-
ent’s parameters are fixed at each generation, the
child agent is allowed, while achieving perfect ac-
curacy, to introduce changes into its’ parent lan-
guage, making the latter more closely aligned with
its “innate” biases. 8

Importantly, the language is not forced to re-
main stationary across generations.

Evaluation We evaluate agents both as Listen-
ers and as Speakers. The former is standard, as
each input w maps to a single output t. Since
the Speaker can be one-to-many, in order to
obtain a single prediction w given trajectory ¢,
we predict at each time step k a word uj, =
arg max,, (pe(u|uj_,,hy)). This word is fed
to the next unit of the decoder, and so on until
uj = eos. The final prediction ©* is then de-
fined as the sequence [u], u5...u} ], and compared
to M samples from the true distribution P(ult).
If ©* matches one of the true samples, the agent
succeeds, otherwise it fails (in iterated learning,
P(ult) corresponds to the parent’s distribution).
In other words, we are not evaluating the model on
a perfect fit of the ground-truth (parent’s, in case
of iterated learning) distribution, but we score a hit
for it as long as it outputs a combination in P(ul|t).
This mismatch between the training and evalua-
tion criteria allows the emergence of interesting

8as exemplified in the experiments below, the child can
reach perfect accuracy while having a different distribution
over the utterances than its parent.

patterns (as we allow the agent to drift from the
ground-truth distribution) while constituting a rea-
sonable measure of actual communication success
(as the agent produces an utterance that is associ-
ated to the input trajectory in the ground-truth).

4 Experiments

4.1 Iconicity, word order, and markers

We compare languages with fixed and free or-
der, with and without markers. Experiments with
humans have shown that, as listeners, children
perform better with iconic sentences than non-
iconic ones (de Ruiter et al., 2018). We check
whether Seq2Seq networks show similar prefer-
ences in terms of learning speed and diachronic
persistence. We compare in particular the forward-
iconic order with the backward-iconic language,
and three randomly selected non-iconic languages
where the relation between segment and phrase
order is fixed but arbitrary. Concerning the rela-
tion between fixed order and markers, typologi-
cal studies show a trade-off between these cues.
For example, languages with flexible word or-
der (e.g., Japanese, and Russian) often use case
to mark grammatical function, whereas languages
with fixed word order (such as English and Man-
darin) often lack case marking (Blake, 2001; Com-
rie, 1981). This might be explained by a universal
preference for efficient and non-redundant gram-
matical coding (Fedzechkina et al., 2016a; Qian
and Jaeger, 2012; Zipf, 1949). Seq2Seq agents
might show similar preferences when tested as
Speakers. That is, they might show a learning
and preservation preference for either fixed no-
marking languages or free marking languages.

Individual learning. Fig. 2 shows test accuracy
during learning for each language type. The no-
attention agent has a preference for backward-
iconic both in speaking and listening. This is in
line with the observation that Seq2Seq machine
translation models work better when the source
is presented in reverse order as it makes the op-
timization problem easier by introducing shorter-
term dependencies (Sutskever et al., 2014). The
(forward) iconic order is better than the non-iconic
ones in the speaking direction only. The attention-
enhanced model shows much faster convergence
to near-perfect communication, with less room for
clear biases to emerge. Still, we observe some in-
teresting initial preferences. In speaking mode, the
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iconic languages, each with five runs. Chance accuracy is represented by the horizontal dotted line. The continuous
lines represent languages without markers, while the dashed lines represent languages with markers.

agent learns fastest with the forward iconic lan-
guage, followed by the backward one. The non-
iconic language without markers is the most diffi-
cult to learn, as expected. On the other hand, in lis-
tening mode we encounter again a preference for
backward iconicity.

Only the attention agent in speaking mode
shows a trade-off between order and markers cod-
ing, with a preference for markers-free fixed-
order iconic languages over their counterparts
with markers, and for the free-order language
with markers over the marker-less one. Only the
non-iconic languages violate the trend: arguably,
though, non-iconic order coding is so sub-optimal
that redundant markers are justified in this case.
In listening mode, this agent shows the expected
preference for markers in the free-order case (as
the free-order language without markers is mas-
sively ambiguous, with most utterances mapping
to multiple trajectories). However, among the
fixed-order languages, both backward and non-
iconic prefer redundant coding. The agent with-
out attention also displays a preference for free-

order+markers in listening mode (while it has se-
rious difficulties to learn to speak this language),
but no clear avoidance for redundant coding in ei-
ther modes. In sum, we confirm a preference for
iconic orders. Only the attention-enhanced agent
in speaking mode displays avoidance of redundant
coding.

Iterated learning. In iterated learning, we
might expect the lineage of agents that starts with
less natural non-iconic languages to either con-
verge to speak more iconic ones, or possibly to
drift into low communication accuracy. We more-
over expect redundant coding to fade, with fixed-
order+markers languages to either evolve free or-
der or lose markers. Regarding the free-word or-
der marked language, we expect it to either con-
verge to a fixed order (possibly iconic) while los-
ing its markers, as in the historical development
from Old English (a language with flexible con-
stituent order and rich case marking) to Modern
English (a language with fixed constituent order
and a rudimentary case system) (Traugott, 1972),
or to remain stable maintaining good communica-
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tion accuracy. We focus on the attention agent,
as the no-attention one converges too slowly for
multiple-generation experiments. We simulate 10
generations, repeating each experiment with 5 dif-
ferent initialization seeds. For non-iconic orders,
we sample the same 3 languages sampled for indi-
vidual learning.

For fixed-order languages, we do not observe
any change in accuracy or behavior in the listener
direction (the last-generation child is perfectly
parsing the initial language). However, we ob-
serve in speaker mode a (relatively small) decrease
in accuracy across generations, which, impor-
tantly, affects the most natural language (forward
iconic without markers) the least, and the most dif-
ficult language (non-iconic without markers) the
most (results are in Supplementary). Again, we
observe a (weak) tendency for the attention agent
to yield to the expected natural pressures.

We counted the overall number of markers pro-
duced by children in speaker mode after conver-
gence, for all test trajectories in all languages with
redundant coding. It was always constant, show-
ing no trend towards losing markers to avoid re-
dundant coding. Similarly, there was no tendency,
across generations, to start producing multiple ut-
terances in response to the same test trajectory.

In the evolution of the free-order language with
markers, accuracy was relatively stable in both
speaking and listening (99.82% and 100%, re-
spectively, for the last-generation agent, averag-
ing across 25 runs).” However, we noticed that
across generations, the language becomes more
fixed with some preferred orders emerging. Fig. 3
quantifies this in terms of the entropy of the ob-
served phrase order probabilities across all test
set trajectories (the lower the entropy, the more
skewed the distribution). There is already a clear
decrease for the first agent with respect to the
ground-truth distribution, and the trend continues
across generations. We analyzed the distribution
of Speaker utterances for the longest (5-segment)
test trajectories in the last generation. We found
that, out of 120 possible phrase orders, no last-
generation agent used more than 10. This is in line
with the typological observation that even non-
configurational languages favor (at least statisti-

“We run more simulations in this case as we noticed that
the final language depends on the initial seed, and hence there
is high variance with only 5 runs. Specifically, we start with 5
different parents and simulate 10 generations, repeating each
experiment with 5 different seeds

Entropy
I

/

Generations

Figure 3: Phrase-order entropy in attention Speaker
utterances given test set trajectories, in function of
training generation (-1 represents the initial ground-
truth distribution). Curve represents mean across 25
runs, with error bars for standard deviations.

cally) certain orders (Hale, 1992; Mithun, 1992)
and thus an equiprobable distribution of orders, as
it is the case in our free word-order+markers lan-
guage, is unlikely. The “survivor” orders of the
last generation were not necessarily iconic but de-
pended notably on the seed. The absence of clear
preference for a specific order could be explained
by the fact that attention-enhanced agents, as we
saw, can learn any fixed-order language very fast.
In this case, the seed of one generation, by ran-
domly skewing the statistics in favor of one or-
der or the other, can significantly impact the pref-
erence toward the favored order, that will then
spread diachronically throughout the whole iter-
ation.

4.2 Local vs. long-distance

We finally contrast the long-distance and local lan-
guages described in Section 3.1. In accordance
with the linguistic literature (see Introduction), we
predict that the long-distance language will be
harder to learn, and it will tend to reduce long-
distance constructions in diachrony. Although ev-
idence for distance minimization is typically from
production experiments (e.g., Futrell et al., 2015),
we expect long-distance constructions to also be
harder in perception, as they cannot be fully incre-
mentally processed and require keeping material
in memory for longer spans.

Individual learning. As the long-distance lan-
guage includes all utterances from the local lan-
guage, it might be trivially harder to learn. To ac-
count for this, we construct a set of control lan-
guages by randomly sampling, for each trajectory,
the same number of possible utterances for the lo-
cal and long-distance controls. We report averaged
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results for 3 such languages of both kinds. Details
on their construction are in Supplementary.

Fig. 4 shows test set accuracy across 300 train-
ing epochs for the attention model. The results,
for speaking and listening, confirm the preference
for the local language. The control languages
are harder to learn, as they impose an arbitrary
constraint on free word order, but they display
the preference for the local language even more
clearly. Overall, we see a tendency for listening
to be easier than speaking, but this cuts across the
local/long-distance division, and it seems to be a
more general consequence of free-order languages
with markers being easier in parsing than produc-
tion (cf. the no-attention agent results in Fig. 2).
Results without attention (not shown) are com-
parable in general, although the listener/speaker
asymmetry is sharper, with no difference in dif-
ficulty among the 4 languages when listening.

Iterated learning. We study  multiple-
generation transmission of the long-distance
language with the attention agent. To deal with
the problem of skewed relative frequency of
long-distance and entirely local utterances, the
Speaker direction is trained by ensuring that the
output utterance set {u} for each input trajectory
t contains the same number of long-distance
and local constructions. This is achieved by
sub-sampling n = 48 long-distance utterances
to match the number of possible local construc-
tions. Fig. 5 shows the relative frequency across
generations of local and long-distance utterances
produced by the agent as a Speaker in function of
training (one representative seed of 5). As pre-
dicted, a clear preference for local constructions
emerges, confirming the presence of a distance
minimization bias in Seq2Seq models.

5 Discussion

We studied whether word-order constraints widely
attested in natural languages affect learning and
diachronic transmission in Seq2Seq agents. We
found that some trends follow natural patterns,
such as the tendency to limit word order to
few configurations, and long-distance dependency
minimization. In other ways, our agents depart
from typical human language patterns. For exam-
ple, they exhibit a preference for a backward order,
and there are only weak signs of a trade-off be-
tween different ways to encode constituent roles,
with redundant solutions often being preferred.
The research direction we introduced might
lead to a better understanding of the biases that af-
fect the linguistic behaviour of LSTMs and simi-
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lar models. This could help current efforts towards
the development of artificial agents that communi-
cate to solve a task, with the ultimate goal of devel-
oping Als that can talk with humans. It has been
observed that the communication protocol emerg-
ing in such simulations is very different from hu-
man language (e.g., Kottur et al., 2017; Lewis
et al., 2017; Bouchacourt and Baroni, 2018). A
better understanding of what are the “innate” bi-
ases of standard models in highly controlled se-
tups, such as the one studied here, should comple-
ment large-scale simulations, as part of the effort
to develop new methods to encourage the emer-
gence of more human-like language. For example,
our results suggest that current neural networks, as
they are not subject to human-like least-effort con-
straints, might not display the same trend towards
efficient communication that we encounter in nat-
ural languages. How to incorporate “effort”-based
pressures in neural networks is an exciting direc-
tion for future work.
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