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Abstract

What is the relationship between sentence rep-
resentations learned by deep recurrent mod-
els against those encoded by the brain? Is
there any correspondence between hidden lay-
ers of these recurrent models and brain re-
gions when processing sentences? Can these
deep models be used to synthesize brain data
which can then be utilized in other extrin-
sic tasks? We investigate these questions us-
ing sentences with simple syntax and seman-
tics (e.g., The bone was eaten by the dog.).
We consider multiple neural network archi-
tectures, including recently proposed ELMo
and BERT. We use magnetoencephalography
(MEG) brain recording data collected from hu-
man subjects when they were reading these
simple sentences.

Overall, we find that BERT’s activations cor-
relate the best with MEG brain data. We also
find that the deep network representation can
be used to generate brain data from new sen-
tences to augment existing brain data. To the
best of our knowledge, this is the first work
showing that the MEG brain recording when
reading a word in a sentence can be used to
distinguish earlier words in the sentence. Our
exploration is also the first to use deep neural
network representations to generate synthetic
brain data and to show that it helps in improv-
ing subsequent stimuli decoding task accuracy.

1 Introduction

Deep learning methods for natural language pro-
cessing have been very successful in a variety of
Natural Language Processing (NLP) tasks. How-
ever, the representation of language learned by
such methods is still opaque. The human brain
is an excellent language processing engine, and
the brain representation of language is of course
very effective. Even though both brain and deep

∗ This research was carried out during a research intern-
ship at the Carnegie Mellon University.

learning methods are representing language, the
relationships among these representations are not
thoroughly studied. Wehbe et al. (2014b) and Hale
et al. (2018) studied this question in some limited
capacity. Wehbe et al. (2014b) studied the pro-
cessing of a story context at a word level during
language model computation. Hale et al. (2018)
studied the syntactic composition in RNNG model
(Dyer et al., 2016) with human encephalography
(EEG) data.

We extend this line of research by investigating
the following three questions: (1) what is the rela-
tionship between sentence representations learned
by deep learning networks and those encoded by
the brain; (2) is there any correspondence between
hidden layer activations in these deep models and
brain regions; and (3) is it possible for deep re-
current models to synthesize brain data so that
they can effectively be used for brain data aug-
mentation. In order to evaluate these questions,
we focus on representations of simple sentences.
We employ various deep network architectures,
including recently proposed ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019) networks.
We use MagnetoEncephaloGraphy (MEG) brain
recording data of simple sentences as the target
reference. We then correlate the representations
learned by these various networks with the MEG
recordings. Overall, we observe that BERT rep-
resentations are the most predictive of MEG data.
We also observe that the deep network models are
effective at synthesizing brain data which are use-
ful in overcoming data sparsity in stimuli decoding
tasks involving brain data.

In summary, in this paper we make the follow-
ing contributions.

• We initiate a study to relate representations
of simple sentences learned by various deep
networks with those encoded in the brain.
We establish correspondences between acti-
vations in deep network layers with brain ar-



5138

eas.

• We demonstrate that deep networks are capa-
ble of predicting change in brain activity due
to differences in previously processed words
in the sentence.

• We demonstrate effectiveness of using deep
networks to synthesize brain data for down-
stream data augmentation.

We have made our code and data1 publicly
available to support further research in this area.

2 Datasets

In this section, we describe the MEG dataset and
Simple Sentence Corpus used in the paper.

2.1 MEG Dataset

Magnetoencephalography (MEG) is a non-
invasive functional brain imaging technique
which records magnetic fields produced by
electrical currents in the brain. Sensors in the
MEG helmet allow for recording of magnetic
fluctuations caused by changes in neural activity
of the brain. For the experiments in this paper, we
used three different MEG datasets collected when
subjects were shown simple sentences as stimulus.
These datasets are summarized in Table 1, please
see (Rafidi, 2014) for more details. Additional
dataset details are mentioned in appendix section
A.1. In the MEG helmet, 306 sensors were
distributed over 102 locations and sampled at
1kHz. Native English speaking subjects were
asked to read simple sentences. Each word within
a sentence was presented for 300ms with 200ms
subsequent rest. To reduce noise in the brain
recordings, we represent a word’s brain activity
by averaging 10 sentence repetitions (Sudre et al.,
2012). Comprehension questions followed 10% of
sentences, to ensure semantic engagement. MEG
data was acquired using a 306 channel Elekta
Neuromag device. Preprocessing included spatial
filtering using temporal signal space separation
(tSSS), low-pass filtering 150Hz with notch filters
at 60 and 120Hz, and downsampling to 500Hz
(Wehbe et al., 2014b). Artifacts from tSSS-filtered
same-day empty room measurements, ocular and
cardiac artifacts were removed via Signal Space
Projection (SSP).

1https://github.com/SharmisthaJat/
ACL2019-SimpleSentenceRepr-DNN-Brain

Dataset #Sentences Voice Repetition
PassAct1 32 P+A 10
PassAct2 32 P+A 10

Act3 120 A 10

Table 1: MEG datasets used in this paper. Column
‘Voice’ refers to the sentence voice, ‘P’ is for passive
sentences and ‘A’ is for active. Repetition is the number
of times the human subject saw a sentence. For our
experiments, we average MEG data corresponding to
multiple repetitions of a single sentence.

2.2 Simple Sentence Corpus
In this paper, we aim to understand simple sen-
tence processing in deep neural networks (DNN)
and the brain. In order to train DNNs to repre-
sent simple sentences, we need a sizeable corpus
of simple sentences. While the MEG datasets de-
scribed in Section 2.1 contain a few simple sen-
tences, that set is too small to train DNNs ef-
fectively. In order to address this, we created a
new Simple Sentence Corpus (SSC), consisting of
a mix of simple active and passive sentences of
the form “the woman encouraged the girl” and
“the woman was encouraged by the boy”, respec-
tively. The SSC dataset consists of 256,145 sen-
tences constructed using the following two sets.

• Wikipedia: We processed the 2009
Wikipedia dataset to get sentences matching
the following patterns.
“the [noun+] was [verb+] by the [noun+]”
“the [noun+] [verb+] the [noun+]”
If the last word in the pattern matched is
not noun, then we retain the additional
dependent clause in the sentence. We were
able to extract 117,690 active, and 8210
passive sentences from wikipedia.

• NELL triples: In order to ensure broader cov-
erage of Subject-Verb-Object (SVO) triples
in our sentence corpus, we used the NELL
SVO triples2 (Talukdar et al., 2012). We sub-
sample SVO triples based on their frequency
(threshold = 6), a frequent verb list, and Free-
base to get meaningful sentences. Any triple
with subject or object or verb not in Freebase
is discarded from the triple set.

– Active sentence: Convert the verb to its
past tense and concatenate the triple us-

2NELL SVO triples: http://rtw.ml.cmu.edu/
resources/svo/

https://github.com/SharmisthaJat/ACL2019-SimpleSentenceRepr-DNN-Brain
https://github.com/SharmisthaJat/ACL2019-SimpleSentenceRepr-DNN-Brain
http://rtw.ml.cmu.edu/resources/svo/
http://rtw.ml.cmu.edu/resources/svo/
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Figure 1: Encoding model for MEG data. 306 channel 500ms MEG signal for a single word was compressed to
306× 5 by averaging 100ms data into a single column. This MEG brain recording data is then encoded from text
representation vector to brain activity using ridge regression. The evaluation is done using 5 fold cross-validation.
Please see Section 4 for more details.

ing the following pattern: “the [subject]
[verb-past-tense] the [object]”.

– Passive sentence: Concatenate the triple
using pattern: “the [object] was [verb-
past-tense] by the [subject]”

We generate 86,452 active and 43,793 pas-
sive sentences in total from the NELL triples.

We train our deep neural network models with
90% of sentences in this dataset and test on the
remaining 10%. We used the spaCy (Honnibal
and Montani, 2017) library to predict POS tags for
words in this dataset.

3 Methods

We test correlations between brain activity and
deep learning model activations (LeCun et al.,
2015) for a given sentence using a classification
task, similar to previous works (Mitchell et al.,
2008; Wehbe et al., 2014a,b). If we are able to
predict brain activity from the neural network ac-
tivation, then we hypothesize that there exists a
relationship between the process captured by the
neural network layer and the brain. The schematic
of our encoding approach is shown in Figure 1.

We investigate various deep neural network
models using context sensitivity tests to evalu-
ate their performance in predicting brain activ-
ity. Working with these models and their respec-
tive training assumptions help us in understand-
ing which assumption contributes to the correla-
tions with the brain activity data. We process the
sentences incrementally for each model to prevent
information from future words from affecting the
current representation, in line with how informa-
tion is processed by the brain. For example, in the

sentence “the dog ate the biscuit”, the representa-
tion of the word “ate” is calculated by processing
sentence segment “the dog ate” and taking the last
representation in each layer as the context for the
word “ate”. The following embedding models are
used to represent sentences.

• Random Embedding Model: In this model,
we represent each word in a context by a
randomly generated 300-dimensional vector.
Each dimension is uniformly sampled be-
tween [0,1]. The results from this model help
us establish the random baseline.

• GloVe Additive Embedding Model: This
model represents a word context as the aver-
age of the current word’s GloVe embedding
(Pennington et al., 2014) and the previous
word context. The first word in a sentence is
initialized with its GloVe embedding as con-
text.

• Simple Bi-directional LSTM Language
Model: We build a language model follow-
ing (Inan et al., 2016). Given a sequence of
words w1 . . . wt, we predict the next word
wt+1 using a two layer bidirectional-LSTM
model (Hochreiter and Schmidhuber, 1997).
The model is trained on the simple language
corpus data as described in Section 2.1 with
a cross-entropy loss. We evaluate our model
on 10% held out text data. The perplexity for
the Bi-directional Language model is 9.97 on
test data (the low perplexity value is due to
the simple train and test dataset).

• Multi-task Model: Motivated by the brain’s
multitask capability, we build a model to pre-
dict next word and POS tag information. The
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multitask model is a simple two layer bidi-
rectional LSTM model with separate linear
layers predicting each of the tasks given the
output of the last LSTM layer (Figure 2). The
model is trained on the simple sentence cor-
pus data as described in Section 2.1 with a
cross-entropy loss. The model’s accuracy is
96.9% on the POS-tag prediction task and has
perplexity of 9.09 on the 10% test data. The
high accuracy and low perplexity are due to
the simple nature of our language dataset.

• ELMO (Peters et al., 2018): ELMo is a
recent state-of-the-art deep contextualized
word representation method which models a
word’s features as internal states of a deep
bidirectional language model (biLM) pre-
trained on a large text corpus. The contex-
tualized word vectors are able to capture in-
teresting word characteristics like polysemy.
ELMO has been shown to improve perfor-
mance across multiple tasks, such sentiment
analysis and question answering.

• BERT (Devlin et al., 2019): BERT uses
a novel technique called Masked Language
Model (MLM). MLM randomly masks some
tokens inputs and then predicts them. Unlike
previous models, this technique can use both
left and right context to predict the masked
token. The training also predicts the next
sentence. The embedding in this model con-
sists of 3 components: token embedding, sen-
tence embedding and transformer positional
embedding. Due to the presence of sentence
embeddings, we observe an interesting per-
formance of the embedding layer in our ex-
periments.

4 Experiments and Results

With human brain as the reference language pro-
cessing engine, we investigate the relationship
between deep neural network representation and
brain activity recorded while processing the same
sentence. For this task, we perform experiments
at both the macro and micro sentence context
level. The macro-context experiments evaluate
the overall performance of deep neural networks
in predicting brain data for input words (all words,
nouns, verbs etc.). The micro-context experi-
ments, by contrast, focus on evaluating the perfor-
mance of deep neural network representations in

Figure 2: Architecture diagram for the simple multi-
task model. The second LSTM layer’s output is pro-
cessed by 2 linear layers each producing the next-word
and the POS-tag prediction. We process each sentence
incrementally to get the prediction for word at the nth
position, this helps in removing forward bias from fu-
ture words and therefore is consistent with the infor-
mation our brain receives when processing the same
sentence. Our Simple Bi-directional LSTM language
model also has a similar architecture with just one out-
put linear layer for next word prediction.

detecting minor changes in sentence context prior
to the token being processed.

Regression task: Similar to previous research
(Mitchell et al., 2008; Wehbe et al., 2014b), we
use a classification task to align model representa-
tions with brain data. MEG data (Section 2.1) is
used for these experiments. The task classifies be-
tween a candidate word and the true word a subject
is reading at the time of brain activity recording.
The classifier uses an intermediate regression step
to predict the MEG activity from deep neural net-
work representation for the true and the candidate
word. The classifier then chooses the word with
least Euclidean distance between the predicted and
the true brain activity. A correct classification sug-
gests that the deep neural network representation
captures important information to differentiate be-
tween brain activity at words in different contexts.
Detailed steps of this process are described as fol-
lows.

Regression training: We perform regression
from the neural-network representation (for each
layer) to the brain activity for the same input
words in context. We normalized, preprocessed
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and trained on the MEG data as described by (We-
hbe et al., 2014b) (Section 2.3.2). We average the
signal from every sensor (total 306) over 100ms
non-overlapping windows, yielding a 306×5 sized
MEG data for each word. To train the regression
model, we take the training portion of the data
in each fold, (X,Y ), in the tuple (xi, yi), xi is
the layer representation for an input word i in a
neural network model, and yi is the correspond-
ing MEG recording of size 1530 (flattened 306*5).
The Ridge regression model (f) (Pedregosa et al.,
2011) is learned with generalized cross-validation
to select λ parameter (Golub et al., 1979). Ridge
regression model’s α parameter is selected from
range [0.1, . . . , 100, 1000]. The trained regression
model is used to estimate MEG activity from the
stimulus features, i.e., ŷi = f(xi).

Regression testing: The trained regression
model is used to predict ŷi for each word stimulus
(xi) in the test fold during cross-validation. We
perform a pair-wise test for the classification ac-
curacy (Acc) (Mitchell et al., 2008). The chance
accuracy of this measure is 0.5. We use Euclidean
distance (Edist) as given in (1) for the measure.

Acc =


1, if Edist(f(xi), yi) + Edist(f(xj), yj)

≤ Edist(f(xi), yj) + Edist(f(xj), yi)

0, otherwise
(1)

4.1 Macro-context Experiments
The macro-context experiments aggregate classi-
fication performance of each model’s layer on the
entire stimuli set. We also evaluate on smaller sets
such as only the nouns, verbs, passive sentence
words, active sentence words, etc. The macro ex-
periments help us to compare all the models on
a large stimuli set. In summary, we observe the
following: (1) the intermediate layers of state-of-
the-art deep neural network models are most pre-
dictive of brain activity (Jain and Huth (2018) also
observe this on a 3 layer LSTM language model),
(2) in-context representations are better at predict-
ing brain activity than out-of-context representa-
tions (embeddings), and (3) Temporal lobe is pre-
dicted with highest accuracy from deep neural net-
work representations.

Detailed Observations: The results of pair-
wise classification tests for various models are pre-
sented in Figure 3. All the results reported in this
section are for PassAct1 dataset. From the figure,

we observe that BERT and ELMo outperform the
simple models in predicting brain activity data. In
the neural network language models, the middle
layers perform better at predicting brain activity
than the shallower or deeper layers. This could
be due to the fact that the shallower layers repre-
sent low-level features and the deeper layers rep-
resent more task-oriented features. We tested this
hypothesis by examining the performance scores
at each lobe of the brain. For each area, we tested
the left and right hemispheres independently and
compared these performances with the bilateral
frontal lobe as well as the activity across all re-
gions. In particular, we examined the primary vi-
sual areas (left and right occipital lobe), speech
and language processing areas (left temporal) and
verbal memory (right temporal), sensory percep-
tion (left parietal) and integration (right parietal),
language related movements (left frontal) and non-
verbal functioning (right frontal). The frontal lobe
was tested bilaterally as it is associated with higher
level processing such as problem solving, lan-
guage processing, memory, judgement, and social
behavior.

From our results, we observe that lower layers
such as BERT layer 5 have very high accuracy
for right occipital and left occipital lobe associated
with low-level visual processing task. In contrast,
higher layers such as linear layers in the Multitask
Model and in Language Model have the highest
accuracy in the left temporal region of the brain.
Figure 4 shows the pairwise classification accu-
racy for a given brain region for best layers from
each model. The accuracy is highest in left tem-
poral region, responsible for syntactic and seman-
tic processing of language. These results establish
correspondences between representations learned
by deep neural methods and those in the brain.
Further experiments are needed to improve our un-
derstanding of this relationship.

We performed additional experiments to predict
on a restricted stimuli set. In each of these ex-
periments, a subset of stimuli, for example active
sentences, passive sentences, noun, and verb stim-
uli were used in classification training and test-
ing. Detailed results for this experiment are docu-
mented in the appendix section (Figure 9). From
the results, we observe that active sentences are
predicted better (best accuracy = 0.93) than pas-
sive sentences (best accuracy = 0.87). This might
be attributed to the nature of training datasets for
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Figure 3: Pairwise classification accuracy of brain activity data predicted from various model layer representations.
We average 4 consecutive layers of BERT into one value. We find that BERT and ELMO model layers perform the
best. The middle layers of most models and BERT, in particular, are good at predicting brain activity. Read ‘ f’ as
forward layer and ‘Emb’ as the embedding layer.

Figure 4: Pairwise accuracy of various brain regions from some selected deep neural network model layers. The
left part of the brain which is considered central to language understanding is predicted with higher accuracy,
especially left temporal region (L = left, R = right).

deep neural networks, as active sentences are dom-
inant in the training data of most of the pre-trained
models. We also observe that for passive sen-
tences, our simple multitask model (trained using
about 250K active and passive sentences) has a
lower performance gap between active and pas-
sive sentence as compared to ELMO and BERT
models. This may be due to a more balanced ac-
tive and passive sentence used to train the multi-
task model. Noun stimuli are predicted with the
highest accuracy of 0.81, while the accuracy for
verbs is 0.65. Both Multitask and ELMo mod-
els dominate verb prediction results, while BERT
lags in this category. Further experiments should
be done to compare the ability of Transformer
(Vaswani et al., 2017) versus Recurrent Neural
Network based models to represent verbs.

4.2 Micro-context Experiments

In these micro-context experiments, we evaluate
if our models are able to retain information from
words in the sentence prior to the word being pro-

cessed. For such context sensitivity tests, we only
use the first repetition of the sentence shown to hu-
man subjects. This helps to ensure that the sen-
tence has not been memorized by the subjects,
which might affect the context sensitivity tests.

Training: The micro-context experiment setup
is illustrated in Figure 5. To train the regres-
sion model, each training instance corresponding
to a word has the form (xi, yi), where xi is the
layer representation for an input word i in a neu-
ral network model, and yi is the corresponding
MEG brain recording data of size 1530 (flattened
306 × 5). During testing, we restrict the pairwise
tests to word pairs (xi, xj) which satisfy some con-
ditions. For example in noun context sensitivity
test, the pair of words should be such that, they
appear in a sentence with the same words except
the noun. We describe these candidate word test
pairs, in detail, in the following sections.

In each of the following sensitivity tests, we per-
form a pair-wise accuracy test among the same
candidate word (bold items) from sentences which
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Figure 5: Experimental setup for micro-context tests. Given two sentences with similar words except one in the
past (underlined), the test evaluates if the deep neural network model representation contains sufficient information
to tell the two words apart. Please see Section 4.2 for more details.

are identical except for one word (underlined
items). We vary the non-identical word type
(noun, verb, adjective, determiner) among the two
sentences to test the contribution of each of these
word types to the context representation further in
sentence. This test helps us understand what parts
of the context are retained or forgotten by the neu-
ral network model representation. Detailed results
of each test are included in the appendix section
(Figure 10). Please note that the part of BERT
word embedding is the sentence embedding, there-
fore the BERT embedding performs better than
0.5, unlike other embeddings.

4.2.1 Noun sensitivity
“The dog ate the” vs. “The girl ate the”

For the PassAct1 dataset, we observe that sim-
ple GloVe additive model (classification accuracy
= 0.52) loses information about the noun while
it is retained by most layers of other models like
BERT (accuracy = 0.92), ELMo (accuracy = 0.91).
Higher level layers, such as linear layer for POS-
tag prediction (accuracy = 0.65), also perform
poorly. This seems obvious due to the task it
solves which focuses on POS-tag property at the
word ‘the’ rather than the previous context. In
summary, we observe that the language model
context preserves noun information well.

4.2.2 Verb sensitivity
“The dog saw the” vs. “The dog ate the”

For the PassAct1 dataset, we observe that simi-
lar to noun sensitivity, most language model layers
(accuracy = 0.92), except for simple GloVe Ad-
ditive model, preserve the verb memory. By de-
sign, the GloVe Additive model retains little con-
text from the past words, and therefore the result
verifies the experiment setup.

4.2.3 First determiner sensitivity
“A dog” vs. “The dog”

For the PassAct2 dataset, we observe that de-
terminer information is retained well by most lay-
ers. However, the shallow layers retain informa-
tion better than the deeper layers. For example,
BERT layer 3 (accuracy = 0.82), Multitask lstm
0 backward (accuracy = 0.82), BERT Layer 18/19
(accuracy 0.78). Since the earlier layers have a
higher correlation with shallow feature processing,
the determiner information may be useful for the
early features in neural network representation.

4.2.4 Adjective sensitivity
“The happy child” vs. “The child”

For the Act3 dataset, we observe that middle
layers of most models (BERT, Multitask) retain
the adjective information well. However, sur-
prisingly simple multitask model (lstm 1 forward
layer accuracy = 0.89) retains adjective informa-
tion better than BERT model (layer 7 accuracy =
0.84). This could be due to the importance of ad-
jective in context for POS tag prediction. This
result encourages the design of language models
with diverse cost functions based on the kind of
sentence context information that needs to be pre-
served in the final task.

4.2.5 Visualisation
We visualise the average agreement of model pre-
dicted brain activity (from BERT layer 18) and
true brain activity for candidate stimuli in micro-
sensitivity tests. Please note that the micro-
sensitivity tests predict brain activity for stimuli
with almost similar past context except one word,
this makes the task harder. We preprocess the
brain activity values to be +1 for all positive values
and -1 for all negative values. The predicted brain
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activity (y
′
) and the true brain activity (y) are then

compared to form an agreement activity (y
′′
), re-

sulting in a zero value for all locations where the
sign predicted was incorrect. We average these
agreement activities (y

′′
) for all test examples in a

cross-validation fold to form a single activity im-
age (Y

′′
). Figure 8 shows Y

′′
for the word ‘the’ in

noun-sensitivity tests Section 4.2.1 (additional re-
sults are in the appendix section). We observe that
our model prediction direction agrees with brain
prediction direction in most of the brain regions.
This shows that our neural network layer represen-
tation can preserve information from earlier words
in the sentence.

4.3 Semi-supervised training using
synthesized brain activity

In this section, we consider the question of
whether previously trained linear regression
model (X1), which predicts brain activity for a
given sentence, can be used to produce useful
synthetic brain data (i.e., sentence-brain activity
pairs). Constraints like high cost of MEG record-
ing and physical limits on an individual subject
during data collection, favor such synthetic data
generation. We evaluate effectiveness of this syn-
thetically generated brain data for data augmenta-
tion in the stimulus prediction task (Mitchell et al.,
2008). Specifically, we train a decoding model
(X2) to predict brain activity during a stimulus
reading based on GloVe vectors for nouns. We
consider two approaches. In the first approach,
the same brain activity data as in previous sections
was used. In the second approach, the real brain
activity data is augmented with the synthetic ac-
tivities generated by the regression model (X1).

In our experiment, we generate new sentences
using the same vocabulary as the original sen-
tences in the PassAct1 dataset. Details of the
original 32 sentences (Section A.1.1) along with
the 160 generated sentences (Section A.1.2) are
given in the appendix section. We process the
160 generated sentences with BERT layer 18 to
get word stimulus features in context. The en-
coding model (X1) was trained using the PassAct1
dataset. Please note that BERT layer 18 was cho-
sen based on the high accuracy results on macro-
context tests, therefore the layer aligned well with
the whole brain activity. The choice of represen-
tation (deep neural network layer) to encode brain
activity should be done carefully, as each represen-

tation may be good at encoding different parts of
brain. A good criteria for representation selection
requires further research.

To demonstrate the efficacy of the synthetic
dataset, we present the accuracy in predicting
noun (or verb) stimuli from observed MEG activ-
ity with and without the additional synthetic MEG
data. With linear ridge regression model (X2), a
GloVe (Pennington et al., 2014) feature to brain-
activity prediction models were trained to predict
the MEG activity when a word is observed . To test
the model performance, we calculate the accuracy
of the predicted brain activity given the true brain
activity during a word processing (Equation 1).
All the experiments use 4-fold cross-validation.
Figure 7 shows the increase in the noun/verb pre-
diction accuracy with additional synthetically gen-
erated data. The statistical significance is calcu-
lated over 400 random label permutation tests.

To summarize, these results show the utility of
using previously trained regressor model to pro-
duce synthetic training data to improve accuracy
on additional tasks. Given the high cost of col-
lecting MEG recordings from human subjects and
their individual capacity to complete the task, this
data augmentation approach may provide an effec-
tive alternative in many settings.

5 Related Work

Usage of machine learning models in neuro-
science has been gaining popularity. Methods
in this field use features of words and con-
texts to predict brain activity using various tech-
niques (Agrawal et al., 2014). Previous research
have used functional magnetic resonance imaging
(FMRI) (Glover, 2011) and Magnetoencephalog-
raphy (MEG) (Hmlinen et al., 1993) to record
brain activity. Prefrontal cortex in rhesus monkeys
was studied in Mante et al. (2013). They showed
that an appropriately trained recurrent neural net-
work model reproduces key physiological obser-
vations and suggests a new mechanism of input
selection and integration. Barak (2017) argues
that RNNs with reverse engineering can provide
a framework for modeling in neuroscience, po-
tentially serving as a powerful hypothesis gener-
ation tool. Prior research by Mitchell et al. (2008),
Wehbe et al. (2014b), Jain and Huth (2018), Hale
et al. (2018), Pereira et al. (2018), and Sun et al.
(2019) have established a general correspondence
between a computational model and brain’s re-
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Figure 6: Average sign agreement activity for noun sensitivity stimuli ‘the’. The red and blue colored areas are
the +ive and -ive signed brain region agreement respectively, while the white colored region displays brain regions
with prediction error. We observe that in most regions of the brain, the predicted and true activity agree on the
activity sign, thereby providing evidence that deep learning representations can capture useful information about
language processing consistent with the brain recording.

(a) Noun prediction results (b) Verb prediction results

Figure 7: Accuracy with and without synthetically generated MEG brain data on two stimuli prediction tasks: (a)
Nouns (left) and (b) Verbs (right). We trained two models – one using true MEG brain recording and the other using
both true and synthetically generated MEG brain data (Augmented data model). We observe that the augmented
data model results in accuracy improvement on both tasks, on average 2.1% per subject for noun prediction and
2.4% for verb. Accuracy (chance) is the random permutation test accuracy, with the green shaded area representing
standard deviation. Please see Section 4.3 for details.

sponse to naturalistic language. We follow these
prior research in our analysis work and extend the
results by doing a fine-grained analysis of the sen-
tence context. Additionally, we also use deep neu-
ral network representations to generate synthetic
brain data for extrinsic experiments.

6 Conclusion

In this paper, we study the relationship between
sentence representations learned by deep neural
network models and those encoded by the brain.
We encode simple sentences using multiple deep
networks, such as ELMo, BERT, etc. We make
use of MEG brain imaging data as reference. Rep-
resentations learned by BERT are the most effec-
tive in predicting brain activity. In particular, most
models are able to predict activity in the left tem-
poral region of the brain with high accuracy. This
brain region is also known to be responsible for
processing syntax and semantics for language un-
derstanding. To the best of our knowledge, this

is the first work showing that the MEG data, when
reading a word in a sentence, can be used to dis-
tinguish earlier words in the sentence. Encouraged
by these findings, we use deep networks to gen-
erate synthetic brain data to show that it helps in
improving accuracy in a subsequent stimulus de-
coding task. Such data augmentation approach is
very promising as actual brain data collection in
large quantities from human subjects is an expen-
sive and labor-intensive process. We are hopeful
that the ideas explored in the paper will promote
further research in understanding relationships be-
tween representations learned by deep models and
the brain during language processing tasks.
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A Appendices

A.1 Dataset details

Following are the sentences used in the paper for
experiments described in Section 4. We list down
the sentences in PassAct1 dataset and the gener-
ated sentences in the sections Section A.1.1 and
Section A.1.2 respectively. The two datasets are
disjoint in terms of the sentences they contain, but
are built using the same vocabulary. Datasets Pas-
sAct2 dataset and Act3 dataset are detailed in sub-
sections A.1.3 and A.1.4 respectively.

A.1.1 PassAct1 dataset sentences
the boy was liked by the girl
the girl was watched by the man
the man was despised by the woman
the woman was encouraged by the boy
the girl was liked by the woman
the man was despised by the boy
the girl was liked by the boy
the boy was watched by the woman
the man was encouraged by the girl
the woman was despised by the man
the woman was watched by the boy
the girl was encouraged by the woman
the man was despised by the girl
the boy was liked by the man
the boy was watched by the girl
the woman was encouraged by the man
the man despised the woman
the girl encouraged the man
the man liked the boy
the girl despised the man
the woman encouraged the girl
the boy watched the woman
the man watched the girl
the girl liked the boy
the woman despised the man
the boy encouraged the woman
the woman liked the girl
the boy despised the man
the man encouraged the woman
the girl watched the boy
the woman watched the boy
the boy liked the girl

A.1.2 PassAct1 dataset artificially generated
sentences

the girl was despised by the man
the man despised the girl

the man was liked by the girl
the girl was liked by the man
the girl liked the man
the man liked the girl
the girl was encouraged by the man
the man encouraged the girl
the man was watched by the girl
the girl watched the man
the boy was despised by the man
the man despised the boy
the man was liked by the boy
the boy liked the man
the man was encouraged by the boy
the boy was encouraged by the man
the boy encouraged the man
the man encouraged the boy
the man was watched by the boy
the boy was watched by the man
the boy watched the man
the man watched the boy
the man was despised by the women
the women was despised by the man
the women despised the man
the man despised the women
the man was liked by the women
the women was liked by the man
the women liked the man
the man liked the women
the man was encouraged by the women
the women was encouraged by the man
the women encouraged the man
the man encouraged the women
the man was watched by the women
the women was watched by the man
the women watched the man
the man watched the women
the girl was despised by the man
the man despised the girl
the girl was liked by the man
the man was liked by the girl
the man liked the girl
the girl liked the man
the girl was encouraged by the man
the man encouraged the girl
the man was watched by the girl
the girl watched the man
the girl was despised by the boy
the boy was despised by the girl
the boy despised the girl
the girl despised the boy
the girl was encouraged by the boy
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the boy was encouraged by the girl
the boy encouraged the girl
the girl encouraged the boy
the girl was watched by the boy
the boy watched the girl
the girl was despised by the women
the women was despised by the girl
the women despised the girl
the girl despised the women
the girl was liked by the women
the women was liked by the girl
the women liked the girl
the girl liked the women
the girl was encouraged by the women
the women was encouraged by the girl
the women encouraged the girl
the girl encouraged the women
the girl was watched by the women
the women was watched by the girl
the women watched the girl
the girl watched the women
the boy was despised by the man
the man despised the boy
the man was liked by the boy
the boy liked the man
the boy was encouraged by the man
the man was encouraged by the boy
the man encouraged the boy
the boy encouraged the man
the boy was watched by the man
the man was watched by the boy
the man watched the boy
the boy watched the man
the boy was despised by the girl
the girl was despised by the boy
the girl despised the boy
the boy despised the girl
the boy was encouraged by the girl
the girl was encouraged by the boy
the girl encouraged the boy
the boy encouraged the girl
the girl was watched by the boy
the boy watched the girl
the boy was despised by the women
the women was despised by the boy
the women despised the boy
the boy despised the women
the boy was liked by the women
the women was liked by the boy
the women liked the boy
the boy liked the women

the boy was encouraged by the women
the women was encouraged by the boy
the women encouraged the boy
the boy encouraged the women
the boy was watched by the women
the women was watched by the boy
the women watched the boy
the boy watched the women
the women was despised by the man
the man was despised by the women
the man despised the women
the women despised the man
the women was liked by the man
the man was liked by the women
the man liked the women
the women liked the man
the women was encouraged by the man
the man was encouraged by the women
the man encouraged the women
the women encouraged the man
the women was watched by the man
the man was watched by the women
the man watched the women
the women watched the man
the women was despised by the girl
the girl was despised by the women
the girl despised the women
the women despised the girl
the women was liked by the girl
the girl was liked by the women
the girl liked the women
the women liked the girl
the women was encouraged by the girl
the girl was encouraged by the women
the girl encouraged the women
the women encouraged the girl
the women was watched by the girl
the girl was watched by the women
the girl watched the women
the women watched the girl
the women was despised by the boy
the boy was despised by the women
the boy despised the women
the women despised the boy
the women was liked by the boy
the boy was liked by the women
the boy liked the women
the women liked the boy
the women was encouraged by the boy
the boy was encouraged by the women
the boy encouraged the women
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the women encouraged the boy
the women was watched by the boy
the boy was watched by the women
the boy watched the women
the women watched the boy

A.1.3 PassAct2 dataset sentences
the monkey inspected the peach
a monkey touched a school
the school was inspected by the student
a peach was touched by a student
the peach was inspected by the monkey
a school was touched by a monkey
a doctor inspected a door
the doctor touched the hammer
the student found a door
a student kicked the hammer
the student inspected the school
a student touched a peach
a monkey found the hammer
the monkey kicked a door
a dog inspected a hammer
the dog touched the door
a dog found the peach
the dog kicked a school
the doctor found a school
a doctor kicked the peach
a school was kicked by the dog
the peach was found by a dog
the door was touched by the dog
a hammer was inspected by a dog
the peach was kicked by a doctor
a school was found by the doctor
the hammer was touched by the doctor
a door was inspected by a doctor
the hammer was kicked by a student
a door was found by the student
the hammer was found by a monkey
a door was kicked by the monkey

A.1.4 Act3 dataset sentences
the teacher broke the small camera
the student planned the protest
the student walked along the long hall
the summer was hot
the storm destroyed the theater
the storm ended during the morning
the duck flew
the duck lived at the lake
the activist dropped the new cellphone

the editor carried the magazine to the meeting
the boy threw the baseball over the fence
the bicycle blocked the green door
the boat crossed the small lake
the boy held the football
the bird landed on the bridge
the bird was red
the reporter wrote about the trial
the red plane flew through the cloud
the red pencil was on the desk
the reporter met the angry doctor
the reporter interviewed the politician during the
debate
the tired lawyer visited the island
the tired jury left the court
the artist found the red ball
the artist hiked along the mountain
the angry lawyer left the office
the army built the small hospital
the army marched past the school
the artist drew the river
the actor gave the football to the team
the angry activist broke the chair
the cellphone was black
the company delivered the computer
the priest approached the lonely family
the patient put the medicine in the cabinet
the pilot was friendly
the policeman arrested the angry driver
the policeman read the newspaper
the politician celebrated at the hotel
the trial ended in spring
the tree grew in the park
the tourist hiked through the forest
the activist marched at the trial
the tourist ate bread on vacation
the vacation was peaceful
the dusty feather landed on the highway
the accident destroyed the empty lab
the horse kicked the fence
the happy girl played in the forest
the guard slept near the door
the guard opened the window
the glass was cold
the green car crossed the bridge
the voter read about the election
the wealthy farmer fed the horse
the wealthy family celebrated at the party
the window was dusty
the boy kicked the stone along the street
the old farmer ate at the expensive hotel
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the man saw the fish in the river
the man saw the dead mouse
the man read the newspaper in church
the lonely patient listened to the loud television
the girl dropped the shiny dime
the couple laughed at dinner
the council read the agreement
the couple planned the vacation
the fish lived in the river
the flood damaged the hospital
the big horse drank from the lake
the corn grew in spring
the woman bought medicine at the store
the woman helped the sick tourist
the woman took the flower from the field
the worker fixed the door at the church
the businessman slept on the expensive bed
the businessman lost the computer at the airport
the businessman laughed in the theater
the chicken was expensive at the restaurant
the lawyer drank coffee
the judge met the mayor
the judge stayed at the hotel during the vacation
the jury listened to the famous businessman
the hurricane damaged the boat
the journalist interviewed the judge
the dog ate the egg
the doctor helped the injured policeman
the diplomat bought the aggressive dog
the council feared the protest
the park was empty in winter
the parent watched the sick child
the cloud blocked the sun
the coffee was hot
the commander ate chicken at dinner
the commander negotiated with the council
the commander opened the heavy door
the old judge saw the dark cloud
the young engineer worked in the office
the farmer liked soccer
the mob approached the embassy
the mob damaged the hotel
the minister spoke to the injured patient
the minister visited the prison
the minister found cash at the airport
the minister lost the spiritual magazine
the mouse ran into the forest
the parent took the cellphone
the soldier delivered the medicine during the flood
the soldier arrested the injured activist
the small boy feared the storm

the egg was blue
the editor gave cash to the driver
the editor damaged the bicycle
the expensive camera was in the lab
the engineer built the computer
the family survived the powerful hurricane
the child held the soft feather
the clever scientist worked at the lab
the author interviewed the scientist after the flood
the artist shouted in the hotel
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(a) Verb sign agreement image between true and predicted brain
activations

(b) Adjective sign agreement image between true and predicted
brain activations

(c) Determiner sign agreement image between true and pre-
dicted brain activations

Figure 8: Sign agreement image for verb, determiner and adjective sensitivity test stimuli. The red and blue
colored areas are the +ive and -ive signed brain region agreement. While, the white colored region displays brain
regions with prediction error. We observe that in most regions of the brain the predicted and true image agree on
the activity sign, thereby proving that deep learning representations can capture useful information about language
processing.
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Figure 9: Pairwise Accuracy of predicting brain encodings for noun, verb, passive & active sentences. For each
of the category the Ridge regression model is learned and tested on the stimulus subset like only nouns or only
passive sentences. The color of a cell represents the value within overall accuracy scale with red indicating small
values, yellow intermediate and green high values. We observe that Nouns are predicted better than verbs. And
active sentences are predicted better than passive sentences.
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Figure 10: Micro-context sensitivity test results for all the layers. The color of a cell represents the value within
overall accuracy scale with red indicating small values, yellow intermediate and green high values. We observe
that noun and verbs are retained in the context with same accuracy followed by determiner and then adjective.


