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Abstract

We propose an unsupervised method for sen-
tence summarization using only language
modeling. The approach employs two lan-
guage models, one that is generic (i.e. pre-
trained), and the other that is specific to the tar-
get domain. We show that by using a product-
of-experts criteria these are enough for main-
taining continuous contextual matching while
maintaining output fluency. Experiments on
both abstractive and extractive sentence sum-
marization data sets show promising results
of our method without being exposed to any
paired data.

1 Introduction

Automatic text summarization is the process of
formulating a shorter output text than the origi-
nal while capturing its core meaning. We study
the problem of unsupervised sentence summa-
rization with no paired examples. While data-
driven approaches have achieved great success
based on various powerful learning frameworks
such as sequence-to-sequence models with atten-
tion (Rush et al., 2015; Chopra et al., 2016; Nalla-
pati et al., 2016), variational auto-encoders (Miao
and Blunsom, 2016), and reinforcement learning
(Paulus et al., 2017), they usually require a large
amount of parallel data for supervision to do well.
In comparison, the unsupervised approach reduces
the human effort for collecting and annotating
large amount of paired training data.

Recently researchers have begun to study
the unsupervised sentence summarization tasks.
These methods all use parameterized unsuper-
vised learning methods to induce a latent vari-
able model: for example Schumann (2018) uses
a length controlled variational autoencoder, Fevry
and Phang (2018) use a denoising autoencoder but
only for extractive summarization, and Wang and
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Lee (2018) apply a reinforcement learning pro-
cedure combined with GANs, which takes a fur-
ther step to the goal of Miao and Blunsom (2016)
using language as latent representations for semi-
supervised learning.

This work instead proposes a simple approach
to this task that does not require any joint training.
We utilize a generic pretrained language model
to enforce contextual matching between sentence
prefixes. We then use a smoothed problem spe-
cific target language model to guide the fluency
of the generation process. We combine these two
models in a product-of-experts objective. This ap-
proach does not require any task-specific training,
yet experiments show results on par with or better
than the best unsupervised systems while produc-
ing qualitatively fluent outputs. The key aspect of
this technique is the use of a pretrained language
model for unsupervised contextual matching, i.e.
unsupervised paraphrasing.

2 Model Description

Intuitively, a sentence summary is a shorter sen-
tence that covers the main point succinctly. It
should satisfy the following two properties (simi-
lar to Pitler (2010)): (a) Faithfulness: the sequence
is close to the original sentence in terms of mean-
ing; (b) Fluency: the sequence is grammatical and
sensible to the domain.

We propose to enforce the criteria using a
product-of-experts model (Hinton, 2002),

P(y[%) o pom (Y1X)pim (%)Y, |y < x| (1)

where the left-hand side is the probability that a
target sequence y is the summary of a source se-
quence X, pem(y|x) measures the faithfulness in
terms of contextual similarity from y to x, and
P (Y|x) measures the fluency of the token se-
quence y with respect to the target domain. We
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use A as a hyper-parameter to balance the two ex-
pert models.

We consider this distribution (1) being defined
over all possible y whose tokens are restricted to
a candidate list C' determined by x. For extractive
summarization, C'is the set of word types in x. For
abstractive summarization, C' consists of relevant
word types to x by taking K closest word types
from a full vocabulary V' for each source token
measured by pretrained embeddings.

2.1 Contextual Matching Model

The first expert, pem(y|x), tracks how close y
is to the original input x in terms of a contex-
tual “trajectory”. We use a pretrained language
model to define the left-contextual representations
for both the source and target sequences. Define
S(Z1:m, Y1:n) to be the contextual similarity be-
tween a source and target sequence of length m
and n respectively under this model. We imple-
ment this as the cosine-similarity of a neural lan-
guage model’s final states with inputs x;.,, and
Y1.n- This approach relies heavily on the observed
property that similar contextual sequences often
correspond to paraphrases. If we can ensure close
contextual matching, it will keep the output faith-
ful to the original.

We use this similarity function to specify a gen-
erative process over the token sequence y,

N
Pem(y[x) = H Gom (Yn|Y <ns X).

n=1

The generative process aligns each target word to
a source prefix. At the first step, n = 1, we com-
pute a greedy alignment score for each possible
word w € C, s, = max;>1 S(xy.5,w) for all
source prefixes up to length j. The probability
dem(y1 = w|x) is computed as softmax(s) over
all target words. We also store the aligned context
z1 = argmax;>1 S(Z1:5,y1).

For future words, we ensure that the alignment
is strictly monotonic increasing, such that z,, <
zn+1 for all n. Monotonicity is a common assump-
tion in summarization (Yu et al., 2016a,b; Raffel
et al., 2017). For n > 1 we compute the align-
ment score S,, = maxjs., , S(T1, [Y1:n—1,w])
to only look at prefixes longer than z,,_1, the last
greedy alignment. Since the distribution condi-
tions on y the past alignments are deterministic
to compute (and can be stored). The main com-
putational cost is in extending the target language
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Figure 1: Generative process of the contextual match-
ing model.

model context to compute S.

This process is terminated when a sampled to-
ken in y is aligned to the end of the source se-
quence x, and the strict monotonic increasing
alignment constraint guarantees that the target se-
quence will not be longer than the source se-
quence. The generative process of the above
model is illustrated in Fig. 1.

2.2 Domain Fluency Model

The second expert, pgy, (y|x), accounts for the flu-
ency of y with respect to the target domain. It
directly is based on a domain specific language
model. Its role is to adapt the output to read closer
shorter sentences common to the summarization
domain. Note that unlike the contextual match-
ing model where y explicitly depends on x in
its generative process, in the domain fluency lan-
guage model, the dependency of y on x is implicit
through the candidate set C that is determined by
the specific source sequence x.

The main technical challenge is that the prob-
abilities of a pretrained language model are
not well-calibrated with the contextual matching
model within the candidate set C, and so the lan-
guage model tends to dominate the objective be-
cause it has much higher variance (more peaky) in
the output distribution than the contextual match-
ing model. To manage this issue we apply ker-
nel smoothing over the language model to adapt it
from the full vocab V' down to the candidate word
list C.

Our smoothing process focuses on the output
embeddings from the pretrained language model.
First we form the Voronoi partition (Aurenham-
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mer, 1991) over all the embeddings using the can-
didate set C. That is, each word type w’ in the
full vocabulary V is exactly assigned to one re-
gion represented by a word type w in the candi-
date set C, such that the distance from w’ to w
is not greater than its distance to any other word
types in C. As above, we use cosine similarity be-
tween corresponding word embeddings to define
the regions. This results in a partition of the full
vocabulary space into |C| distinct regions, called
Voronoi cells. For each word type w € C, we de-
fine N (w) to be the Voronoi cell formed around
it. We then use cluster smoothing to define a new
probability distribution:

N
palyb) =[] 3 Im(wly<n)
n=lw'eN (yn)

where lm is the conditional probability distribu-
tion of the pretrained domain fluency language
model. By our construction, pg,, is a valid distribu-
tion over the candidate list C'. The main benefit is
that it redistributes probability mass lost to terms
in V to the active words in C'. We find this ap-
proach smoothing balances integration with pep, .

2.3 Summary Generation

To generate summaries we maximize the log prob-
ability (1) to approximate y* using beam search.
We begin with a special start token. A sequence
is moved out of beam if it has aligned to the
end token appended to the source sequence. To
discourage extremely short sequences, we apply
length normalization to re-rank the finished hy-
potheses. We choose a simple length penalty as
Ip(y) = |y| + a with « a tuning parameter.

3 Experimental Setup

For the contextual matching model’s similarity
function .S, we adopt the forward language model
of ELMo (Peters et al., 2018) to encode tokens to
corresponding hidden states in the sequence, re-
sulting in a three-layer representation each of di-
mension 512. The bottom layer is a fixed char-
acter embedding layer, and the above two layers
are LSTMs associated with the generic unsuper-
vised language model trained on a large amount
of text data. We explicitly manage the ELMo hid-
den states to allow our model to generate con-
textual embeddings sequentially for efficient beam

search.! The fluency language model component
Im is task specific, and pretrained on a corpus of
summarizations. We use an LSTM model with 2
layers, both embedding size and hidden size set to
1024. It is trained using dropout rate 0.5 and SGD
combined with gradient clipping.

We test our method on both abstractive and ex-
tractive sentence summarization tasks. For ab-
stractive summarization, we use the English Giga-
word data set pre-processed by Rush et al. (2015).
We train pg,, using its 3.8 million headlines in the
training set, and generate summaries for the in-
put in test set. For extractive summarization, we
use the Google data set from Filippova and Al-
tun (2013). We train pgy, on 200K compressed
sentences in the training set and test on the first
1000 pairs of evaluation set consistent with pre-
vious works. For generation, we set A = 0.11
in (1) and beam size to 10. Each source sentence
is tokenized and lowercased, with periods deleted
and a special end of sentence token appended. In
abstractive summarization, we use K = 6 in the
candidate list and use the fixed embeddings at the
bottom layer of ELMo language model for simi-
larity. Larger K has only small impact on perfor-
mance but makes the generation more expensive.
The hyper-parameter « for length penalty ranges
from -0.1 to 0.1 for different tasks, mainly for de-
sired output length as we find ROUGE scores are
not sensitive to it. We use concatenation of all
ELMo layers as default in peyy.

4 Results and Analysis

Quantitative Results. The automatic evaluation
scores are presented in Table 1 and Table 2. For
abstractive sentence summarization, we report the
ROUGE F1 scores compared with baselines and
previous unsupervised methods. Our method out-
performs commonly used prefix baselines for this
task which take the first 75 characters or 8 words
of the source as a summary. Our system achieves
comparable results to Wang and Lee (2018) a sys-
tem based on both GANs and reinforcement train-
ing. Note that the GAN-based system needs both
source and target sentences for training (they are
unpaired), whereas our method only needs the
target domain sentences for a simple language
model. In Table 1, we also list scores of the state-
of-the-art supervised model, an attention based

Code available at https://github.com/jzhou316/Unsuper
vised-Sentence-Summarization.
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Model R1 R2 RL

Lead-75C 23.69 7.93 21.5
Lead-8 21.30 7.34  19.94
Schumann (2018) 22.19 456 19.88
Wang and Lee (2018) 27.09 9.86 24.97
Contextual Match 2648 10.05 24.41
Cao et al. (2018) 37.04 19.03 34.46
seq2seq 33.50 15.85 31.44
Contextual Oracle 37.03 1546 33.23

Table 1: Experimental results of abstractive summa-
rization on Gigaword test set with ROUGE metric. The
top section is prefix baselines, the second section is re-
cent unsupervised methods and ours, the third section
is state-of-the-art supervised method along with our
implementation of a seq-to-seq model with attention,
and the bottom section is our model’s oracle perfor-
mance. Wang and Lee (2018) is by author correspon-
dence (scores differ because of evaluation setup). For
another unsupervised work Fevry and Phang (2018),
we attempted to replicate on our test set, but were un-
able to obtain results better than the baselines.

Model F1 CR
F&A Unsupervised 52.3 -

Contextual Match 60.90 0.38
Filippova et al. (2015) 82.0 0.38
Zhao et al. (2018) 85.1 0.39

Table 2: Experimental results of extractive summariza-
tion on Google data set. F1 is the token overlapping
score, and CR is the compression rate. F&A is an unsu-
pervised baseline used in Filippova and Altun (2013),
and the bottom section is supervised results.

seq-to-seq model of our own implementation, as
well as the oracle scores of our method obtained
by choosing the best summary among all finished
hypothesis from beam search. The oracle scores
are much higher, indicating that our unsupervised
method does allow summaries of better quality,
but with no supervision it is hard to pick them out
with any unsupervised metric. For extractive sen-
tence summarization, our method achieves good
compression rate and significantly raises a previ-
ous unsupervised baseline on token level F1 score.

Analysis. Table 3 considers analysis of differ-
ent aspects of the model. First, we look at the
fluency model and compare the cluster smoothing

abstractive extractive
Models R1 R2 RL F1 CR
CS + cat 2648 10.05 2441 6090 0.38
CS + avg 2634 979 2423 60.09 0.38
CS +top 2621  9.69 24.14 62.18 0.34
CS + mid 2546 939 2334 5932 040
CS + bot 1529 395 14.06 21.14 0.23
TEMPS5 + cat 2631 938 2360 52.10 043
TEMP10 + cat 25.63 882 22.86 4233 047
NA + cat 24.81 8.89 2287 49.80 0.32

Table 3: Comparison of different model choices. The
top section evaluates the effects of contextual represen-
tation in the matching model, and the bottom section
evaluates the effects of different smoothing methods in
the fluency model.

(CS) approach with softmax temperature (TEMPx
with x being the temperature) commonly used for
generation in LM-integrated models (Chorowski
and Jaitly, 2016) as well as no adjustment (NA).
Second, we vary the 3-layer representation out of
ELMo forward language model to do contextual
matching (bot/mid/top: bottom/middle/top layer
only, avg: average of 3 layers, cat: concatenation
of all layers).

Results show the effectiveness of our clus-
ter smoothing method for the vocabulary adap-
tive language model pg,, although temperature
smoothing is an option for abstractive datasets.
Additionally Contextual embeddings have a huge
impact on performance. When using word em-
beddings (bottom layer only from ELMo language
model) in our contextual matching model p,,, the
summarization performance drops significantly to
below simple baselines as demonstrated by score
decrease. This is strong evidence that encoding in-
dependent tokens in a sequence with generic lan-
guage model hidden states helps maintain the con-
textual flow. Experiments also show that even
when only using p., (by setting A = 0), uti-
lizing the ELMo language model states allows
the generated sequence to follow the source x
closely, whereas normal context-free word embed-
dings would fail to do so.

Table 4 shows some examples of our unsuper-
vised generation of summaries, compared with the
human reference, an attention based seq-to-seq
model we trained using all the Gigaword paral-
lel data, and the GAN-based unsupervised system
from Wang and Lee (2018). Besides our default of
using all ELMo layers, we also show generations
by using the top and bottom (context-independent)
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I: japan ’s nec corp. and UNK computer corp. of the
united states said wednesday they had agreed to join
forces in supercomputer sales

G: nec UNK in computer sales tie-up

s2s: nec UNK to join forces in supercomputer sales
GAN: nec corp. to join forces in sales

CM (cat): nec agrees to join forces in supercomputer
sales

CM (top): nec agrees to join forces in computer sales
CM (bot): nec to join forces in supercomputer sales

I: turnout was heavy for parliamentary elections monday
in trinidad and tobago after a month of intensive cam-
paigning throughout the country , one of the most pros-
perous in the caribbean

G: trinidad and tobago poll draws heavy turnout by john
babb

s2s: turnout heavy for parliamentary elections in trinidad
and tobago

GAN: heavy turnout for parliamentary elections in
trinidad

CM (cat): parliamentary elections monday in trinidad and
tobago

CM (top): turnout is hefty for parliamentary elections in
trinidad and tobago

CM (bot): trinidad and tobago most prosperous in the
caribbean

I: a consortium led by us investment bank goldman sachs
thursday increased its takeover offer of associated british
ports holdings , the biggest port operator in britain , after
being threatened with a possible rival bid

G: goldman sachs increases bid for ab ports

s2s: goldman sachs ups takeover offer of british ports
GAN: us investment bank increased takeover offer of
british ports

CM (cat): us investment bank goldman sachs increases
shareholdings

CM (top): investment bank goldman sachs increases in-
vestment in britain

CM (bot): britain being threatened with a possible bid

Table 4: Abstractive sentence summary examples on
Gigaword test set. I is the input, G is the reference, s2s
is a supervised attention based seq-to-seq model, GAN
is the unsupervised system from Wang and Lee (2018),
and CM is our unsupervised model. The third example
is a failure case we picked where the sentence is fluent
and makes sense but misses the point as a summary.

layer only. Our generation has fairly good quali-
ties, and it can correct verb tenses and paraphrase
automatically. Note that top representation actu-
ally finds more abstractive summaries (such as in
example 2), and the bottom representation fails to
focus on the proper context. The failed exam-
ples are mostly due to missing the main point,
as in example 3, or the summary needs to re-
order tokens in the source sequence. Moreover,
as a byproduct, our unsupervised method naturally
generates hard alignments between summary and
source sentences in the contextual matching pro-
cess. We show some examples in Figure 2 corre-
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Figure 2: Examples of alignment results generated by
our unsupervised method between the abstractive sum-
maries and corresponding source sentences in the Gi-
gaword test set.

sponding to the sentences in Table 4.

5 Conclusion

We propose a novel methodology for unsupervised
sentence summarization using contextual match-
ing. Previous neural unsupervised works mostly
adopt complex encoder-decoder frameworks. We
achieve good generation qualities and competitive
evaluation scores. We also demonstrate a new way
of utilizing pre-trained generic language models
for contextual matching in untrained generation.
Future work could be comparing language models
of different types and scales in this direction.
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