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Abstract

This paper tackles the problem of reading
comprehension over long narratives where
documents easily span over thousands of to-
kens. We propose a curriculum learning (CL)
based Pointer-Generator framework for read-
ing/sampling over large documents, enabling
diverse training of the neural model based
on the notion of alternating contextual diffi-
culty. This can be interpreted as a form of
domain randomization and/or generative pre-
training during training. To this end, the usage
of the Pointer-Generator softens the require-
ment of having the answer within the context,
enabling us to construct diverse training sam-
ples for learning. Additionally, we propose
a new Introspective Alignment Layer (IAL),
which reasons over decomposed alignments
using block-based self-attention. We evalu-
ate our proposed method on the NarrativeQA
reading comprehension benchmark, achieving
state-of-the-art performance, improving exist-
ing baselines by 51% relative improvement
on BLEU-4 and 17% relative improvement on
Rouge-L. Extensive ablations confirm the ef-
fectiveness of our proposed IAL and CL com-
ponents.

1 Introduction

Teaching machines to read and comprehend
is a fundamentally interesting and challeng-
ing problem in AI research (Hermann et al.,
2015; Trischler et al., 2016; Rajpurkar et al.,
2016). While there have been considerable and
broad improvements in reading and understand-
ing textual snippets, the ability for machines to
read/understand complete stories and novels is still
in infancy (Kočiskỳ et al., 2018). The challenge
becomes insurmountable in lieu of not only the
large context but also the intrinsic challenges of

∗Work done while at University of Maryland.

narrative text which arguably requires a larger ex-
tent of reasoning. As such, this motivates the in-
ception of relevant, interesting benchmarks such
as the NarrativeQA Reading Comprehension chal-
lenge1 (Kočiskỳ et al., 2018).

The challenges of having a long context have
been traditionally mitigated by a two-step ap-
proach - retrieval first and then reading second
(Chen et al., 2017; Wang et al., 2018; Lin et al.,
2018). This difficulty mirrors the same challenges
of open domain question answering, albeit intro-
ducing additional difficulties due to the nature of
narrative text (stories and retrieved excerpts need
to be coherent). While some recent works have
proposed going around by training retrieval and
reading components end-to-end, this paper fol-
lows the traditional paradigm with a slight twist.
We train our models to be robust regardless of
whatever is retrieved. This is in similar spirit to
domain randomization (Tobin et al., 2017).

In order to do so, we propose a diverse curricu-
lum learning scheme (Bengio et al., 2009) based
on two concepts of difficulty. The first, depends
on whether the answer exists in the context (an-
swerability), aims to bridge the gap between train-
ing time and inference time retrieval. On the
other hand, and the second, depends on the size of
retrieved documents (coherence and understand-
ability). While conceptually simple, we found that
these heuristics help improve performance of the
QA model. To the best of our knowledge, we are
the first to incorporate these notions of difficulty
in QA reading models.

All in all, our model tries to learn to generate
the answer even if the correct answer does not ap-
pear as evidence which acts as a form of gener-
ative pretraining during training. As such, this is
akin to learning to guess, largely motivated by how

1We tackle the full story setting instead of the summary
setting which, inherently, is a much harder task.

ytay017@e.ntu.edu.sg


4923

humans are able to extrapolate/guess even when
given access to a small fragment of a film/story. In
this case, we train our model to generate answers,
making do with whatever context it was given. To
this end, a curriculum learning scheme controls
the extent of difficulty of the context given to the
model.

At this juncture, it would be easy to realize
that standard pointer-based reading comprehen-
sion models would not adapt well to this scheme,
as they fundamentally require the golden label to
exist within the context (Wang and Jiang, 2016b;
Seo et al., 2016). As such, our overall frame-
work adopts a pointer-generator framework (See
et al., 2017) that learns to point and generate, con-
ditioned on not only the context but also the ques-
tion. This relaxes this condition, enabling us to
train our models with diverse views of the same
story which is inspired by domain randomization
(Tobin et al., 2017). For our particular task at
hand, the key idea is that, even if the answer is
not found in the context, we learn to generate the
answer despite the noisy context.

Finally, our method also incorporates a novel
Introspective Alignment Layer (IAL). The key
idea of the IAL mechanism is to introspect over
decomposed alignments using block-style local
self-attention. This not only imbues our model
with additional reasoning capabilities but enables
a finer-grained (and local-globally aware) com-
parison between soft-aligned representations. All
in all, our IAL mechanism can be interpreted as
learning a matching over matches.

Our Contributions All in all, the prime contri-
butions of this work is summarized as follows:

• We propose a curriculum learning based
Pointer-Generator model for reading compre-
hension over narratives (long stories). For the
first time, we propose two different notions
of difficulty for constructing diverse views of
long stories for training. We show that this
approach achieves better results than exist-
ing models adapted for open-domain ques-
tion answering.

• Our proposed model incorporates an Intro-
spective Alignment Layer (IAL) which uses
block-based self-attentive reasoning over de-
composed alignments. Ablative experiments
show improvements of our IAL layer over the
standard usage of vanilla self-attention.

• Our proposed framework (IAL-CPG)
achieves state-of-the-art performance on
the NarrativeQA reading comprehension
challenge. On metrics such as BLEU-4
and Rouge-L, we achieve a 17% relative
improvement over prior state-of-the-art and
a 10 times improvement in terms of BLEU-4
score over BiDAF, a strong span prediction
based model.

• We share two additional contributions.
Firstly, we share negative results on using Re-
inforcement Learning to improve the qual-
ity of generated answers (Paulus et al., 2017;
Bahdanau et al., 2016). Secondly, we show
that the evaluation scheme in NarrativeQA is
flawed and models can occasionally generate
satisfactory (correct) answers but score zero
points during evaluation.

2 Our Proposed Framework

This section outlines the components of our pro-
posed architecture. Since our problem is mainly
dealing with extremely long sequences, we em-
ploy an initial retrieval2 phrase by either using the
answer or question as a cue (query for retrieving
relevant chunks/excerpts). The retrieval stage is
controlled by our curriculum learning process in
which the details are deferred to subsequent sec-
tions. The overall illustration of this framework is
depicted in Figure 1.

2.1 Introspective Alignment Reader
This section introduces our proposed Introspective
Alignment Reader (IAL-Reader).

Input and Context Encoding Our model ac-
cepts two inputs, (context C and question Q).
Each input is a sequence of words. We pass each
sequence into a shared Bidirectional LSTM layer.

Hc = BiLSTM(C) , Hq = BiLSTM(Q)

where Hc ∈ R`c×d and Hq ∈ R`q×d are the hid-
den representations for C and Q respectively.

Introspective Alignment Next, we passHc, Hq

into an alignment layer. Firstly, we compute a soft
attention affinity matrix between Hc and Hq as
follows:

Eij = F (hci )
> F (hqj) (1)

2This is unavoidable since supporting up to 20K-30K
words in computational graphs is still not manageable even
with top-grade GPUs.
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Figure 1: Illustration of our proposed IAL-CPG frame-
work.

where hci is the i-th word in the context and hqj is
the j-th word in the question. F (·) is a standard
nonlinear transformation function (i.e., F (x) =
σ(Wx+ b), where σ indicates non-linearity func-
tion), and is shared between context and ques-
tion. E ∈ R`c×`q is the soft matching matrix.
To learn alignments between context and question,
we compute:

A = Softmax(E)Hq

where A ∈ R`c×d is the aligned representation of
Hc.

Reasoning over Alignments Next, to reason
over alignments, we compute a self-attentive rea-
soning over decomposed alignments:

Gij = Fs([Ai;H
c
i ;Ai −Hc

i , Ai �Hc
i ])
>·

Fs([Aj ;H
c
j ;Aj −Hc

j , Aj �Hc
j ])

(2)

where square brackets [·; ·] denote vector concate-
nation, Fs(·) is another nonlinear transformation
layer which projects onto 4d dimensions. i is the
positional index of each word token. Intuitively,

Ai comprises of softly aligned question represen-
tations with respect to the context. The usage
of the Hadamard and Subtraction operators helps
to enhance the degree of comparison/matching.
Hence, by including an additional local reasoning
over these enhanced alignment vectors, our model
can be interpreted as introspecting over alignment
matches.

Local Block-based Self-Attention Since `c is
large in our case (easily ≥ 2000), computing the
above Equation (2) may become computationally
prohibitive. As such, we compute the scoring
function for all cases where |i−j| ≤ b, in which, b
is a predefined hyperparameter and also the block
size. Intuitively, the initial alignment layer (i.e.,
Equation 1) already considers a global view. As
such, this self-attention layer can be considered as
a local-view perspective, confining the affinity ma-
trix computation to a local window of b. Finally,
to compute the introspective alignment represen-
tation, we compute:

B = Softmax(G) [A;Hc;A−Hc;A�Hc]

where B`c×4d is the introspective aligned repre-
sentation of A. Finally, we use another d dimen-
sional BiLSTM layer to aggregate the aligned rep-
resentations:

Y = BiLSTM([B;A;Hc;A−Hc;A�Hc]) (3)

where Y ∈ R`c×2d is the final contextual repre-
sentation of context C.

2.2 Pointer-Generator Decoder

Motivated by recent, seminal work in neural sum-
marization, our model adopts a pointer-generator
architecture (See et al., 2017). Given Y (the ques-
tion infused contextual representation), we learn to
either generate a word from vocabulary, or point to
a word from the context. The decision to generate
or point is controlled by an additive blend of sev-
eral components such as the previous decoder state
and/or question representation.

The pointer-generator decoder in our frame-
work uses an LSTM decoder3 with a cell state
ct ∈ Rn and hidden state vector ht ∈ Rn. At

3To initialize the LSTM, we use an additional projection
layer over the mean pooled representation of Y similar to (Xu
et al., 2015).



4925

each decoding time step t, we compute an atten-
tion over Y as follows:

gi = tanh(Fa(yi) + Fh(ht−1) + Fq(H
q)), (4)

ai = g>i wa , yt =

`c∑
i=0

ai · yi (5)

where Fa(·) and Fh(·) are nonlinear transforma-
tions projecting to n dimensions. i is the position
index of the input sequence. Fq(·) is an additional
attentive pooling operator over the question rep-
resentation Hq (after the context encoding layer).
The semantics of the question may be lost after the
alignment based encoding. As such, this enables
us to revisit the question representation to control
the decoder. yt ∈ Rn is the context representation
at decoding time step t and a ∈ R`c is an attention
distribution over the context words which is analo-
gous to the final probability distributions that exist
in typical span prediction models. Next, we com-
pute the next hidden state via:

ht, ct = LSTM([yt;wt−1], ht−1, ct−1)

where wt−1 is the (t − 1)th token in the ground
truth answer (teacher forcing). To learn to gener-
ate, we compute:

vt =Wv(ht) + bv (6)

where vt ∈ R|Vg |, Vg is the global vocabulary
size. The goal of the pointer-generator decoder is
to choose between the abstractive distribution vt
over the vocabulary (see Equation 6) and the ex-
tractive distribution at (see Equation 5) over the
context text tokens. To this end, we learn a scalar
switch pt ∈ R:

pt = sigmoid(Fpc(ct) + Fph(ht) + Fpy(yt))

where Fpc(·), Fph(·), Fpy(·) are linear transforma-
tion layers (without bias) which project ct, ht and
yt into scalar values. To control the blend between
the attention context and the generated words, we
use a linear interpolation between at and vt. The
predicted word wt at time step t is therefore:

wt = argmax(pt · at + (1− pt)vt)

Note that we scale (append and prepend) at and vt
with zeros to make them the same length (i.e., `c+
|Vg|). The LSTM decoder runs for a predefined fix
answer length. During inference, we simply use
greedy decoding to generate the output answer.

2.3 Curriculum Reading
A key advantage of the pointer-generator is that it
allows us to generate answers even if the answers
do not exist in the context. This also enables us
to explore multiple (diverse) views of contexts to
train our model. However, to this end, we must
be able to identify effectively the most useful re-
trieved context evidences for the training. For that
purpose, we propose to use a diverse curriculum
learning scheme which is based on two intuitive
notions of difficulty:

Answerability - It is regarded as common prac-
tice to retrieve excerpts based by using the cor-
rect answer as a cue (during training). This estab-
lishes an additional gap between training and in-
ference since during inference, correct answers are
not available. This measure aims to bridge the gap
between question and answer (as a query prompt
for passage retrieval). In this case, we consider
the set of documents retrieved based on questions
as the hard setting, H . Conversely, the set of re-
trieved documents using answers is regarded as the
easy setting, E.

Understandability - This aspect controls how
understandable the overall retrieved documents
are as a whole. The key idea of this setting is
to control the paragraph/chunk size. Intuitively,
a small paragraph/chunk size would enable more
relevant components to be retrieved from the doc-
ument. However, its understandability might be
affected if paragraph/chunk size is too small. Con-
versely, a larger chunk size would be easier to be
understood. To control the level of understandabil-
ity, we pre-define several options of chunk sizes
(e.g., {50, 100, 200, 500}) which will be swapped
and determined during training.

To combine the two measures described above,
we comprise an easy-hard set pair for each chunk
size, i.e., {Ek, Hk}, where:

k ∈ {50, 100, 200, 500},
En ← F (corpus, answer, n),

Hn ← F (corpus, question, n)

(7)

F (.) is an arbitrary ranking function which may
or may not be parameterized, and n is the size of
each retrieved chunk.

Two-layer Curriculum Reading Algorithm.
As our model utilizes two above measures of dif-
ficulty, there lies a question on which whether we
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Algorithm 1 Curriculum Reading
1: chunk list← {50, 100, 200, 500}
2: n← sample i in chunk list
3: chunk list← chunk list \ {n}
4: En ← F (Corpus,Answers, n)
5: Hn ← F (Corpus,Questions, n)
6: D ← En . initial training set
7: count← 0 . number of swaps within a chunk size
8: for i← 1 to numEpochs do
9: Train(D)

10: score← Evaluate(Dev set)
11: if score < bestDev then
12: if count <= 1/δ then
13: D ← Swap(D,En, Hn, δ) . Swap δ

percent of easy set in D with the hard set
14: count← count+ 1
15: else
16: Repeat step 3 to 8 . Replace training set

with new easy set of another chunk size
17: else
18: bestDev = score

should swap one measure at a time or swap both
whenever the model meets the failure criterion. In
our case, we find that prioritizing answerability
over understandability is a better choice. More
concretely, at the beginning of the training, we
start with an easy setEk of a random chunk size k.
When the failure criterion is met (e.g. the model
score does not improve on the validation set), we
randomly swap a small percent δ (e.g., 5% in our
experiments4) of the easy set Ek with the hard set
Hk within its own chunk size group k to improve
the answerability. In this case, after 1

δ failures,
the model runs out of easy set Ek and is com-
pletely based on the hard set Hk. At this junction,
we swap the model for understandability, replac-
ing the training set with a completely new easy set
El of another chunk size l, and repeat the above
process. The formal description of our proposed
curriculum reading is introduced in Algorithm 1.

3 Experiments

We conduct our experiments on the NarrativeQA
reading comprehension challenge.

3.1 Experimental Setup
This section introduces our experimental setups.

Model Hyperparameters We implement our
model in Tensorflow. Our model is trained with
Adadelta (Zeiler, 2012). The initial learning rate
is tuned amongst {0.1, 0.2, 0.5}. The L2 regular-
ization is tuned amongst {10−8, 10−6, 10−5}. The

4In early experiments, we found that 5% − 10% works
best.

size of the LSTM at the encoder layer is set to 128
and the decoder size is set to 256. The block size
b for the Introspective Alignment Layer is set to
200. We initialize our word embeddings with pre-
trained GloVe vectors (Pennington et al., 2014)
which are not updated5 during training.

Implementation Details Text is lowercased and
tokenized with NLTK6. For retrieval of para-
graphs, we use the cosine similarity between
TF-IDF vector representations. TF-IDF repre-
sentations are vectorized by Scikit-Learn using
an N-gram range of [1, 3] with stopword filter-
ing. The maximum context size is tuned amongst
{2000, 4000} and reported accordingly. The
paragraph/chunk size is dynamic and configured
amongst {50, 100, 200, 500}. The retrieved ex-
cerpts are retrieved based on similarity match be-
tween context chunks and answer or question
depending on the curriculum learning scheme.
We tune the maximum answer length amongst
{6, 8, 12} and the maximum question length is set
to 30. Since two answers are provided for each
question, we train on both sets of answers. During
construction of the golden labels, first perform an
n-gram search of the answer in the context. The
largest n-gram match is allocated indices belong-
ing to the context (i.e., [1,`c]). For the remainder
words, stopwords are automatically allocated in-
dices in the global vocabulary and non-stopwords
are assigned context indices. If an answer word is
not found, it is ignored. To construct the global
vocabulary for the pointer generator decoder and
avoid story-specific words, we use words that ap-
pear in at least 10 stories.

Evaluation During evaluation, we (1) remove
the full stop at the end of answers and (2) low-
ercase both answers. We use the BLEU, Rouge
and METEOR scorers provided at https://
github.com/tylin/coco-caption.

Baselines As baselines, we compare the pro-
posed model with reported results in (Kočiskỳ
et al., 2018).. Additionally, we include several
baselines which we implement by ourselves. This
is in the spirit of providing better (and fairer) com-

5In our early experiments, we also masked entities fol-
lowing the original work (Kočiskỳ et al., 2018), however, we
did not observe obvious difference in performance. This is
probably because we do not update word embeddings during
training.

6https://www.nltk.org/

https://github.com/tylin/coco-caption
https://github.com/tylin/coco-caption
https://www.nltk.org/
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Dev Set Test Set
Model ` BLEU-1 BLEU-4 Meteor Rouge BLEU-1 BLEU-4 Meteor Rouge

IR (BLEU) - 6.73 0.30 3.58 6.73 6.52 0.34 3.35 6.45
IR (ROUGE) - 5.78 0.25 3.71 6.36 5.69 0.32 3.64 6.26
IR (Cosine) - 6.40 0.28 3.54 6.50 6.33 0.29 3.28 6.43

BiDAF - 5.82 0.22 3.84 6.33 5.68 0.25 3.72 6.22
ASR 200 16.95 1.26 3.84 1.12 16.08 1.08 3.56 11.94
ASR 400 18.54 0.00 4.2 13.5 17.76 1.10 4.01 12.83
ASR 1K 18.91 1.37 4.48 14.47 18.36 1.64 4.24 13.4
ASR 2K 20.00 2.23 4.45 14.47 19.09 1.81 4.29 14.03
ASR 4K 19.79 1.79 4.60 14.86 19.06 2.11 4.37 14.02

ASR (Ours) 4K 12.03 1.06 3.10 8.87 11.26 0.65 2.66 8.68
R3 - 16.40 0.50 3.52 11.40 15.70 0.49 3.47 11.90

RNET-PG 4K 17.74 0.00 3.95 14.56 16.89 0.00 3.84 14.35
RNET-CPG 4K 19.71 2.05 4.91 15.05 19.27 1.45 4.87 15.50
IAL-CPG 4K 23.31 2.70 5.68 17.33 22.92 2.47 5.59 17.67
Rel. Gain - +31% +51% +23% +17% +20% +17% +28% +26%

Table 1: Results on NarrativeQA reading comprehension dataset (Full story setting). Results are reported from
(Kočiskỳ et al., 2018) .The numbers besides the model name denote the total context size. Rel. Gain reports the
relative improvement of our model and the best baseline reported in (Kočiskỳ et al., 2018) on a specific context
size setting.

parisons. The compared baselines are listed be-
low:

• Attention Sum Reader (ASR) (Kadlec
et al., 2016) is a simple baseline for reading
comprehension. Aside from our the results
on (Kočiskỳ et al., 2018), we report our own
implementation of the ASR model. Our im-
plementation follows (Kočiskỳ et al., 2018)
closely.

• Reinforced Reader Ranker (R3) (Wang
et al., 2018) is a state-of-the-art model for
open domain question answering, utilizing
reinforcement learning to select relevant pas-
sages to train the reading comprehension
model. Our objective is to get a sense of how
well do open-domain models work on under-
standing narratives.

• RNET + PG / CPG (Wang et al., 2017b)
is a strong, competitive model for paragraph
level reading comprehension. We replace
the span7 prediction layer in RNET with a
pointer generator (PG) model with the ex-
act setup as our model. We also investigate
equipping RNET + PG with our curriculum

7The performance of the RNET + span predictor is similar
to the BiDAF model reported in (Kočiskỳ et al., 2018).

learning mechanism (curriculum pointer gen-
erator).

3.2 Experimental Results

Table 1 reports the results of our approach on the
NarrativeQA benchmark. Our approach achieves
state-of-the-art results as compared to prior work
(Kočiskỳ et al., 2018). When compared to the
best ASR model in (Kočiskỳ et al., 2018), the rel-
ative improvement across all metrics are generally
high, ranging from +17% to 51%. The absolute
improvements range from approximately +1% to
+3%.

Pertaining to the models benchmarked by us,
we found that our re-implementation of ASR
(Ours) leaves a lot to be desired. Consequently,
our proposed IAL-CPG model almost doubles the
score on all metrics compared to ASR (Ours).
The R3 model, which was proposed primarily
for open-domain question answering does bet-
ter than ASR (Ours) but still fall shorts. Our
RNET-PG model performs slightly better than R3

but fails to get a score on BLEU-4. Finally,
RNET-CPG matches the state-of-the-art perfor-
mance of (Kočiskỳ et al., 2018). However, we
note that there might be distinct implementation
differences8 with the primary retrieval mechanism

8This is made clear from how our ASR model performs
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and environment/preprocessing setup. A good fair
comparison to observe the effect of our curricum
reading is the improvement between RNET-PG
and RNET-CPG.

3.3 Ablation Study

In this section, we provide an extensive ablation
study on all the major components and features of
our proposed model. Table 2 reports results of our
ablation study.

Attention ablation In ablations (1-3), we inves-
tigate the effectiveness of the self-attention layer.
In (1), we remove the entire IAL layer, piping
the context-query layer directly to the subsequent
layer. In (2), we replace block-based self-attention
with the regular self-attention. Note that the batch
size is kept extremely small (e.g., 2), to cope with
the memory requirements. In (3), we remove the
multiplicative and subtractive features in the IAL
layer. Results show that replacing the block-based
self-attention with regular self-attention hurts per-
formance the most. However, this may be due to
the requirement of reducing the batch size signif-
icantly. Removing the IAL layer only sees a con-
siderable drop while removing the enhancement
also reduces performance considerably.

Curriculum ablation In ablations (4-8), we in-
vestigate various settings pertaining to curriculum
learning. In (4), we remove the pointer genera-
tor (PG) completely. Consequently, there is also
no curriculum reading in this setting. Performance
drops significantly in this setting and demonstrates
that the pointer generator is completely essential
to good performance. In (5-6), we remove one
component from our curriculum reading mecha-
nism. Results show that the answerabiity heuris-
tic is more important than the understandability
heuristic. In (7-8), we focus on non curriculum ap-
proaches training on the easy or hard set only. It is
surprising that training on the hard set alone gives
considerablely decent performance which is com-
parable to the easy set. However, varying them in
a curriculum setting has significant benefits.

RL ablation In ablation (9), we investigated
techniques that pass the BLEU-score back as a re-
ward for the model and train the model jointly us-
ing Reinforcement learning. We follow the setting

much worse than (Kočiskỳ et al., 2018). We spend a good
amount of time trying to reproduce the results of ASR on the
original paper.

of (Paulus et al., 2017), using the mixed training
objective and setting λ to 0.05. We investigated
using BLEU-1,BLEU-4 and Rouge-L (and combi-
nations of these) as a reward for our model along
with varying λ rates. Results in Table 2 reports
the best result we obtained. We found that while
RL does not significantly harm the performance of
the model, there seem to be no significant benefit
in using RL for generating answers, as opposed to
other sequence transduction problems (Bahdanau
et al., 2016; Paulus et al., 2017).

Understandability ablation From ablations
(10-16), we study the effect of understandability
and alternating paragraph sizes. We find that
generally starting from a smaller paragraph and
moving upwards performs better and moving the
reverse direction may have adverse effects on
performance. This is made evident by ablations
(10-11). We also note that a curriculum approach
beats a static approach often.

3.4 Qualitative Error Analysis
Table 3 provides some examples of the output of
our best model. First, we discuss some unfortunate
problems with the evaluation in generation based
QA. In examples (1), the model predicts a seman-
tically correct answer but gets no credit due to a
different form. In (2), no credit is given for word-
level evaluation. In (3), the annotators provide a
more general answer and therefore, a highly spe-
cific answer (e.g., moscow) do not get any credit.

Second, we observe that our model is occasion-
ally able to get the correct (exact match) answer.
This is shown in example (4) and (7). However,
there are frequent inability to generate phrases that
make sense, even though it seems like the model is
trudging along the right direction (e.g., “to wants
to be a love of john” versus “because he wants her
to have the baby” and “in the york school” versus
“east harlem in new york”). In (9), we also note a
partially correct anwer, even though it fails to real-
ize that the question is about a male and generates
“she is a naval”.

4 Related Work

The existing work on open domain QA (Chen
et al., 2017) has distinct similarities with our prob-
lem, largely owing to the overwhelming large cor-
pus that a machine reader has to reason over. In re-
cent years, a multitude of techniques have been de-
veloped. (Wang et al., 2018) proposed reinforce-
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Ablation BLEU-1 BLEU-4 Meteor Rouge
Original Full Setting 23.31 2.70 5.68 17.33

(1) Remove IAL layer 18.93 1.94 4.52 14.51
(2) Replace regular Self-Attention 19.61 0.96 4.38 15.24

(3) Remove Enhancement 20.25 1.76 4.92 15.14
(4) Remove PG + CR 15.30 0.91 3.85 11.36

(5) Remove CR (understandability) 20.13 2.30 4.94 16.96
(6) Remove CR (answerability) 20.13 1.82 4.92 15.77

(7) Train Easy Only 20.75 1.52 4.65 15.42
(8) Train Hard Only 19.18 1.49 4.60 14.19

(9) Add RL 21.85 2.70 5.31 16.73
(10) 50 ) 100 ) 200 23.31 2.70 5.68 17.33

(11) 50 ) 100 ) 200 ) 500 21.07 2.86 5.33 16.78
(12) 100 ) 200 ) 500 ) 50 20.18 2.60 5.50 18.14
(13) 500 ) 50 ) 100 ) 200 20.95 2.51 5.41 17.05
(14) 500 ) 200 ) 100 ) 50 17.13 2.38 4.60 15.56

(15) 50 (static) 20.91 2.57 5.35 18.78
(16) 500 (static) 19.36 2.45 4.94 16.00

Table 2: Ablation results on NarrativeQA development set. (1-3) are architectural ablations. (4-8) are curriculum
reading based ablations. (9) investigates RL-based generation. (10-16) explores the understandability/paragraph
size heuristic. Note that (10) was the optimal scheme reported in the original setting. Moreover, more permutations
were tested but only representative example are reported due to lack of space.

Question Model Answer Ground Truth
(1) how many phases did the court compliment competition have? two 2
(2) who suffers from a crack addiction? dick dicky
(3) where did john and sophia go to from the airport? moscow russia
(4) what country did nadia’s cousin and friend visit her from? russia russia
(5) why is nadia kidnapped by alexei? to wants be a love of john because he now wants

her to have the baby
(6) who does mary marry? charles who is her charles
(7) what instrument does roberta guaspari play? violin violin
(8) where is the school located where roberta takes a position as a

substitute violin teacher?
in the york school east harlem in new

york city
(9) what is the profession of roberta’s husband? she is a naval he is in the us navy

Table 3: Qualitative analysis on NarrativeQA development set.

ment learning to select passages using the reader
as the reward. (Min et al., 2018) proposed ranking
the minimal context required to answer the ques-
tion. (Clark and Gardner, 2017) proposed shared
norm method for predicting spans in the multi-
paragraph reading comprehension setting. (Lin
et al., 2018) proposed ranking and de-noising tech-
niques. (Wang et al., 2017a) proposed evidence
aggregation based answer re-ranking. Most tech-
niques focused on constructing a conducive and
less noisy context for the neural reader. Our work
provides the first evidence of diverse sampling for
training neural reading comprehension models.

Our work draws inspiration from curriculum
learning (CL) (Bengio et al., 2009). One key diffi-
culty in CL is to determine which samples are easy

or hard. Self-paced learning (Jiang et al., 2015)
is a recently popular form of curriculum learning
that treats this issue as an optimization problem.
To this end, (Sachan and Xing, 2016) applies self-
paced learning for neural question answering. Au-
tomatic curriculum learning (Graves et al., 2017),
similarly, extracts signals from the learning pro-
cess to infer progress.

State-of-the-art neural question answering mod-
els are mainly based on cross-sentence attention
(Seo et al., 2016; Wang and Jiang, 2016b; Xiong
et al., 2016; Tay et al., 2018c). Self-attention
(Vaswani et al., 2017; Wang et al., 2017b) has also
been popular for reading comprehension (Wang
et al., 2018; Clark and Gardner, 2017). How-
ever, its memory complexity makes it a chal-
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lenge for reading long context. Notably, the trun-
cated/summary setting of the NarrativeQA bench-
mark have been attempted recently (Tay et al.,
2018c,b; Hu et al., 2018; Tay et al., 2018a). How-
ever, this summary setting bypasses the difficulties
of long context reading comprehension, reverting
to the more familiar RC setup.

While most of the prior work in this area has
mainly focused on span prediction models (Wang
and Jiang, 2016b) and/or multiple choice QA
models (Wang and Jiang, 2016a), there have been
recent interest in generation based QA (Tan et al.,
2017). S-NET (Tan et al., 2017) proposed a two-
stage retrieve then generate framework.

Flexible neural mechanisms that learn to point
and/or generate have been also popular across
many NLP tasks. Our model incorporates Pointer-
Generator networks (See et al., 2017) which learns
to copy or generate new words within the context
of neural summarization. Prior to Pointer Gen-
erators, CopyNet (Gu et al., 2016) incorporates a
copy mechanism for sequence to sequence learn-
ing. Pointer generators have also been recently
adopted for learning a universal multi-task archi-
tecture for NLP (McCann et al., 2018).

5 Conclusion

We proposed curriculum learning based Pointer-
generator networks for reading long narratives.
Our proposed IAL-CPG model achieves state-
of-the-art performance on the challenging Narra-
tiveQA benchmark. We show that sub-sampling
diverse views of a story and training them with
a curriculum scheme is potentially more effective
than techniques designed for open-domain ques-
tion answering. We conduct extensive ablation
studies and qualitative analysis, shedding light on
the task at hand.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning, pages 41–48. ACM.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1311–1320.
JMLR. org.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Minghao Hu, Yuxing Peng, Furu Wei, Zhen Huang,
Dongsheng Li, Nan Yang, and Ming Zhou.
2018. Attention-guided answer distillation for
machine reading comprehension. arXiv preprint
arXiv:1808.07644.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and
Alexander G Hauptmann. 2015. Self-paced curricu-
lum learning. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547.
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