
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4896–4910
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

4896

Unsupervised Question Answering by Cloze Translation

Patrick Lewis
Facebook AI Research

University College London
plewis@fb.com

Ludovic Denoyer
Facebook AI Research
denoyer@fb.com

Sebastian Riedel
Facebook AI Research

University College London
sriedel@fb.com

Abstract

Obtaining training data for Question Answer-
ing (QA) is time-consuming and resource-
intensive, and existing QA datasets are only
available for limited domains and languages.
In this work, we explore to what extent high
quality training data is actually required for
Extractive QA, and investigate the possibility
of unsupervised Extractive QA. We approach
this problem by first learning to generate con-
text, question and answer triples in an unsu-
pervised manner, which we then use to syn-
thesize Extractive QA training data automati-
cally. To generate such triples, we first sam-
ple random context paragraphs from a large
corpus of documents and then random noun
phrases or named entity mentions from these
paragraphs as answers. Next we convert an-
swers in context to “fill-in-the-blank” cloze
questions and finally translate them into nat-
ural questions. We propose and compare var-
ious unsupervised ways to perform cloze-to-
natural question translation, including train-
ing an unsupervised NMT model using non-
aligned corpora of natural questions and cloze
questions as well as a rule-based approach. We
find that modern QA models can learn to an-
swer human questions surprisingly well using
only synthetic training data. We demonstrate
that, without using the SQuAD training data at
all, our approach achieves 56.4 F1 on SQuAD
v1 (64.5 F1 when the answer is a Named en-
tity mention), outperforming early supervised
models.

1 Introduction

Extractive Question Answering (EQA) is the task
of answering questions given a context document
under the assumption that answers are spans of to-
kens within the given document. There has been
substantial progress in this task in English. For
SQuAD (Rajpurkar et al., 2016), a common EQA
benchmark dataset, current models beat human

The London Sevens is a rugby tournament held at
Twickenham Stadium in London. It is part of the World
Rugby Sevens Series. For many years the London Sevens
was the last tournament of each season but the Paris
Sevens became the last stop on the calendar in 2018.
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Figure 1: A schematic of our approach. The right side
(dotted arrows) represents traditional EQA. We intro-
duce unsupervised data generation (left side, solid ar-
rows), which we use to train standard EQA models

performance; For SQuAD 2.0 (Rajpurkar et al.,
2018), ensembles based on BERT (Devlin et al.,
2018) now match human performance. Even for
the recently introduced Natural Questions cor-
pus (Kwiatkowski et al., 2019), human perfor-
mance is already in reach. In all these cases, very
large amounts of training data are available. But,
for new domains (or languages), collecting such
training data is not trivial and can require signifi-
cant resources. What if no training data was avail-
able at all?

In this work we address the above question by
exploring the idea of unsupervised EQA, a setting
in which no aligned question, context and answer
data is available. We propose to tackle this by re-
duction to unsupervised question generation: If we
had a method, without using QA supervision, to
generate accurate questions given a context docu-
ment, we could train a QA system using the gener-
ated questions. This approach allows us to directly
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leverage progress in QA, such as model architec-
tures and pretraining routines. This framework is
attractive in both its flexibility and extensibility.
In addition, our method can also be used to gen-
erate additional training data in semi-supervised
settings.

Our proposed method, shown schematically in
Figure 1, generates EQA training data in three
steps. 1) We first sample a paragraph in a tar-
get domain—in our case, English Wikipedia. 2)
We sample from a set of candidate answers within
that context, using pretrained components (NER
or noun chunkers) to identify such candidates.
These require supervision, but no aligned (ques-
tion, answer) or (question, context) data. Given a
candidate answer and context, we can extract “fill-
the-blank” cloze questions 3) Finally, we convert
cloze questions into natural questions using an un-
supervised cloze-to-natural question translator.

The conversion of cloze questions into natu-
ral questions is the most challenging of these
steps. While there exist sophisticated rule-based
systems (Heilman and Smith, 2010) to transform
statements into questions (for English), we find
their performance to be empirically weak for
QA (see Section 3). Moreover, for specific do-
mains or other languages, a substantial engineer-
ing effort will be required to develop similar al-
gorithms. Also, whilst supervised models exist
for this task, they require the type of annotation
unavailable in this setting (Du et al. 2017; Du
and Cardie 2018; Hosking and Riedel 2019, in-
ter alia). We overcome this issue by leveraging
recent progress in unsupervised machine transla-
tion (Lample et al., 2018, 2017; Lample and Con-
neau, 2019; Artetxe et al., 2018). In particular, we
collect a large corpus of natural questions and an
unaligned corpus of cloze questions, and train a
seq2seq model to map between natural and cloze
question domains using a combination of online
back-translation and de-noising auto-encoding.

In our experiments, we find that in conjunction
with the use of modern QA model architectures,
unsupervised QA can lead to performances sur-
passing early supervised approaches (Rajpurkar
et al., 2016). We show that forms of cloze “transla-
tion” that produce (unnatural) questions via word
removal and flips of the cloze question lead to
better performance than an informed rule-based
translator. Moreover, the unsupervised seq2seq
model outperforms both the noise and rule-based

system. We also demonstrate that our method can
be used in a few-shot learning setting, for exam-
ple obtaining 59.3 F1 with 32 labelled examples,
compared to 40.0 F1 without our method.

To summarize, this paper makes the follow-
ing contributions: i) The first approach for unsu-
pervised QA, reducing the problem to unsuper-
vised cloze translation, using methods from unsu-
pervised machine translation ii) Extensive experi-
ments testing the impact of various cloze question
translation algorithms and assumptions iii) Ex-
periments demonstrating the application of our
method for few-shot learning in EQA.1

2 Unsupervised Extractive QA

We consider extractive QA where we are given a
question q and a context paragraph c and need to
provide an answer a = (b, e) with beginning b and
end e character indices in c. Figure 1 (right-hand
side) shows a schematic representation of this task.

We propose to address unsupervised QA in a
two stage approach. We first develop a genera-
tive model p(q, a, c) using no (QA) supervision,
and then train a discriminative model pr(a|q, c)
using p as training data generator. The genera-
tor p(q, a, c) = p(c)p(a|c)p(q|a, c) will generate
data in a “reverse direction”, first sampling a con-
text via p(c), then an answer within the context via
p(a|c) and finally a question for the answer and
context via p(q|a, c). In the following we present
variants of these components.

2.1 Context and Answer Generation

Given a corpus of documents our context genera-
tor p(c) uniformly samples a paragraph c of appro-
priate length from any document, and the answer
generation step creates answer spans a for c via
p(a|c). This step incorporates prior beliefs about
what constitutes good answers. We propose two
simple variants for p(a|c):

Noun Phrases We extract all noun phrases from
paragraph c and sample uniformly from this set to
generate a possible answer span. This requires a
chunking algorithm for our language and domain.

Named Entities We can further restrict the pos-
sible answer candidates and focus entirely on
named entities. Here we extract all named entity

1Synthetic EQA training data and models that generate
it will be made publicly available at https://github.
com/facebookresearch/UnsupervisedQA

https://github.com/facebookresearch/UnsupervisedQA
https://github.com/facebookresearch/UnsupervisedQA
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mentions using an NER system and then sample
uniformly from these. Whilst this reduces the va-
riety of questions that can be answered, it proves
to be empirically effective as discussed in Section
3.2.

2.2 Question Generation

Arguably, the core challenge in QA is modelling
the relation between question and answer. This
is captured in the question generator p(q|a, c) that
produces questions from a given answer in con-
text. We divide this step into two steps: cloze gen-
eration q′ = cloze(a, c) and translation, p(q|q′).

2.2.1 Cloze Generation
Cloze questions are statements with the answer
masked. In the first step of cloze generation, we
reduce the scope of the context to roughly match
the level of detail of actual questions in extractive
QA. A natural option is the sentence around the
answer. Using the context and answer from Fig-
ure 1, this might leave us with the sentence “For
many years the London Sevens was the last tour-
nament of each season but the Paris Sevens be-
came the last stop on the calendar in ”. We
can further reduce length by restricting to sub-
clauses around the answer, based on access to
an English syntactic parser, leaving us with “the
Paris Sevens became the last stop on the calendar
in ”.

2.2.2 Cloze Translation
Once we have generated a cloze question q′ we
translate it into a form closer to what we expect in
real QA tasks. We explore four approaches here.

Identity Mapping We consider that cloze ques-
tions themselves provide a signal to learn some
form of QA behaviour. To test this hypothesis, we
use the identity mapping as a baseline for cloze
translation. To produce “questions” that use the
same vocabulary as real QA tasks, we replace the
mask token with a wh* word (randomly chosen or
with a simple heuristic described in Section 2.4).

Noisy Clozes One way to characterize the dif-
ference between cloze and natural questions is as
a form of perturbation. To improve robustness to
pertubations, we can inject noise into cloze ques-
tions. We implement this as follows. First we
delete the mask token from cloze q′, apply a sim-
ple noise function from Lample et al. (2018), and

prepend a wh* word (randomly or with the heuris-
tic in Section 2.4) and append a question mark.
The noise function consists of word dropout, word
order permutation and word masking. The moti-
vation is that, at least for SQuAD, it may be suffi-
cient to simply learn a function to identify a span
surrounded by high n-gram overlap to the ques-
tion, with a tolerance to word order perturbations.

Rule-Based Turning an answer embedded in a
sentence into a (q, a) pair can be understood as a
syntactic transformation with wh-movement and a
type-dependent choice of wh-word. For English,
off-the-shelf software exists for this purpose. We
use the popular statement-to-question generator
from Heilman and Smith (2010) which uses a set
of rules to generate many candidate questions, and
a ranking system to select the best ones.

Seq2Seq The above approaches either require
substantial engineering and prior knowledge (rule-
based) or are still far from generating natural-
looking questions (identity, noisy clozes). We pro-
pose to overcome both issues through unsuper-
vised training of a seq2seq model that translates
between cloze and natural questions. More details
of this approach are in Section 2.4.

2.3 Question Answering
Extractive Question Answering amounts to find-
ing the best answer a given question q and context
c. We have at least two ways to achieve this using
our generative model:

Training a separate QA system The generator
is a source of training data for any QA architec-
ture at our disposal. Whilst the data we generate is
unlikely to match the quality of real QA data, we
hope QA models will learn basic QA behaviours.

Using Posterior Another way to extract the
answer is to find a with the highest posterior
p(a|c, q). Assuming uniform answer probabilities
conditioned on context p(a|c), this amounts to cal-
culating argmaxa′ p(q|a′, c) by testing how likely
each possible candidate answer could have gener-
ated the question, a similar method to the super-
vised approach of Lewis and Fan (2019).

2.4 Unsupervised Cloze Translation
To train a seq2seq model for cloze translation we
borrow ideas from recent work in unsupervised
Neural Machine Translation (NMT). At the heart
of most these approaches are nonparallel corpora
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of source and target language sentences. In such
corpora, no source sentence has any translation in
the target corpus and vice versa. Concretely, in
our setting, we aim to learn a function which maps
between the question (target) and cloze question
(source) domains without requiring aligned cor-
pora. For this, we need large corpora of cloze
questions C and natural questions Q.

Cloze Corpus We create the cloze corpus C by
applying the procedure outlined in Section 2.2.2.
Specifically we consider Noun Phrase (NP) and
Named Entity mention (NE) answer spans, and
cloze question boundaries set either by the sen-
tence or sub-clause that contains the answer.2 We
extract 5M cloze questions from randomly sam-
pled wikipedia paragraphs, and build a corpus C
for each choice of answer span and cloze bound-
ary technique. Where there is answer entity typing
information (i.e. NE labels), we use type-specific
mask tokens to represent one of 5 high level an-
swer types. See Appendix A.1 for further details.

Question Corpus We mine questions from En-
glish pages from a recent dump of common crawl
using simple selection criteria:3 We select sen-
tences that start in one of a few common wh*
words, (“how much”, “how many”, “what”,
“when”, “where” and “who”) and end in a ques-
tion mark. We reject questions that have repeated
question marks or “?!”, or are longer than 20 to-
kens. This process yields over 100M english ques-
tions when deduplicated. Corpus Q is created by
sampling 5M questions such that there are equal
numbers of questions starting in each wh* word.

Following Lample et al. (2018), we use C
and Q to train translation models ps→t(q|q′) and
pt→s(q

′|q) which translate cloze questions into
natural questions and vice-versa. This is achieved
by a combination of in-domain training via de-
noising autoencoding and cross-domain training
via online-backtranslation. This could also be
viewed as a style transfer task, similar to Subra-
manian et al. (2018). At inference time, ‘natural’
questions are generated from cloze questions as
argmaxq ps→t(q|q′).4 Further experimental detail

2We use SpaCy for Noun Chunking and NER, and Al-
lenNLP for the Stern et al. (2017) parser.

3http://commoncrawl.org/
4We also experimented with language model pretraining

in a method similar to Lample and Conneau (2019). Whilst
generated questions were generally more fluent and well-
formed, we did not observe significant changes in QA per-
formance. Further details in Appendix A.6

can be found in Appendix A.2.

Wh* heuristic In order to provide an appropri-
ate wh* word for our “identity” and “noisy cloze”
baseline question generators, we introduce a sim-
ple heuristic rule that maps each answer type to
the most appropriate wh* word. For example, the
“TEMPORAL” answer type is mapped to “when”.
During experiments, we find that the unsuper-
vised NMT translation functions sometimes gen-
erate inappropriate wh* words for the answer en-
tity type, so we also experiment with applying the
wh* heuristic to these question generators. For the
NMT models, we apply the heuristic by prepend-
ing target questions with the answer type token
mapped to their wh* words at training time. E.g.
questions that start with “when” are prepended
with the token “TEMPORAL”. Further details on
the wh* heuristic are in Appendix A.3.

3 Experiments

We want to explore what QA performance can be
achieved without using aligned q, a data, and how
this compares to supervised learning and other ap-
proaches which do not require training data. Fur-
thermore, we seek to understand the impact of dif-
ferent design decisions upon QA performance of
our system and to explore whether the approach
is amenable to few-shot learning when only a few
q,a pairs are available. Finally, we also wish to as-
sess whether unsupervised NMT can be used as an
effective method for question generation.

3.1 Unsupervised QA Experiments
For the synthetic dataset training method, we con-
sider two QA models: finetuning BERT (Devlin
et al., 2018) and BiDAF + Self Attention (Clark
and Gardner, 2017).5 For the posterior maximisa-
tion method, we extract cloze questions from both
sentences and sub-clauses, and use the NMT mod-
els to estimate p(q|c, a). We evaluate using the
standard Exact Match (EM) and F1 metrics.

As we cannot assume access to a development
dataset when training unsupervised models, the
QA model training is halted when QA perfor-
mance on a held-out set of synthetic QA data
plateaus. We do, however, use the SQuAD devel-
opment set to assess which model components are

5We use the HuggingFace implementation of BERT,
available at https://github.com/huggingface/
pytorch-pretrained-BERT, and the documentQA
implementation of BiDAF+SA, available at https://
github.com/allenai/document-qa

http://commoncrawl.org/
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/allenai/document-qa
https://github.com/allenai/document-qa
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Unsupervised Models EM F1

BERT-Large Unsup. QA (ens.) 47.3 56.4
BERT-Large Unsup. QA (single) 44.2 54.7
BiDAF+SA (Dhingra et al., 2018) 3.2† 6.8†

BiDAF+SA (Dhingra et al., 2018)‡ 10.0* 15.0*
BERT-Large (Dhingra et al., 2018)‡ 28.4* 35.8*

Baselines EM F1

Sliding window (Rajpurkar et al., 2016) 13.0 20.0
Context-only (Kaushik and Lipton, 2018) 10.9 14.8
Random (Rajpurkar et al., 2016) 1.3 4.3

Fully Supervised Models EM F1

BERT-Large (Devlin et al., 2018) 84.1 90.9
BiDAF+SA (Clark and Gardner, 2017) 72.1 81.1
Log. Reg. + FE (Rajpurkar et al., 2016) 40.4 51.0

Table 1: Our best performing unsupervised QA models
compared to various baselines and supervised models.
* indicates results on SQuAD dev set. † indicates re-
sults on non-standard test set created by Dhingra et al.
(2018). ‡ indicates our re-implementation

important (Section 3.2). To preserve the integrity
of the SQuAD test set, we only submit our best
performing system to the test server.

We shall compare our results to some published
baselines. Rajpurkar et al. (2016) use a super-
vised logistic regression model with feature en-
gineering, and a sliding window approach that
finds answers using word overlap with the ques-
tion. Kaushik and Lipton (2018) train (supervised)
models that disregard the input question and sim-
ply extract the most likely answer span from the
context. To our knowledge, ours is the first work to
deliberately target unsupervised QA on SQuAD.
Dhingra et al. (2018) focus on semi-supervised
QA, but do publish an unsupervised evaluation.
To enable fair comparison, we re-implement their
approach using their publicly available data, and
train a variant with BERT-Large.6 Their approach
also uses cloze questions, but without translation,
and heavily relies on the structure of wikipedia ar-
ticles.

Our best approach attains 54.7 F1 on the
SQuAD test set; an ensemble of 5 models (differ-
ent seeds) achieves 56.4 F1. Table 1 shows the
result in context of published baselines and super-
vised results. Our approach significantly outper-
forms baseline systems and Dhingra et al. (2018)
and surpasses early supervised methods.

3.2 Ablation Studies and Analysis

To understand the different contributions to the
performance, we undertake an ablation study. All
ablations are evaluated using the SQUAD devel-
opment set. We ablate using BERT-Base and
BiDAF+SA, and our best performing setup is then
used to fine-tune a final BERT-Large model, which
is the model in Table 1. All experiments with
BERT-Base were repeated with 3 seeds to account
for some instability encountered in training; we re-
port mean results. Results are shown in Table 2,
and observations and aggregated trends are high-
lighted below.

Posterior Maximisation vs. Training on gen-
erated data Comparing Posterior Maximisation
with BERT-Base and BiDAF+SA columns in Ta-
ble 2 shows that training QA models is more ef-
fective than maximising question likelihood. As
shown later, this could partly be attributed to QA
models being able to generalise answer spans, re-
turning answers at test-time that are not always
named entity mentions. BERT models also have
the advantage of linguistic pretraining, further
adding to generalisation ability.

Effect of Answer Prior Named Entities (NEs)
are a more effective answer prior than noun
phrases (NPs). Equivalent BERT-Base models
trained with NEs improve on average by 8.9 F1
over NPs. Rajpurkar et al. (2016) estimate 52.4%
of answers in SQuAD are NEs, whereas (assuming
NEs are a subset of NPs), 84.2% are NPs. How-
ever, we found that there are on average 14 NEs
per context compared to 33 NPs, so using NEs in
training may help reduce the search space of pos-
sible answer candidates a model must consider.

Effect of Question Length and Overlap As
shown in Figure 2, using sub-clauses for gener-
ation leads to shorter questions and shorter com-
mon subsequences to the context, which more
closely match the distribution of SQuAD ques-
tions. Reducing the length of cloze questions
helps the translation components produce simpler,
more precise questions. Using sub-clauses leads
to, on average +4.0 F1 across equivalent sentence-
level BERT-Base models. The “noisy cloze” gen-
erator produces shorter questions than the NMT
model due to word dropout, and shorter common
subsequences due to the word perturbation noise.

6http://bit.ly/semi-supervised-qa

http://bit.ly/semi-supervised-qa
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Cloze
Answer

Cloze
Boundary

Cloze
Translation

Wh*
Heuristic

BERT-Base BiDAF+SA Posterior Max.
EM F1 EM F1 EM F1

NE Sub-clause UNMT X 38.6 47.8 32.3 41.2 17.1 21.7
NE Sub-clause UNMT × 36.9 46.3 30.3 38.9 15.3 19.8
NE Sentence UNMT × 32.4 41.5 24.7 32.9 14.8 19.0
NP Sentence UNMT × 19.8 28.4 18.0 26.0 12.9 19.2

NE Sub-clause Noisy Cloze X 36.5 46.1 29.3 38.7 - -
NE Sub-clause Noisy Cloze × 32.9 42.1 26.8 35.4 - -
NE Sentence Noisy Cloze × 30.3 39.5 24.3 32.7 - -
NP Sentence Noisy Cloze × 19.5 29.3 16.6 25.7 - -

NE Sub-clause Identity X 24.2 34.6 12.6 21.5 - -
NE Sub-clause Identity × 21.9 31.9 16.1 26.8 - -
NE Sentence Identity × 18.1 27.4 12.4 21.2 - -
NP Sentence Identity × 14.6 23.9 6.6 13.5 - -

Rule-Based (Heilman and Smith, 2010) 16.0 37.9 13.8 35.4 - -

Table 2: Ablations on the SQuAD development set. “Wh* Heuristic” indicates if a heuristic was used to choose
sensible Wh* words during cloze translation. NE and NP refer to named entity mention and noun phrase answer
generation.

Figure 2: Lengths (blue, hashed) and longest common
subsequence with context (red, solid) for SQuAD ques-
tions and various question generation methods.

Effect of Cloze Translation Noise acts as help-
ful regularization when comparing the “identity”
cloze translation functions to “noisy cloze”, (mean
+9.8 F1 across equivalent BERT-Base models).
Unsupervised NMT question translation is also
helpful, leading to a mean improvement of 1.8
F1 on BERT-Base for otherwise equivalent “noisy
cloze” models. The improvement over noisy
clozes is surprisingly modest, and is discussed in
more detail in Section 5.

Effect of QA model BERT-Base is more effec-
tive than BiDAF+SA (an architecture specifically
designed for QA). BERT-Large (not shown in Ta-
ble 2) gives a further boost, improving our best
configuration by 6.9 F1.

Effect of Rule-based Generation QA models
trained on QA datasets generated by the Rule-

Question Generation EM F1

Rule Based 16.0 37.9
Rule Based (NE filtered) 28.2 41.5

Ours 38.6 47.8
Ours (filtered for c,a pairs in Rule Based) 38.5 44.7

Table 3: Ablations on SQuAD development set probing
the performance of the rule based system.

based (RB) system of Heilman and Smith (2010)
do not perform favourably compared to our NMT
approach. To test whether this is due to differ-
ent answer types used, we a) remove questions of
their system that are not consistent with our (NE)
answers, and b) remove questions of our system
that are not consistent with their answers. Table 3
shows that while answer types matter in that using
our restrictions help their system, and using their
restrictions hurts ours, they cannot fully explain
the difference. The RB system therefore appears
to be unable to generate the variety of questions
and answers required for the task, and does not
generate questions from a sufficient variety of con-
texts. Also, whilst on average, question lengths are
shorter for the RB model than the NMT model,
the distribution of longest common sequences are
similar, as shown in Figure 2, perhaps suggesting
that the RB system copies a larger proportion of
its input.

3.3 Error Analysis

We find that the QA model predicts answer spans
that are not always detected as named entity men-
tions (NEs) by the NER tagger, despite being
trained with solely NE answer spans. In fact,
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Figure 3: Breakdown of performance for our best QA
model on SQuAD for different question types (left) and
different NE answer categories (right)

when we split SQuAD into questions where the
correct answer is an automatically-tagged NE, our
model’s performance improves to 64.5 F1, but it
still achieves 47.9 F1 on questions which do not
have automatically-tagged NE answers (not shown
in our tables). We attribute this to the effect of
BERT’s linguistic pretraining allowing it to gener-
alise the semantic role played by NEs in a sentence
rather than simply learning to mimic the NER sys-
tem. An equivalent BiDAF+SA model scores 58.9
F1 when the answer is an NE but drops severely to
23.0 F1 when the answer is not an NE.

Figure 3 shows the performance of our system
for different kinds of question and answer type.
The model performs best with “when” questions
which tend to have fewer potential answers, but
struggles with “what” questions, which have a
broader range of answer semantic types, and hence
more plausible answers per context. The model
performs well on “TEMPORAL” answers, consis-
tent with the good performance of “when” ques-
tions.

3.4 UNMT-generated Question Analysis

Whilst our main aim is to optimise for downstream
QA performance, it is also instructive to exam-
ine the output of the unsupervised NMT cloze
translation system. Unsupervised NMT has been
used in monolingual settings (Subramanian et al.,
2018), but cloze-to-question generation presents
new challenges – The cloze and question are
asymmetric in terms of word length, and success-
ful translation must preserve the answer, not just
superficially transfer style. Figure 4 shows that
without the wh* heuristic, the model learns to
generate questions with broadly appropriate wh*
words for the answer type, but can struggle, par-

ticularly with Person/Org/Norp and Numeric an-
swers. Table 4 shows representative examples
from the NE unsupervised NMT model. The
model generally copies large segments of the in-
put. Also shown in Figure 2, generated ques-
tions have, on average, a 9.1 token contiguous
sub-sequence from the context, corresponding to
56.9% of a generated question copied verbatim,
compared to 4.7 tokens (46.1%) for SQuAD ques-
tions. This is unsurprising, as the backtranslation
training objective is to maximise the reconstruc-
tion of inputs, encouraging conservative transla-
tion.

The model exhibits some encouraging, non-
trivial syntax manipulation and generation, partic-
ularly at the start of questions, such as example 7
in Table 4, where word order is significantly mod-
ified and “sold” is replaced by “buy”. Occasion-
ally, it hallucinates common patterns in the ques-
tion corpus (example 6). The model can struggle
with lists (example 4), and often prefers present
tense and second person (example 5). Finally, se-
mantic drift is an issue, with generated questions
being relatively coherent but often having different
answers to the inputted cloze questions (example
2).

We can estimate the quality and grammaticality
of generated questions by using the well-formed
question dataset of Faruqui and Das (2018). This
dataset consists of search engine queries annotated
with whether the query is a well-formed ques-
tion or not. We train a classifier on this task,
and then measure how many questions are clas-
sified as “well-formed” for our question genera-
tion methods. Full details are given in Appendix
A.5. We find that 68% of questions generated
by UNMT model are classified as well-formed,
compared to 75.6% for the rule-based system and
92.3% for SQuAD questions. We also note that us-
ing language model pretraining improves the qual-
ity of questions generated by UNMT model, with
78.5% classified as well-formed, surpassing the
rule-based system (see Appendix A.6).

3.5 Few-Shot Question Answering

Finally, we consider a few-shot learning task with
very limited numbers of labelled training exam-
ples. We follow the methodology of Dhingra et al.
(2018) and Yang et al. (2017), training on a small
number of training examples and using a develop-
ment set for early stopping. We use the splits made
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# Cloze Question Answer Generated Question
1 they joined with PERSON/NORP/ORG to defeat him Rom Who did they join with to defeat him?
2 the NUMERIC on Orchard Street remained open un-

til 2009
second How much longer did Orchard Street remain

open until 2009?
3 making it the third largest football ground in PLACE Portugal Where is it making the third football ground?
4 he speaks THING, English, and German Spanish What are we , English , and German?
5 Arriving in the colony early in TEMPORAL 1883 When are you in the colony early?
6 The average household size was NUMERIC 2.30 How much does a Environmental Engineering

Technician II in Suffolk , CA make?
7 WALA would be sold to the Des Moines-based PER-

SON/NORP/ORG for $86 million
Meredith
Corp

Who would buy the WALA Des Moines-based
for $86 million?

Table 4: Examples of cloze translations for the UNMT model using the wh* heuristic and subclause cloze extrac-
tion. More examples can be found in appendix A.7

Figure 4: Wh* words generated by the UNMT model
for cloze questions with different answer types.

available by Dhingra et al. (2018), but switch the
development and test splits, so that the test split
has n-way annotated answers. We first pretrain a
BERT-large QA model using our best configura-
tion from Section 3, then fine-tune with a small
amount of SQuAD training data. We compare this
to our re-implementation of Dhingra et al. (2018),
and training the QA model directly on the avail-
able data without unsupervised QA pretraining.

Figure 5 shows performance for progressively
larger amounts of training data. As with Dhingra
et al. (2018), our numbers are attained using a de-
velopment set for early stopping that can be larger
than the training set. Hence this is not a true re-
flection of performance in low data regimes, but
does allow for comparative analysis between mod-
els. We find our approach performs best in very
data poor regimes, and similarly to Dhingra et al.
(2018) with modest amounts of data. We also note
BERT-Large itself is remarkably efficient, reach-
ing ∼60% F1 with only 1% of the available data.

4 Related Work

Unsupervised Learning in NLP Most repre-
sentation learning approaches use latent variables
(Hofmann, 1999; Blei et al., 2003), or language

Figure 5: F1 score on the SQuAD development set for
progressively larger training dataset sizes

model-inspired criteria (Collobert and Weston,
2008; Mikolov et al., 2013; Pennington et al.,
2014; Radford et al., 2018; Devlin et al., 2018).
Most relevant to us is unsupervised NMT (Con-
neau et al., 2017; Lample et al., 2017, 2018;
Artetxe et al., 2018) and style transfer (Subrama-
nian et al., 2018). We build upon this work, but
instead of using models directly, we use them for
training data generation. Radford et al. (2019) re-
port that very powerful language models can be
used to answer questions from a conversational
QA task, CoQA (Reddy et al., 2018) in an un-
supervised manner. Their method differs signif-
icantly to ours, and may require “seeding” from
QA dialogs to encourage the language model to
generate answers.

Semi-supervised QA Yang et al. (2017) train a
QA model and also generate new questions for
greater data efficiency, but require labelled data.
Dhingra et al. (2018) simplify the approach and
remove the supervised requirement for question
generation, but do not target unsupervised QA or
attempt to generate natural questions. They also
make stronger assumptions about the text used for
question generation and require Wikipedia sum-
mary paragraphs. Wang et al. (2018) consider
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semi-supervised cloze QA, Chen et al. (2018)
use semi-supervision to improve semantic pars-
ing on WebQuestions (Berant et al., 2013), and
Lei et al. (2016) leverage semi-supervision for
question similarity modelling. Finally, inject-
ing external knowledge into QA systems could
be viewed as semi-supervision, and Weissenborn
et al. (2017) and Mihaylov and Frank (2018) use
Conceptnet (Speer et al., 2016) for QA tasks.

Question Generation has been tackled with
pipelines of templates and syntax rules (Rus et al.,
2010). Heilman and Smith (2010) augment this
with a model to rank generated questions, and Yao
et al. (2012) and Olney et al. (2012) investigate
symbolic approaches. Recently there has been in-
terest in question generation using supervised neu-
ral models, many trained to generate questions
from c, a pairs in SQuAD (Du et al., 2017; Yuan
et al., 2017; Zhao et al., 2018; Du and Cardie,
2018; Hosking and Riedel, 2019)

5 Discussion

It is worth noting that to attain our best perfor-
mance, we require the use of both an NER system,
indirectly using labelled data from OntoNotes
5, and a constituency parser for extracting sub-
clauses, trained on the Penn Treebank (Marcus
et al., 1994).7 Moreover, a language-specific wh*
heuristic was used for training the best perform-
ing NMT models. This limits the applicability and
flexibility of our best-performing approach to do-
mains and languages that already enjoy extensive
linguistic resources (named entity recognition and
treebank datasets), as well as requiring some hu-
man engineering to define new heuristics.

Nevertheless, our approach is unsupervised
from the perspective of requiring no labelled
(question, answer) or (question, context) pairs,
which are usually the most challenging aspects of
annotating large-scale QA training datasets.

We note the “noisy cloze” system, consisting of
very simple rules and noise, performs nearly as
well as our more complex best-performing system,
despite the lack of grammaticality and syntax as-
sociated with questions. The questions generated
by the noisy cloze system also perform poorly on
the “well-formedness” analysis mentioned in Sec-

7Ontonotes 5: https://catalog.ldc.upenn.
edu/LDC2013T19

tion 3.4, with only 2.7% classified as well-formed.
This intriguing result suggests natural questions
are perhaps less important for SQuAD and strong
question-context word matching is enough to do
well, reflecting work from Jia and Liang (2017)
who demonstrate that even supervised models rely
on word-matching.

Additionally, questions generated by our ap-
proach require no multi-hop or multi-sentence rea-
soning, but can still be used to achieve non-trivial
SQuAD performance. Indeed, Min et al. (2018)
note 90% of SQuAD questions only require a sin-
gle sentence of context, and Sugawara et al. (2018)
find 76% of SQuAD has the answer in the sentence
with highest token overlap to the question.

6 Conclusion

In this work, we explore whether it is possible to
to learn extractive QA behaviour without the use
of labelled QA data. We find that it is indeed pos-
sible, surpassing simple supervised systems, and
strongly outperforming other approaches that do
not use labelled data, achieving 56.4% F1 on the
popular SQuAD dataset, and 64.5% F1 on the sub-
set where the answer is a named entity mention.
However, we note that whilst our results are en-
couraging on this relatively simple QA task, fur-
ther work is required to handle more challenging
QA elements and to reduce our reliance on linguis-
tic resources and heuristics.
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A Appendices

A.1 Cloze Question Featurization and
Translation

Cloze questions are featurized as follows. Assume
we have a cloze question extracted from a para-
graph “the Paris Sevens became the last stop on
the calendar in .”, and the answer “2018”.
We first tokenize the cloze question, and discard it
if it is longer than 40 tokens. We then replace the
“blank” with a special mask token. If the answer
was extracted using the noun phrase chunker, there
is no specific answer entity typing so we just use a
single mask token "MASK". However, when we
use the named entity answer generator, answers
have a named entity label, which we can use to
give the cloze translator a high level idea of the an-
swer semantics. In the example above, the answer
“2018” has the named entity type "DATE". We
group fine grained entity types into higher level
categories, each with its own masking token as
shown in Table 5, and so the mask token for this
example is "TEMPORAL".

A.2 Unsupervised NMT Training Setup
Details

Here we describe experimental details for un-
supervised NMT setup. We use the English
tokenizer from Moses (Koehn et al., 2007),
and use FastBPE (https://github.com/
glample/fastBPE) to split into subword units,
with a vocabulary size of 60000. The architec-
ture uses a 4-layer transformer encoder and 4-layer
transformer decoder, where one layer is language
specific for both the encoder and decoder, the rest
are shared. We use the standard hyperparameter
settings recommended by Lample et al. (2018).
The models are initialised with random weights,
and the input word embedding matrix is initialised
using FastText vectors (Bojanowski et al., 2016)
trained on the concatenation of the C and Q cor-
pora. Initially, the auto-encoding loss and back-
translation loss have equal weight, with the auto-
encoding loss coefficient reduced to 0.1 by 100K
steps and to 0 by 300k steps. We train using 5M
cloze questions and natural questions, and cease
training when the BLEU scores between back-
translated and input questions stops improving,
usually around 300K optimisation steps. When

generating, we decode greedily, and note that de-
coding with a beam size of 5 did not significantly
change downstream QA performance, or greatly
change the fluency of generations.

A.3 Wh* Heuristic
We defined a heuristic to encourage appropriate
wh* words for the inputted cloze question’s an-
swer type. This heuristic is used to provide a rel-
evant wh* word for the “noisy cloze” and “iden-
tity” baselines, as well as to assist the NMT model
to produce more precise questions. To this end, we
map each high level answer category to the most
appropriate wh* word, as shown on the right hand
column of Table 5 (In the case of NUMERIC types,
we randomly choose between “How much” and
“How many”). Before training, we prepend the
high level answer category masking token to the
start of questions that start with the correspond-
ing wh* word, e.g. the question “Where is Mount
Vesuvius?” would be transformed into “PLACE
Where is Mount Vesuvius ?”. This al-
lows the model to learn a much stronger associa-
tion between the wh* word and answer mask type.

A.4 QA Model Setup Details
We train BiDAF + Self Attention using the default
settings. We evaluate using a synthetic develop-
ment set of data generated from 1000 context para-
graphs every 500 training steps, and halt when the
performance has not changed by 0.1% for the last
5 evaluations.

We train BERT-Base and BERT-Large with a
batch size of 16, and the default learning rate hy-
perparameters. For BERT-Base, we evaluate using
a synthetic development set of data generated from
1000 context paragraphs every 500 training steps,
and halt when the performance has not changed by
0.1% for the last 5 evaluations. For BERT-Large,
due to larger model size, training takes longer, so
we manually halt training when the synthetic de-
velopment set performance plateaus, rather than
using the automatic early stopping.

A.5 Question Well-Formedness
We can estimate how well-formed the questions
generated by various configurations of our model
are using the Well-formed query dataset of Faruqui
and Das (2018). This dataset consists of 25,100

https://github.com/glample/fastBPE
https://github.com/glample/fastBPE
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High Level Answer Category Named Entity labels Most appropriate wh*
PERSON/NORP/ORG PERSON, NORP, ORG Who
PLACE GPE, LOC, FAC Where
THING PRODUCT, EVENT, WORKOFART, LAW, LANGUAGE What
TEMPORAL TIME, DATE When
NUMERIC PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL How much/How many

Table 5: High level answer categories for the different named entity labels

Cloze
Answer

Cloze
Boundary

Cloze
Translation

Wh*
Heuristic

% Well-
formed

NE Sub-clause UNMT X 68.0
NE Sub-clause UNMT × 65.3
NE Sentence UNMT × 61.3
NP Sentence UNMT × 61.9

NE Sub-clause Noisy Cloze X 2.7
NE Sub-clause Noisy Cloze × 2.4
NE Sentence Noisy Cloze × 0.7
NP Sentence Noisy Cloze × 0.8

NE Sub-clause Identity X 30.8
NE Sub-clause Identity × 20.0
NE Sentence Identity × 49.5
NP Sentence Identity × 48.0

NE Sub-clause UNMT* X 78.5

Rule-Based (Heilman and Smith, 2010) 75.6

SQuAD Questions (Rajpurkar et al., 2016) 92.3

Table 6: Fraction of questions classified as ”well-
formed” by a classifier trained on the dataset of Faruqui
and Das (2018) for different question generation mod-
els. * indicates MLM pretraining was applied before
UNMT training

search engine queries, annotated with whether the
query is a well-formed question. We train a BERT-
Base classifier on the binary classification task,
achieving a test set accuracy of 80.9% (compared
to the previous state of the art of 70.7%). We then
use this classifier to measure what proportion of
questions generated by our models are classified as
“well-formed”. Table 6 shows the full results. Our
best unsupervised question generation configura-
tion achieves 68.0%, demonstrating the model is
capable of generating relatively well-formed ques-
tions, but there is room for improvement, as the
rule-based generator achieves 75.6%. MLM pre-
training (see Appendix A.6) greatly improves the
well-formedness score. The classifier predicts that
92.3% of SQuAD questions are well-formed, sug-
gesting it is able to detect high quality questions.
The classifier appears to be sensitive to fluency
and grammar, with the “identity” cloze transla-
tion models scoring much higher than their “noisy
cloze” counterparts.

A.6 Language Model Pretraining
We experimented with Masked Language Model
(MLM) pretraining of the translation mod-
els, ps→t(q|q′) and pt→s(q

′|q). We use
the XLM implementation (https://github.
com/facebookresearch/XLM) and use de-
fault hyperparameters for both MLM pretraining
and and unsupervised NMT fine-tuning. The
UNMT encoder is initialized with the MLM
model’s parameters, and the decoder is randomly
initialized. We find translated questions to be
qualitatively more fluent and abstractive than the
those from the models used in the main paper.
Table 6 supports this observation, demonstrating
that questions produced by models with MLM pre-
training are classified as well-formed 10.5% more
often than those without pretraining, surpassing
the rule-based question generator of Heilman and
Smith (2010). However, using MLM pretraining
did not lead to significant differences for question
answering performance (the main focus of this pa-
per), so we leave a thorough investigation into lan-
guage model pretraining for unsupervised ques-
tion answering as future work.

A.7 More Examples of Unsupervised NMT
Cloze Translations

Table 4 shows examples of cloze question transla-
tions from our model, but due to space constraints,
only a few examples can be shown there. Table 7
shows many more examples.

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
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Cloze Question Answer Generated Question
to record their sixth album in TEMPORAL 2005 When will they record their sixth album ?

Redline management got word that both were nego-
tiating with THING

Trek/Gary
Fisher

What Redline management word got that both were
negotiating ?

Reesler to suspect that Hitchin murdered PER-
SON/NORP/ORG

Wright Who is Reesler to suspect that Hitchin murdered ?

joined PERSON/NORP/ORG in the 1990s to
protest the Liberals’ long-gun registry

the Reform
Party

Who joined in the 1990s to protest the Liberals ’
long-gun registry ?

to end the TEMPORAL NLCS, and the season, for
the New York Mets

2006 When will the NLCS end , and the season , for the
New York Mets ?

NUMERIC of the population concentrated in the
province of Lugo

about 75% How many of you are concentrated in the province
of Lugo ?

placed NUMERIC on uneven bars and sixth on bal-
ance beam

fourth How many bars are placed on uneven bars and sixth
on balance beam ?

to open a small branch in PLACE located in Colonia
Escalon in San Salvador

La Casona Where do I open a small branch in Colonia Escalon
in San Salvador ?

they finished outside the top eight when considering
only THING events

World Cup What if they finished outside the top eight when
considering only events ?

he obtained his Doctor of Law degree in
1929.Who’s who in PLACE

America Where can we obtain our Doctor of Law degree in
1929.Who ’ s who ?

to establish the renowned Paradise Studios in
PLACE in 1979

Sydney Where is the renowned Paradise Studios in 1979 ?

Ukraine came out ahead NUMERIC four to three How much did Ukraine come out ahead ?

their rule over these disputed lands was cemented
after another Polish victory, in THING

the Polish-
Soviet War

What was their rule over these disputed lands after
another Polish victory , anyway ?

sinking PERSON/NORP/ORG 35 before being
driven down by depth charge attacks

Patrol Boat Who is sinking 35 before being driven down by
depth charge attacks ?

to hold that PLACE was the sole or primary perpe-
trator of human rights abuses

North Korea Where do you hold that was the sole or primary per-
petrator of human rights abuses ?

to make it 21 to the Hungarians, though PLACE
were quick to equalise

Italy Where do you make it 2-1 to the Hungarians ,
though quick equalise ?

he was sold to Colin Murphy’s Lincoln City for a
fee of NUMERIC

15,000 How much do we need Colin Murphy ’ s Lincoln
City for a fee ?

Bierut is the co-founder of the blog PER-
SON/NORP/ORG

Design
Observer

Who is the Bierut co-founder of the blog ?

the Scotland matches at the 1982 THING being
played in a ”family atmosphere”

FIFA World
Cup

What are the Scotland matches at the 1982 being
played in a ” family atmosphere ” ?

Tom realizes that he has finally conquered both
”THING” and his own stage fright

La Cinquette What happens when Tom realizes that he has finally
conquered both ” and his own stage fright ?

it finished first in the PERSON/NORP/ORG ratings
in April 1990

Arbitron Who finished it first in the ratings in April 1990 ?

his observer to destroy NUMERIC others two How many others can his observer destroy ?

Martin had recorded some solo songs (including
”Never Back Again”) in 1984 in PLACE

the United
Kingdom

Where have Martin recorded some solo songs ( in-
cluding ” Never Back Again ” ) in 1984 ?

the NUMERIC occurs under stadium lights second How many lights occurs under stadium ?

PERSON/NORP/ORG had made a century in the
fourth match

Poulton Who had made a century in the fourth match ?

was sponsored by the national liberal politician
PERSON/NORP/ORG

Valentin
Zarnik

Who was sponsored by the national liberal politi-
cian ?

Woodbridge also shares the PERSON/NORP/ORG
with the neighboring towns of Bethany and Orange.

Amity Re-
gional High
School

Who else shares the Woodbridge with the neighbor-
ing towns of Bethany and Orange ?

A new Standard TEMPORAL benefit was intro-
duced for university students

tertiary When was a new Standard benefit for university stu-
dents ?

mentions the Bab and THING Bbs What are the mentions of Bab ?

Table 7: Further cloze translations from the UNMT model (with subclause boundaries and wh* heuristic applied)


