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Abstract

We present a latent variable model for pre-
dicting the relationship between a pair of text
sequences. Unlike previous auto-encoding—
based approaches that consider each sequence
separately, our proposed framework utilizes
both sequences within a single model by gen-
erating a sequence that has a given relation-
ship with a source sequence. We further
extend the cross-sentence generating frame-
work to facilitate semi-supervised training.
We also define novel semantic constraints that
lead the decoder network to generate seman-
tically plausible and diverse sequences. We
demonstrate the effectiveness of the proposed
model from quantitative and qualitative exper-
iments, while achieving state-of-the-art results
on semi-supervised natural language inference
and paraphrase identification.

1 Introduction

Text sequence matching is a task whose objec-
tive is to predict the degree of match between two
or more text sequences. For example, in natu-
ral language inference, a system has to infer the
relationship between a premise and a hypothesis
sentence, and in paraphrase identification a sys-
tem should find out whether a sentence is a para-
phrase of the other. Since various natural language
processing problems, including answer sentence
selection, text retrieval, and machine comprehen-
sion, involve text sequence matching components,
building a high-performance text matching model
plays a key role in enhancing quality of systems
for these problems (Tan et al., 2016; Rajpurkar
et al., 2016; Wang and Jiang, 2017; Tymoshenko
and Moschitti, 2018).

With the emergence of large-scale corpora, end-
to-end deep learning models are achieving remark-
able results on text sequence matching; these in-
clude architectures that are linguistically moti-
vated (Bowman et al., 2016a; Chen et al., 2017a;

Kim et al., 2019), that introduce external knowl-
edge (Chen et al., 2018), and that use atten-
tion mechanisms (Parikh et al., 2016; Shen et al.,
2018b). The recent deep neural network—based
work on text matching could roughly be catego-
rized into two subclasses: i) methods that exploit
inter-sentence features and ii) methods based on
sentence encoders. In this work, we focus on the
latter where sentences' are separately encoded us-
ing a shared encoder and then fed to a classifier
network, due to its efficiency and general applica-
bility across tasks.

Meanwhile, despite the success of deep neu-
ral networks in natural language processing, the
fact that they require abundant training data might
be problematic, as constructing labeled data is a
time-consuming and labor-intensive process. To
mitigate the data scarcity problem, several semi-
supervised learning paradigms, that take advan-
tage of unlabeled data when only some of the data
examples are labeled (Chapelle et al., 2010), are
proposed. These unlabeled data are much easier to
collect, thus utilizing them could be a good option;
for example in text matching, possibly related sen-
tence pairs could be retrieved from a database of
text via simple heuristics such as word overlap.

In this paper, we propose a cross-sentence latent
variable model for semi-supervised text sequence
matching. The proposed framework is based on
deep probabilistic generative models (Kingma and
Welling, 2014; Rezende et al., 2014) and is ex-
tended to make use of unlabeled data. As it is
trained to generate a sentence that has a given rela-
tionship with a source sentence, both sentences in
a pair are utilized together, and thus training objec-
tives are defined more naturally than other models
that consider each sentence separately (Zhao et al.,
2018; Shen et al., 2018a). To further regularize

"Throughout the paper, we will use the term ‘sequence’
and ‘sentence’ interchangeably unless ambiguous.
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the model to generate more plausible and diverse
sentences, we define semantic constraints and use
them for fine-tuning.

From experiments, we empirically prove that
the proposed method significantly outperforms
previous work on semi-supervised text sequence
matching. We also conduct extensive qualitative
analyses to validate the effectiveness of the pro-
posed model.

The rest of the paper is organized as follows.
In §2, we briefly introduce the background for our
work. We describe the proposed cross-sentence
latent variable model in §3, and give results from
experiments in §4. We study the prior work related
to ours in §5 and conclude in §6.

2 Background

2.1 Variational Auto-Encoders

Variational auto-encoder (VAE, Kingma and
Welling, 2014) is a deep generative model for
modeling the data distribution pg(x). It assumes
that a data point x is generated by the following
random process: (1) z is sampled from p(z) and
(2) x is generated from pg(x|z).

Thus the natural training objective would be
to directly maximize the marginal log-likelihood
logpg(x) = log [ pe(x|z)p(z)dz. However
it is intractable to compute the marginal log-
likelihood without using simplifying assumption
such as mean-field approximation (Blei et al.,
2017). Therefore the following variational lower
bound —L is used as a surrogate objective:

— L(0,¢;x) = —Drr(qg(2/x)[p(2))
+ IE:qd,(z|x) [logpe(X|Z)] s

where ¢4 (z|x) is a variational approximation
to the unknown pg(z|x), and Dgr(q||p) is the
Kullback-Leibler (KL) divergence between ¢ and
p. Maximizing the surrogate objective —L is
proven to minimize D ,(¢¢(2|%)|pe(z|x)), and
it can also be seen as maximizing the expected
data log-likelihood with respect to q4 while using
Dr1.(94(z|x)||pe(z)) as a regularization term.

VAE:s are successfully applied in modeling var-
ious data: including image (Pu et al., 2016; Gulra-
jani et al., 2017), music (Roberts et al., 2018), and
text (Miao et al., 2016; Bowman et al., 2016b).
The VAE framework can also be extended to
constructing conditional generative models (Sohn
etal., 2015) or learning from semi-supervised data
(Kingma et al., 2014; Xu et al., 2017).

VAEs for text pair modeling. The most sim-
ple approach to modeling text pairs using the VAE
framework is to consider two text sequences sep-
arately (Zhao et al., 2018; Shen et al., 2018a).
That is, a generator is trained to reconstruct a sin-
gle input sequence rather than integrating both se-
quences, and the two latent representations en-
coded from a variational posterior are given to a
classifier network. When label information is not
available, only the reconstruction objective is used
for training. This means that the classifier param-
eters are not updated in the unsupervised setting,
and thus the interaction between the variational
posterior (or encoder) and the classifier could be
restricted.

2.2 von Mises-Fisher Distribution

Since the advent of deep generative models with
variational inference, the typical choice for prior
and variational posterior distribution has been the
Gaussian, likely due to its well-studied properties
and easiness of reparameterization. However it of-
ten leads a model to face the posterior collapse
problem where a model ignores latent variables
by pushing the KL divergence term to zero (Chen
et al., 2017b; van den Oord et al., 2017), espe-
cially in text generation models where powerful
decoders are used (Bowman et al., 2016b; Yang
et al., 2017).

Various techniques are proposed to mitigate this
problem: including KL cost annealing (Bowman
et al., 2016b), weakening decoders (Yang et al.,
2017), skip connection (Dieng et al., 2019), using
different objectives (Alemi et al., 2018), and using
alternative distributions (Guu et al., 2018). In this
work, we take the last approach by utilizing a von
Mises—Fisher (vMF) distribution.

A vMF distribution is a probability distribution
on the (d — 1)-sphere, therefore samples are com-
pared according to their directions, reminiscent
of the cosine similarity. It has two parameters—
mean direction & € R? and concentration x € R.
As the KL divergence between VMF(pu, ) and the
hyperspherical uniform distribution 2/(S%~!) =
VMEF(-,0) only depends on «, the KL divergence
is a constant if the concentration parameter is
fixed. Therefore when vVMF(u, k) with fixed x and
VMEF(+, 0) are used as posterior and prior, the pos-
terior collapse does not occur inherently.

To the best of our knowledge, Guu et al. (2018)
were the first to use vVMF as posterior and prior
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Figure 1: The overview of the entire framework. Blue
dashed lines indicate semantic constraints.
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Figure 2: Illustration of the graphical models. (a) the
generative process of the output x;; (b) the approximate
inference of z; and the discriminative classifier for y.

for VAEs, and Xu and Durrett (2018) empirically
proved the effectiveness of vMF-VAE in natural
language generation. Davidson et al. (2018) gen-
eralized the vMF-VAE and proposed the reparam-
eterization trick for vMF. We refer readers to Ap-
pendix A for detailed description of vMF we used.

3 Proposed Framework

In this section, we describe the proposed frame-
work in detail. We formally define the cross-
sentence latent variable model (CS-LVM) and de-
scribe the optimization objectives. We also intro-
duce semantic constraints to keep learned repre-
sentations in a semantically plausible region. Fig.
1 illustrates the entire framework.

3.1 Cross-Sentence Latent Variable Model

Though the auto-encoding frameworks described
in §2.1 have intriguing properties, it may hinder
the possibility of training an encoder to extract
rich features for text pair modeling, due to the fact
that the generative modeling process is confined
within a single sequence. Therefore the interaction
between a generative model and a discriminative
classifier is restricted, since the two sequences are
separately modeled and the pair-wise information
is only considered through the classifier network.
Our proposed CS-LVM addresses this problem
by cross-sentence generation of text given a text
pair and its label. As the sentences in a pair
are directly related within a generative model, the
training objectives are defined in a more princi-
pled way than VAE-based semi-supervised text
matching frameworks. Notably it also mimics the

dataset construction process of some corpora: a
worker generates a target text given a label and a
source text (e.g. Bowman et al., 2015; Williams
etal., 2018).

Given a pair (x1,X2), let x5, x; € {x1,X2} be
a source and a target sequence respectively. Then
we assume X; is generated according to the fol-
lowing process (see Fig. 2a):

1. a latent variable z, that contains the content
of a source sequence is sampled from p(z;),

2. a variable y that determines the relationship
between a target and the source sequence is
sampled from p(y),

3. x¢ is generated from a conditional distribu-
tion pg(x¢|zs, y)-

In the above process, the class label y is treated as
a hidden variable in the unsupervised case and an
observed variable in the supervised case.

Accordingly, when the label information is
available, the optimization objective for a gener-
ative model is the marginal log-likelihood of the
observed variables x; and y:

log po (x1, ) = log / N

— log / po(xe|2s, )p(ze)p(y)dzs. (1)

To address the intractability we instead optimize
the lower bound of Eq. 1:2

logpe(Xt’y) > 7DKL(q¢(ZS|XS)”p(ZS))
+ eqp(zs\xs)[logpg(xtwy Zs)] + logp(y)v (2)

where g4 (25|X,) is a variational approximation of
the posterior pg(zs|x¢,y). Though Eq. 2 holds
for any ¢4 having the same support with p(z;), we
choose this form of variational posterior from the
following motivation: since x5 is related to x; by
the label information vy, x5 would have an influ-
ence on the space of zs in a similar way to (X¢,y).
Due to this particular choice of ¢y, zs depends
only on X, and is independent of the label informa-
tion possibly permeated in x;. In other words, this
design induces gy to extract the features needed
for controlling the semantics only from xg, while
preventing q¢ from encoding other biases.

To extend the objective to the unsupervised
setup, we marginalize out y from Eq. 2 using a

2See Appendix B for derivation of the lower bound.
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classifier distribution. We will provide more de-
tailed explanation of the optimization objectives in
§3.3.

3.2 Architecture

Now we describe the architectures we used for
constructing CS-LVM. We first encode a source
sequence into a fixed-length representation using a
recurrent neural network (RNN): ¢¢"¢(x,) = ms.
From mg we obtain a variational approximate dis-
tribution gg(zs|x,) = g°°%(m;) and sample a la-
tent representation z, ~ ¢¢(2zs|Xs). In our exper-
iments, a long short-term memory (LSTM) recur-
rent network and a feed-forward network are used
as ¢°"¢ and g°°% respectively. From the fact that
the mean direction parameter ps of VMF (s, k)
should be a unit vector, g°** additionally normal-
izes the output of the feed-forward network to be
geode (my) o = 1.

Then we generate the target sequence x; from
zs and y. Similarly to the encoder network, we
use an LSTM for a decoder, thus the distribution
is factorized as follows:

Ny +1
po(xily,ze) = [] polweilwi<i,v,zs), (3)

i=1

where x; = (711,...,7¢N,,) and wyp = <s>,
Wi Ny, 41 = </s> are special tokens indicating
the start and the end of a sequence.

We project the word index wy ; and label index y
into embedding spaces to obtain the word embed-
ding w;; and label embedding y. Then to con-
struct an input for ¢-th time step, v;, we concate-
nate the ¢-th target word embedding wy ;, the label
embedding y, and the latent representation zs al-
together:

Vi = [Weisy; Zs).

Thus pe(wyi|we,<i, zs,y) is computed from i-th
state s; of the decoder RNN:

p@(wt,i|wt,<iv Y, ZS) = SOftmaX(gOUt(si))

dec

S5; = 9; (Vz‘,Siq),

where ¢°% is a feed-forward network and gflec is
the state transition function of the decoder LSTM
at ¢-th time step.

For a discriminative classifier network we fol-
low the siamese architecture, as mentioned in §1.
X and x; are fed to a shared LSTM network f€"¢

Algorithm 1 Training procedure of CS-LVM.

Input: Labeled dataset X;, Unlabeled dataset X,
Model parameters 0, ¢, 1)

1: procedure TRAIN(X;, Xy, 0, ¢, 1))
2: repeat
3: Sample (Xl,57 Xi,ty yz) ~ Xl
4: Sample (Xu,s, Xu,t) ~ Xu
S Compute [’l(07¢>w;xl,syxl,t>yl) by (6)
6: Compute L, (0, @, Y;Xu,s, Xu,t) by (9)
7: Update 6, ¢, ¢ by gradient descent on £; + L.,
8: until stop criterion is met
9: procedure FINETUNE(X], X, 0, ¢, 1)
10: repeat
11: Update 6, ¢, v following line 3-7
12: Update 6 by gradient descent on (11-14)
13: until stop criterion is met
to obtain sentence vectors h; = f°"‘(x,) and

hy = f“"“(x;). Then h; and hy are combined
by the function f7%*¢ to form a single fused vec-
tor, and the fused representation is given to a feed-
forward network f%*¢ to infer the relationship:

qu (ylx1, X2) = softmax(f4(f74*¢(hy, hy))).

To learn from data more efficiently and to re-
duce the number of trainable parameters, we tie
the weights for two encoders—for the generative
model and the discriminative classifier; i.e. g°"*¢ =
f€™¢. This mitigates the problem that only source
sequences are used for training g and enhances
the interaction between the generative model and
the classifier. We will see from experiments that
tying encoder weights improves performance and
stabilizes optimization (§4.3).

Also note that the functions g™ are only used
in training, and the model has the same test-time
computational complexity with typical classifica-
tion models.

3.3 Optimization

In this subsection we describe how the entire
model is optimized. We first define optimization
objectives for supervised and unsupervised train-
ing, and then introduce constraints to regularize
the model to generate sequences with intended
semantic characteristics. The entire optimization
procedure is summarized in Algorithm 1.

3.3.1 Supervised Objective

In the supervised setting, a data sample is as-
sumed to contain label information: (xi,x2,y) €
AX;.  Without loss of generality let us assume
(xs,%;) = (x1,%2).> Since y is an observed vari-

3The relationship between a source and a target may ei-
ther be unidirectional, bidirectional, or reflexive, depending
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able in this case, we can directly use Eq. 2 in train-
ing. From Eqgs. 2 and 3, the objective for the gen-
erative model is defined by:*

- E?en(ev ¢a Xsy Xty y) = logpe(xt‘?ﬁ Zs)
+logp(y) — Drr(ag(zsxs)|[p(zs)), (4)

where z; ~ q¢(2zs|xs) and p(y), p(zs) are prior
distributions of y, zs. Considering that we as-
sume p(y) to be a fixed uniform distribution of la-
bels, the log p(y) term can be ignored in training:
1Ve,6log p(y)ll2 = 0.

For training, the typical teacher forcing method
is used; i.e. ground-truth words are used as in-
put words. We use vVMF(g°% (m,), k) (x: hyper-
parameter) for the variational posterior gg(z|xs)
and VMEF(-, 0) for the prior p(zs).

The discriminator objective is defined as a con-
ventional maximum likelihood:

_Eldisc(,‘#;xsaxhy) = IOg Q’lﬁ'(y’XSaXt) (5)

Finally, the two objectives are combined to con-
struct the objective for supervised training:

‘Cl(ea ¢7 'l,b, Xsy Xty y) = E?en + )\E;lisc7 (6)

where A is a hyperparameter.

3.3.2 Unsupervised Objective

In this case, the model does not have an access to
label information; a data point is represented by
(xs,%¢) € X, and thus y is a hidden variable. To
facilitate the unsupervised training, we marginal-
ize y out as below and derive the lower bound:

logpo(x:) = 10g 3 [ po(xi,.,)da.
)

pe(xta Zg, y)
q¢,¢(y, ZS‘X& Xt)

>E

Z g (y,25[%5,%t) [log

(7

And from the assumption presented in the graphi-
cal model (Fig. 2b),

q¢ (y, ZS|XS7 Xt) = qu(zs ’Xs)qw (y|XS7 Xt)'
)

on the characteristics of a task. For some experiments we ad-
ditionally used swapped data examples, (x5, X¢) = (x2,X1),
for training. We explain more on this in §4.

“Note that we define all objectives £, R as minimization
objectives to avoid confusion.

Finally we obtain the following lower bound for
log pg(x;) from Eqgs. 7 and 8:°

L,(0,,;xs,%¢) = —H(qyp (y|xs,%¢))
+ Eqy (ylxexe) [£77(0, @5 %6,%1,9)] . (9)

Here the second expectation term can be computed
either by enumeration or sampling, and we used
the former as the datasets we used have relatively
small label sets (2 or 3) and it is known to yield
better results than sampling (Xu et al., 2017). We
will compare the two methods in §4.3.

To sum up, at every training iteration, given a
labeled and unlabeled data sample (x;s,%;+, Y1),
(Xu,s, Xu,t), We optimize the following objective.

£ = El(ev ¢7 ¢7 xl,87 xl,ta yl)

+ ‘CU(97¢7’¢);XU,Saxu,t) (10)

3.3.3 Fine-Tuning with Semantic Constraints

Since the generator is trained via maximum likeli-
hood training which considers all words in a sen-
tence equivalently, the label information may not
be reflected enough in generation owing to high-
frequency words. For example in natural language
inference, the word occurrences of the following
three hypothesis sentences highly overlap, but they
should have different relation with the premise.®

P: A man is cutting metal with a tool .

H1: A man is cutting metal .

H2: A man is cutting metal with the wrong tool .
H3: A man is cutting metal with his mind .

Thus for some data points, the strategy that only
predicts words that overlap across hypotheses
could receive a fairly high score, which might
weaken the integration of ¥ into the generator. To
mitigate this, we fine-tune the trained generator
using the following semantic constraint:

—RY(6; x5, x¢) = log g (§]%5, X¢),

where § ~ p(y), zs ~ q¢(2s]xs), and X, =
argmax,, pg(X¢|J,zs). This constraint enforces
the sequence X; generated by conditioning on §
and zg to actually have the relationship y with x;.

We also introduce a constraint on z that keeps
the distributions of z; (the latent content variable

3See Appendix B for details.
SExamples are taken from the SNLI development set, pair
ID 4904199439. jpg#{2rle, 2rln, 2ric}.
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obtained by encoding the generated sequence X;)
and z; close:

—R*(0;xs,x¢) = log q¢(z; = 24|x), (12)

where z; ~ qg(Z¢|X;). In other words, it pushes
the generated sequence X; to be in a similar
semantic space with the ground-truth target se-
quence x;. Consequently, it can help alleviate the
generator collapse problem where a generator pro-
duces only a handful of simple neutral patterns in-
dependent of the input sequence, by relating z; to

Zt.7

From similar motivation, we also add an ad-
ditional constraint that encourages the generated
sentences originating from different source sen-
tences to be dissimilar. To reflect this, we define
the following minibatch-level constraint that pe-
nalizes the mean direction vectors encoded from
the generated sentences for being too close:

—R¥(0; B) = Eg[d(u, ", )], (13)

where we denote values related to ¢-th sample of a
minibatch B using superscript: (). In the above,
! = g (g &), = 2 /1B,
and d(-, ) is a distance measure between vectors.
The mean direction vector g of VMF(p, k) is on
a unit hypersphere, so we use the cosine distance:

d(p1, p2) =1 — (p1, p2).

As the sequence generation process is not dif-
ferentiable, the gradients from the semantic con-
straints cannot propagate to the generator param-
eters. To relax the discreteness, we use the
Gumbel-Softmax reparameterization (Jang et al.,
2017; Maddison et al., 2017). Using the Gumbel-
Softmax trick, we obtain a continuous probability
vector that approximates a sample from the cat-
egorical distribution of words at each step, and
use the probability vector to compute the expected
word embedding for the subsequent step.

When multiple constraints are used, they are
combined using the homoscedastic uncertainty

"The basic assumption behind this constraint is that a
source and a target sequence are associated in a certain as-
pect, and it generally holds in most of the available pair clas-
sification datasets e.g. SNLI, SICK, SciTail, QQP, MRPC.

Model 28k 59k 120k
LSTM® 579 625 659
CNN® 587 627 656
LSTM-AE® 599 64.6 68.5
LSTM-ADAE® 625 668 709
DeConv-AE® 62.1 655 68.7
LSTM-VAE® 647 675 71.1
DeConv-VAE® 672 693 722
LSTM-vMF-VAE (ours) 65.6 68.7 71.1
CS-LVM (ours) 684 735 769

+RY 700 745 774

+R*® 692 739 776

+RH 69.1 740 7716

+RY, R* R™ 69.6 741 774

Table 1: Semi-supervised classification results on the
SNLI dataset. (a) Zhao et al. (2018); (b) Shen et al.
(2018a).

Model 1k 5k 10k 25k
CNN®@ 56.3 592 638 68.9
LSTM-AE® 593 63.8 672 709
DeConv-AE® 60.2 651 677 1716
LSTM-VAE® 629 676 69.0 724
DeConv-VAE® 65.1 694 705 737
LSTM-vMF-VAE (ours) 650 69.9 72.1 749
CS-LVM (ours) 665 71.1 746 769
+RY 664 708 745 775
+R> 66.5 713 748 77.1
+RH 664 712 749 774
+RY, R* R* 66.3 713 747 716

Table 2: Semi-supervised classification results on the
Quora Question Pairs dataset. (a) Shen et al. (2018a).

weighting (Kendall et al., 2018):%

1 1 1
R - TRy + TRZ + 727?,#'
o3 P 03
+log oy 4+ logoa 4+ log oz, (14)
where o1, 09,03 are trainable scalar parameters.
Also note that all constraints are unsupervised,
where label information is not required.

4 Experiments

We evaluate the proposed model on two semi-
supervised tasks: natural language inference and
paraphrase identification. We also implement a
strong baseline that has a similar architecture to
LSTM-VAE (Shen et al., 2018a) but uses vMF
distribution for prior and posterior, named LSTM-
VvMF-VAE. To further explore the proposed model,

8Though the weighting scheme is originally derived from
the case of a Gaussian likelihood, Kendall et al. (2018);
Xiong et al. (2018); Hu et al. (2018) successfully applied it in
weighting various losses e.g. cross-entropy loss, L loss, and
reinforcement learning objectives.
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we conduct extensive qualitative analyses. For de-
tailed settings and hyperparameters, please refer to
Appendix C.

4.1 Natural Language Inference

Natural language inference (NLI) is a task of pre-
dicting the relationship given a premise and a hy-
pothesis sentence. We use Stanford Natural Lan-
guage Inference (SNLI, Bowman et al., 2015)
dataset for experiments. It consists of roughly
570k premise-hypothesis pairs, and each pair has
one of the following labels: entailment, neutral,
and contradiction. Considering the asymmetry in
some label classes and for conformance with the
dataset generation process, we use premise and
hypothesis sentence as source and target respec-
tively: (Xs,X¢) = (Xpre, Xnyp)-

Following the work of Zhao et al. (2018); Shen
et al. (2018a), we consider scenarios where 28k,
59Kk, and 120k labeled data samples are available.
Also, for fair comparison with the prior work, we
set the size of a word vocabulary set to 20,000 and
do not utilize pre-trained word embeddings such
as GloVe (Pennington et al., 2014).

To combine the representations of a premise and
a hypothesis and to construct an input to f%5¢, we
use the following heuristic-based fusion proposed
by Mou et al. (2016):

f fuse(hpm hhyp)

= [hyre; hyyp; thyre — hhyp‘S hye © hhyp] )
(15)

where [a; b] indicates concatenation of vectors a,
b and © is the element-wise product.

Table 1 summarizes the result of experiments.
We can clearly see that the proposed CS-LVM
architecture substantially outperforms other mod-
els based on auto-encoding. Also, the seman-
tic constraints brought additional boost in perfor-
mance, achieving the new state of the art in semi-
supervised classification of the SNLI dataset.

When all training data are used as labeled data
(= 550k), CS-LVM also improves performance
by achieving accuracy of 82.8%, compared to the
supervised LSTM (81.5%), LSTM-AE (81.6%),
LSTM-VAE (80.8%), DeConv-VAE (80.9%).

4.2 Paraphrase Identification

Paraphrase identification (PI) is a task whose ob-
jective is to infer whether two sentences have the
same semantics. We use the Quora Question Pairs

Model 28k 59k 120k
CS-LVM 684 735 769
(i) without CS 65.6 687 71.1
(ii) Gaussian 669 720 749

(iii) sampling 68.0 729 765
(iv) f€"° # g™ 633 69.1 747

Table 3: Ablation study results.

dataset (QQP, Wang et al., 2017) for experiments.
QQP consists of over 400k sentence pairs each
of which has label information indicating whether
the sentences in a pair paraphrase each other or
not. We experiment for the cases where the num-
ber of labeled data is 1k, 5k, 10k, and 25k, and
set the vocabulary size to 10,000, following Shen
et al. (2018a). Unlike auto-encoding—based mod-
els that treat sentences in a pair equivalently, the
CS-LVM processes them asymmetrically for its
cross-sentence generating property. This property
is useful when some relationships are asymmetric
(e.g. NLI), however the paraphrase relationship
is bidirectional, so that we also use swapped text
pairs in training. To fuse sentence representations,
the following symmetric function is used, as in Ji
and Eisenstein (2013):

F74¢(hy, hy) = [hy + hy; [hy —hyl].  (16)

The result of experiments on QQP is sum-
marized in Table 2. Again, the proposed CS-
LVM consistently outperforms other supervised
and semi-supervised models by a large margin,
setting the new state-of-the-art result on the QQP
dataset with the semi-supervised setting.

4.3 Ablation Study

To assess the effect of each element, we experi-
ment with model variants where some of the com-
ponents are removed. Specifically, we conduct an
ablation study for the following variants: (i) with-
out cross-sentence generation (i.e. auto-encoding
setup), (ii) replacing the vMF distribution with
Gaussian, (iii) computing the expectation term of
Eq. 9 by sampling, and (iv) without encoder
weight sharing (i.e. f¢"¢ # ¢°*¢). SNLI dataset
is used for the model ablation experiments, and
trained models are not fine-tuned in order to focus
only on the efficacy of each model component.
Results of ablation study are presented in Ta-
ble 3. As expected, the cross-sentence gener-
ation is the most critical factor for the perfor-
mance, except for the 28k setting where the en-
coder weight tying brought the biggest gain. In
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59k and 120k settings, all other variants that main-
tain the cross-generating property outperform the
VAE-based models (see (ii), (iii), (iv)).

Replacing a vVMF with a Gaussian does not
severely harm the accuracy, however it requires
the additional process of finding a KL cost anneal-
ing rate. When sampling is used instead of enu-
meration for computing Eq. 9, about 1.2x speedup
is observed in exchange for slight performance
degradation, and thus sampling could be a good
option in the case that the number of label classes
is large.

Finally, as mentioned in §3.2, variants whose
encoder weights are untied do not work well. We
conjecture this is because g“"“ receives the error
signal only from a source sentence and could not
fully benefit from both sentences. The fact that the
performance degradation is larger when the num-
ber of labeled data is small also agrees with our hy-
pothesis, since unlabeled data affect the classifier
encoder only by the entropy term when encoder
weights are not shared.

4.4 Generated Sentences

We give examples of generated sentences, to val-
idate that the proposed model learns to generate
text having desired properties. From Table 4, we
can see that sentences generated from the identi-
cal input sentence properly reflect the label infor-
mation given. More generated examples are pre-
sented in Appendix D.

Further, to quantitatively measure the qual-
ity of generated sentences, we construct artificial
datasets, where each premise and label in the SNLI
development set is used as input to our trained
generator and generated hypotheses are collected.
Then we prepare a LSTM classifier that is trained
on the original SNLI dataset as a surrogate for the
ideal classifier, and use it for measuring the quality
of generated datasets.® We also compute the diver-
sity of the generated hypotheses using the metrics
proposed by Li et al. (2016), to verify the effect of
diversity-promoting semantic constraints.

Results of the evaluation on the artificial
datasets are presented in Table 5. The classifier
trained on the original dataset predicts the gener-
ated data fairly well, from which we verify that
the generated sentences contain desired seman-
tics. Also, as expected, fine-tuning with RY in-

The accuracy of the trained classifier on the original de-
velopment set is 81.7%.

creases the classification accuracy by a large mar-
gin, while R* and R* enhance diversity.

5 Related Work

Semi-supervised learning for text classification.
Using unlabeled data for text classification is an
important subject and there exists much previous
research (Zhu et al., 2003; Nigam et al., 2006; Zhu,
2008, to name but a few). Notably, the work of
Xu et al. (2017) applies the semi-supervised VAE
(Kingma et al., 2014) to the single-sentence text
classification problem. Zhao et al. (2018); Shen
et al. (2018a) present VAE models for the semi-
supervised text sequence matching, while their
models have drawbacks as mentioned in §3.

When the use of external corpora is allowed,
the performance can further be increased. Dai
and Le (2015); Ramachandran et al. (2017) train
an encoder-decoder network on large corpora and
fine-tune the learned encoder on a specific task.
Recently, there have been remarkable improve-
ments in pre-trained language representations (Pe-
ters et al.,, 2018; Radford et al., 2018; Devlin
et al., 2018), where language models trained on
extremely large data brought a huge performance
boost. These methods are orthogonal to our work,
and additional enhancements are expected when
they are used together with our model.

Cross-sentence generating LVMs. There ex-
ists some prior work on cross-sentence generat-
ing LVMs. Shen et al. (2017) introduce a sim-
ilar data generation assumption to ours and ap-
ply the idea to unaligned style transfer and natural
language generation. Zhang et al. (2016); Serban
et al. (2017) use latent variable models for ma-
chine translation and dialogue generation. Kang
et al. (2018) propose a data augmentation frame-
work for natural language inference that gener-
ates a sentence, however unlabeled data are not
considered in their work. Deudon (2018) build
a sentence-reformulating deep generative model
whose objective is to measure the semantic simi-
larity between a sentence pair. However their work
cannot be applied to a multi-class classification
problem, and the generative objective is only used
in pre-training, not considering the joint optimiza-
tion of the generative and the discriminative ob-
jective. To the best of our knowledge, our work is
the first work on introducing the concept of cross-
sentence generating LVM to the semi-supervised
text matching problem.
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Input Entailment

Neutral Contradiction

two girls play with bubbles near
a boat dock .

two girls are outside .

the girls are friends . two girls are swimming

in the ocean .

a classroom full of men, with the

teacher up front . doors .

a group of boys are in-

the students are at home
sleeping .

the teacher is teaching
the students .

a dune buggy traveling on sand . | the vehicle is moving .

the vehicle is red . a man is riding a bike .

Table 4: Selected samples generated from the model trained on the SNLI dataset.

Dataset Acc. distinct-1  distinct-2
CS-LVM  76.5 .0128 .0441
+RY 81.9 .0135 .0479
+R* 79.0 .0140 .0492
+RH* 71.5 0141 .0488

Table 5: Results of evaluation of generated artificial
datasets. distinct-1 and distinct-2 compute the ratio of
the number of unique unigrams or bigrams to that of
the total generated tokens (Li et al., 2016).

6 Conclusion

In this work, we proposed a cross-sentence latent
variable model (CS-LVM) for semi-supervised
text sequence matching. Given a pair of text se-
quences and the corresponding label, it uses one
of the sequences and the label as input and gener-
ates the other sequence. Due to the use of cross-
sentence generation, the generative model and the
discriminative classifier interacts more strongly,
and from experiments we empirically proved that
the CS-LVM outperforms other models by a large
margin. We also defined multiple semantic con-
straints to further regularize the model, and ob-
served that fine-tuning with them gives additional
increase in performance.

For future work, we plan to focus on generat-
ing more realistic text and use the generated text
in other tasks e.g. data augmentation, address-
ing adversarial attack. Although the current model
makes fairly plausible sentences, it tends to pre-
fer relatively short and safe sentences, as the main
goal of the training is to accurately predict the rela-
tionship between sentences. We expect the model
could perform more natural generation via apply-
ing recent advancements on deep generative mod-
els.
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A von Mises-Fisher Distribution

A von Mises—Fisher (vMF) distribution is the dis-
tribution defined on a m-dimensional unit hyper-
sphere. It is parameterized by two parameters:
the mean direction g € R™ and the concentra-
tion x € R. The probability density function (pdf)
of VMF(p, ) is defined by

f(x;p,5) = C(r) exp(rp %), (17)

where
KM /2—1

(2m)™/2 Ly, 11 (k)

Cn(k) =
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and I, (k) is the modified Bessel function of the
first kind at order v. Eq. 17 is used in the compu-
tation of R?.

A sample from a vMF distribution is drawn
from the acceptance-rejection scheme presented in
Algorithm 1 of Davidson et al. (2018). In their al-
gorithm, a stochastic variable obtained from the
acceptance-rejection sampling does not depend on
1, thus the sampling process can be rewritten as
a deterministic function that accepts the stochastic
variable as input (i.e. reparameterization trick).

The KL divergence between a vMF distribution
VMF(u, k) and the hyperspherical uniform distri-
bution U (S™~1) = vMF(-,0) can be derived ana-
lytically:

D1, (VMF(p, £)|[VME(+, 0))
I'(m/2) L 2(K)

=logC,(k) — 1 .
0g Cy (k) — log 52 T a1 (%)

Note that the KL divergence does not depend
on pu, thus the KL divergence is a constant if s
is fixed. Intuitively, this is because the hyper-
spherical uniform distribution has equal probabil-
ity density at every point on the unit hypersphere,
and Dg 1 (VMF(u, )|[VMF(-,0)) should not be
changed under rotations.

B Derivation of Lower Bounds

Let gg(zs|-) be a distribution that has the same
support with p(zs). Then the KL divergence be-
tween gg(zs|-) and pg(zs|x;, y) can be written as

Dkr(q¢(zs|)llpe(zs|xt,y))

= [ aotiyios 2=,

pB(Zs|Xt7y)
_ 2 ) log POt Y)d (2s)
= [asteadon o
= log pe(x¢,y) + Dk 1.(4e(2s|")|[p(2s))
— Eqg (2] 108 po (%t 25, y)] — log p(y)
> 0.

s

From the above inequality we obtain the lower
bound of log pg(x¢, y) presented in Eq. 2.

The lower bound of log pg(x;) (Eq. 7) could be

derived as follows.

log po(x0) = log . [ paei.z.,1)da.
Yy

>E

po(Xt|zs,y)p(2s)p(y) }
=logE
g q¢,¢(yﬁzsl><su><t)[ Q¢¢(y,zs|xs, Xt)
po(xt|2s,y)p(2s)p(y)
)

1
g, (Y25 Xs,Xt) { 460 (Y, zs|x5,xt

From the graphical model qg (v, 2Zs|Xs, %) =
49 (2s|%5)qp (y]%s, %¢), and thus

By v omieees) [log po(Xt|zs, y)p(zs)p(y)]
' 7 q¢,¢(y, ZS‘XS7Xt)

=E,, [Eq . [10g Po (X qz¢( ;Js)ﬁc(szf)p(y)”
Eq,, [log gy (y[xs, xt)]
= Eqw [_'C?en(ea ;5 X5, Xt, 3/)]
+ H gy (y|xs: xt))
= —L4(0,d,9; X, %¢).

C Implementation Details

We used PyTorch!'® and AllenNLP'! libraries for
implementation. The default weight initialization
scheme of the AllenNLP library is used unless ex-
plicitly stated.

For all CS-LVM experiments, the size of word
embeddings and hidden dimensions of LSTMs are
set to 300, and the size of label embeddings is 50.
g°°% is implemented as a linear projection of the
last hidden state of the encoder LSTM followed by
normalization. g°“ is a linear projection followed
by the softmax function, and we reuse the word
embeddings as its weight matrix (Press and Wolf,
2017; Inan et al., 2017). The discriminative clas-
sifier is a feedforward network with single hidden
layer and the ReLU activation function, and the
hidden dimension is set to 1200. We apply dropout
on word embeddings and the classifier with prob-
abilities p,, and p. respectively.

When multiple semantic constraints are used,
to make uncertainty weights be always positive
and be optimized stably, we instead use log o2 as
model parameter, as in Kendall et al. (2018). Each
log o2 is initialized with zero. The temperature
parameter of the Gumbel-Softmax is linearly an-
nealed using the following schedule:

7(t) = max(0.1,1.0 — rt),

Ohttps://pytorch.org/
Uhttps://allennlp.org/
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Model K A DPw  Pe
28k 150 0.8 0.75 0.1
59k 100 1.0 075 0.1
120k 120 08 050 0.1

Table 6: Hyperparameters for the SNLI models.

Model K A Puw Pe
1k 100 0.8 050 0.2
5k 120 0.5 075 0.2
10k 150 0.5 075 0.1
25k 100 0.5 075 0.1

Table 7: Hyperparameters for the QQP models.

where = 10~% is the annealing rate and ¢ is the
training step.

To find optimal hyperparameters, we performed
a rough grid search on x € {100,120, 150}, A €
{0.2,0.5,0.8,1.0}, p € {0.25,0.50,0.75}, and
pe € {0.1,0.2}. The KL divergence between a
posterior and the prior is 23.57, 27.09, 31.60 when
Kk is set to 100, 120, 150 respectively.

For the LSTM-vMEFE-VAE experiments, we used
the same hyperparameters and grid search scheme
with those of the CS-LVM, except that we perform
an additional search on the dimension of a latent
code d € {50,150, 300}.

Adam optimizer (Kingma and Ba, 2015) with
learning rate ¥ = 103 is used for all experiments,
except for 1k QQP experiments where stochastic
gradient descent optimizer is used. When fine-
tuning the model, we set v to 10~*. For other
hyperparameters, we follow the configuration sug-
gested by the authors. Best hyperparameter con-
figurations found for SNLI and QQP datasets are
presented in Tables 6 and 7.

D Generated Examples

We used beam search with B = 10 when gener-
ating sentences, and the length normalization (Wu
et al., 2016) is applied with o = 0.7.

Examples are presented in Tables 8—11. Though
almost all generated hypotheses are realistic, we
see that they lack diversity and fail to encode la-
bel information in some cases. For example, the
phrase ‘is/are sleeping’ appears in generated sen-
tences frequently when conditioned on the ‘con-
tradiction’ label, likely because generating a set of
simple patterns could be a shortcut to the objec-
tive. In Table 5, we verified from experiments that
adding constraints helps enhancing accuracy and
diversity, however a model is still relatively in fa-
vor of generating ‘easy’ sentences. We conjecture

that the problem has its root in the fact that the pri-
mary objective of our model is to correctly classify
the input, not to generate diverse outputs.
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Input

Entailment

Neutral

Contradiction

little kids enjoy sprinklers by running
through them outdoors .

kids are running .

the children are siblings .

the children are playing video
games .

blurry people walking in the city at night .

people are walking outside .

the people are going to work .

the people are inside .

a woman sits in a chair under a tree and
plays an acoustic guitar .

a woman is playing an instru-
ment .

the woman is a musician .

a woman is playing the flute .

three men converse in a crowd .

three men are talking .

the-men-are-tatking—

the men are sleeping .

a woman in a yellow shirt seated at a table

a woman is sitting .

the woman is standing .

a woman hugs a fluffy white dog .

a woman is holding a dog .

a woman is sleeping .

a crowd of people in colorful dresses .

the people are in a parade .

a clown making a balloon animal for a
pretty lady .

people in costumes

aclownisentertatning-aerowd—

the clown is entertaining a crowd

the clown is sleeping .

Table 8: Sentences generated from the CS-LVM model trained on the SNLI dataset. Failure cases are denoted by
strikethrough text.

Input

Entailment

Neutral

Contradiction

little kids enjoy sprinklers by running
through them outdoors .

kids are playing outside .

the kids are playing in the water

the kids are sleeping .

blurry people walking in the city at night .

people are walking .

the people are walking to work .

the people are inside .

a woman sits in a chair under a tree and
plays an acoustic guitar .

a woman is playing music .

the woman is a musician .

a woman is sleeping .

three men converse in a crowd .

three men are talking .

three men are talking about poli-
tics .

the men are sleeping .

a woman in a yellow shirt seated at a table

a woman is sitting .

a tall human sitting .

the woman is standing .

a woman hugs a fluffy white dog .

a woman is holding a dog .

the dog belongs to the woman .

the dog is black .

a crowd of people in colorful dresses .

people in costumes

the people are in a parade .

the people are sleeping .

a clown making a balloon animal for a
pretty lady .

a clown is performing .

the clown is entertaining a crowd

the clown is sleeping .

Table 9: Sentences generated from the CS-LVM + RY model trained on the SNLI dataset. Note that failed examples
in Table 8 are corrected due to the use of RY.

Entail t

Neutral

Contradiction

Input

little kids enjoy sprinklers by running
through them outdoors .

the kids are having fun .

the kids are sleeping .

blurry people walking in the city at night .

people are walking .

the people are walking to work .

the people are inside .

a woman sits in a chair under a tree and
plays an acoustic guitar .

a woman is playing an instru-
ment .

the woman is a musician .

a woman is playing the drums .

three men converse in a crowd .

three men are talking .

three men are talking about poli-
tics .

the men are sleeping .

a woman in a yellow shirt seated at a table

a woman is sitting .

the woman is standing

a woman hugs a fluffy white dog .

a woman is holding a dog .

a woman is playing with her dog

a woman is sleeping .

a crowd of people in colorful dresses .

people are wearing costumes .

a clown making a balloon animal for a
pretty lady .

a clown performs .

the people are in a parade .

the clown is sleeping .

Table 10: Sentences generated from the CS-LVM + R?# model trained on the SNLI dataset. Failure cases are

denoted by strikethrough text.

Input

Entailment

Neutral

Contradiction

little kids enjoy sprinklers by running
through them outdoors .

kids are playing outside .

the kids are having fun .

the kids are sleeping .

blurry people walking in the city at night .

people are walking .

the people are walking to work .

the people are inside .

a woman sits in a chair under a tree and
plays an acoustic guitar .

a woman is playing an instru-
ment .

the woman is a musician .

a woman is playing the piano .

three men converse in a crowd .

three men are talking .

three men are talking about poli-
tics .

the men are sleeping .

a woman in a yellow shirt seated at a table

a woman is sitting .

the woman is standing

a woman hugs a fluffy white dog .

a woman is holding a dog .

the dog belongs to the woman .

a woman is petting a cat .

a crowd of people in colorful dresses .

the-people-are-sitting-down—

a clown making a balloon animal for a
pretty lady .

people are dressed up .

the people are in a parade .

the clown is sleeping .
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Table 11: Sentences generated from the CS-LVM + R* model trained on the SNLI dataset. Failure cases are

denoted by strikethrough text.



