
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4691–4698
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

4691

An Empirical Study of Span Representations
in Argumentation Structure Parsing

Tatsuki Kuribayashi1, Hiroki Ouchi2,1, Naoya Inoue1,2,
Paul Reisert2,1, Toshinori Miyoshi3, Jun Suzuki1,2, and Kentaro Inui1,2

1Tohoku University 2RIKEN Center for Advanced Intelligence Project (AIP)
3Research & Development Group, Hitachi, Ltd.

{kuribayashi, naoya-i, jun.suzuki, inui} @ecei.tohoku.ac.jp
{hiroki.ouchi, paul.reisert} @riken.jp

toshinori.miyoshi.pd@hitachi.com

Abstract

For several natural language processing (NLP)
tasks, span representation is attracting con-
siderable attention as a promising new tech-
nique; a common basis for an effective de-
sign has been established. With such basis,
exploring task-dependent extensions for argu-
mentation structure parsing (ASP) becomes an
interesting research direction. This study in-
vestigates (i) span representation originally de-
veloped for other NLP tasks and (ii) a sim-
ple task-dependent extension for ASP. Our ex-
tensive experiments and analysis show that
these representations yield high performance
for ASP and provide some challenging types
of instances to be parsed.

1 Introduction

Argumentation structure parsing (ASP) is the task
of identifying argumentation structures in argu-
mentative text. Figure 1 shows an example of an
argumentative text and its structure. The structure
forms a tree, the nodes of which are referred to
as argumentative discourse units (ADUs) and the
edges represent argumentative relations between
the ADUs. ASP systems must identify such edges,
edge labels (e.g., SUPPORT and ATTACK), and
node labels (e.g., PREMISE, CLAIM, and MAJOR-
CLAIM). A key to achieving high performance
is feature representation design for segmental dis-
course units (spans), such as ADUs. The aim of
this study is to update the foundation of span rep-
resentation design for ASP.

Potash et al. (2017) introduced a model ex-
ploiting neural network-based span representa-
tion for ASP and reported state-of-the-art perfor-
mance. Similarly, for other natural language pro-
cessing (NLP) tasks, such as syntactic and seman-
tic parsing, neural network-based span representa-
tion design is attracting considerable attention as a
promising new technique; some effective designs
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Figure 1: Example of an argumentative text and its
structure. ADUs denote argumentative discourse units,
which are fundamental units of arguments.

have been reported (Wang and Chang, 2016; Stern
et al., 2017; He et al., 2018). Starting from such
basis, task-dependent extensions for ASP are an
interesting direction to explore.

Although the neural network-based ap-
proach (Potash et al., 2017; Eger et al., 2017)
achieves high performances for ASP, it does
not explicitly take into account useful linguistic
clues. However, prior works demonstrate that
linguistic features, particularly discourse con-
nectives, are strong clues to predict the structure
for ASP (Lawrence and Reed, 2015; Stab and
Gurevych, 2017). We integrate such linguistic
properties into span representation design as
task-dependent extensions for ASP.

In summary, our contributions are as follows.
• We investigate (i) span representation origi-

nally developed for other NLP tasks and (ii)
a simple task-dependent extension for ASP.
• Empirical results show that such representa-

tions improve the performance of ASP and
yield state-of-the-art scores.
• Extensive analysis reveals that such represen-

tations especially improve the performance
when parsing argumentative texts with a
complex structure (deeper ADU trees).

To facilitate ASP research, our model code and
scripts made publicly available1.

1https://github.com/kuribayashi4/span_
based_argumentation_parser

https://github.com/kuribayashi4/span_based_argumentation_parser
https://github.com/kuribayashi4/span_based_argumentation_parser
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2 Related work

Argumentation structure parsing In recent
years, the persuasive essay corpus (PEC), a large-
scale annotated dataset for argument structures,
has been published (Stab and Gurevych, 2017);
moreover, a variety of models have been pro-
posed for ASP. There are two main approaches for
ASP: (i) a discrete feature-based approach (Stab
and Gurevych, 2017; Nguyen and Litman, 2016;
Peldszus and Stede, 2015) and (ii) a neural
network-based approach (Potash et al., 2017; Eger
et al., 2017). Because neural network-based
models have achieved high performance for this
task (Potash et al., 2017), this study also explores
the neural network-based approach.

Discourse connectives In discourse pars-
ing (Mann and Thompson, 1987; Prasad et al.,
2008), which is closely related to ASP, discourse
connectives are strong clues for identifying
discourse relations (Marcu, 2000; Braud and
Denis, 2016). Exploring effective ways to use
the discourse connective information has received
wide attention in various NLP fields (Sileo et al.,
2019; Pan et al., 2018).

Span representation Span representation de-
sign is gaining considerable attention for several
NLP tasks, such as syntactic parsing (Wang and
Chang, 2016; Stern et al., 2017; Kitaev and Klein,
2018), semantic role labeling (He et al., 2018;
Ouchi et al., 2018), and coreference resolution
(Lee et al., 2017, 2018). One common practice for
effective design is to use bidirectional long short-
term memory networks (BiLSTMs). Wang and
Chang (2016) proposed span representation called
“LSTM-minus,” which represents each span (i, j)
as the difference between the LSTM’s hidden
states over time steps, i.e. hj − hi. The work
most similar to ours is Li et al. (2016), where
LSTM-minus is used for discourse structure pre-
diction. This study extends it by integrating dis-
course properties into span representation.

3 Model

This section describes (i) an LSTM-minus-based
span representation and (ii) a task-specific span
representation for ASP.

3.1 Overview
The given input is a paragraph consisting of T to-
kens w1:T = (w1, w2, · · · , wT ) and preidentified

the other reason is that
consequently,
in conclusion, from the above views, although
first, as you can see that
in this essay , the reasons for why i agree that
it is a debatable subject that
unfortunately
although some argue that
furthermore , it ’s undeniable that the
in short,
another thing that put big cities in front of small towns is
in conclusion, despite the contribution of it to the society,
however, some say that

Table 1: Examples of the AMs.

(i) No Distinction 

between AMs and ACs

ADU1 ADU2 AM1

(ii) Distinction 

between AMs and ACs

AC1

AM2

AC2

ADU1 ADU2

Some people may argue that(AM1) children will be more material,
neglect their study for earning money or be exploited by the
employers(AC1). However,(AM2) if children get good care and
instructions from their parents, they can take advantages of the
work to learn valuable things and avoid going in a wrong way(AC2).

AM1 AC1 AM2 AC2

BiLSTM

BiLSTM

some people employers

...h1:T
w1:T

...

... some that employers

... ...
...

...

children... ... ...

Figure 2: Example of a part of an argumentative essay
(AMs are highlighted in red and ACs are underlined),
and the models with or without the AC/AM distinction.

segmental discourse units. In terms of segmen-
tal discourse units to be captured, we decompose
ADUs into argumentative components (ACs) and
argumentative markers (AMs). ACs correspond to
claims and premises relevant to the writer’s argu-
mentation. AMs, which play a crucial role in con-
trolling argumentative flows, are conjunctive ex-
pressions frequently used in argumentative texts
(see Table 1). We explore span representation
of ADUs by leveraging AC and AM information
as task-dependent extensions for ASP. Each ADU
span is denoted as (i, j), where i and j are word
indices (1 ≤ i ≤ j ≤ T ). We contextualize each
representation on all of the ADUs in a paragraph
by using BiLSTMs. These vectors are then fed to
each task-specific classifier.

3.2 LSTM-minus-based span representation

We first build a model based on the LSTM-minus-
based span representation (Wang and Chang,
2016), as shown in Figure 2 (left). This represen-
tation makes no distinction between AMs and ACs
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and deals with them as one combined span (i, j).

w1:T = f emb(w1:T ) ,

h1:T = BiLSTM(w1:T ) ,

h(i,j) = [
−→
h j −

−→
h i−1;

←−
h i −

←−
h j+1;

−→
h i−1;

←−
h j+1;φ(wi:j)] . (1)

Here, the word embedding layer f emb maps the
input tokens w1:T to a sequence of embeddings
w1:T . Taking w1:T as input, the BiLSTM layer
then outputs a sequence of hidden states h1:T . Fi-
nally, from h1:T , the LSTM-minus-based repre-
sentation h(i,j) is assigned to each combined span
(i, j). Following Potash et al. (2017), we also
concatenate the additional discrete feature vector
φ(wi:j)

2 of bag-of-words (BoW) and position in-
formation of each span.

3.3 Distinction between AMs and ACs

As a task-specific extension of the LSTM-minus-
based span model (henceforth, the LSTM model),
we build a model that distinguishes between AMs
(i, k) and ACs (k + 1, j), as shown in Figure 2
(right). Similar to the LSTM model, each AM
(i, k) is assigned its span representation h(i,k), and
each AC (k + 1, j) is assigned h(k+1,j). Then,
using two independent BiLSTMs, the model con-
textualizes AM spans and AC spans, respectively.
The distinction and contextualization enable the
model to better capture the argumentative flow;
for example, the model can learn patterns of AM
sequences (e.g., in my opinion → for example →
however).

Finally, each contextualize AC span represen-
tation hctx

(k+1,j) is concatenated with its preced-
ing contextualized AM span representation hctx

(i,k)

and discrete feature vectors φ(wi:j), i.e. h(i,j) =
[hctx

(i,k);h
ctx
(k+1,j), φ(wi:j)].

3.4 Output layers

Based on the contextualized ADU representations,
we compute the class probability for each subtask.
As the output function, we use the softmax func-
tion. In AC/link type classification, the softmax
function computes the probability of each type. In
link identification, it computes the probability that
them-th ADU has a directed link to the h-th ADU.

2Details of discrete features are shown in the Ap-
pendix A.2

3.5 Training
We assume that we have access to a training setD,

D = {(X,Y link, Y ac-type, Y link-type)d}
|D|
d=1 ,

X = {w1:T , s
ac
1:M , s

am
1:M} ,

Y link = {h1, · · · , hM} ,
Y ac-type = {r1, · · · , rM} ,
Y link-type = {t1, · · · , tM} ,

where sac and sam denote AC span and AM span,
respectively. Y link is the set of candidate spans
(including a root object) to which the given span
has a directed link. Y ac-type and Y link-type are the
set of all possible categories defined in each task,
e.g., Y link-type = {SUPPORT,ATTACK}.

To train model parameters, we minimize the
joint cross-entropy loss function,

L = −
∑

(X,Y link,Y type)∈D

[
α `link(X,Y link)

+ β `ac-type(X,Y ac-type)

+ (1 − α − β) `link-type(X,Y link-type)
]
,

where the three loss functions `link, `ac-type, and
`link-type are interpolated with α and β. Each loss
function is defined as follows:

`task(X,Y task) =
∑

y∈Y task

logP(y|m) ,

where m denotes the m-th ADU. We show the de-
tails of model training and hyperparameters in the
Appendix A.3.

4 Experiments

4.1 Experimental setup
Task setting The ASP task consists of the fol-
lowing subtasks: (i) AC segmentation, (ii) AC type
classification (ATC), (iii) link indentification (LI),
and (iv) link type classification (LTC).

Some previous studies (Potash et al., 2017;
Niculae et al., 2017; Peldszus and Stede, 2015)
skipped the AC segmentation task and used gold
AC segmentation for the other three subtasks. Fol-
lowing these studies, we adopted the same task
setting.

Dataset We used the PEC (Stab and Gurevych,
2017) and arg-microtext corpus (MTC) (Peldszus
and Stede, 2016) for our experiments. The PEC
consists of 402 essays (1,833 paragraphs) posted
on an online portal3. We used the same train/test

3https://essayforum.com/

https://essayforum.com/
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split used in Stab and Gurevych (2017) and ran-
domly selected 10% of the training set as the vali-
dation set in the PEC. The scores obtained for the
PEC were averaged across three distinct trials us-
ing different random seeds. The MTC contains
112 short texts. Because this dataset is small, we
conducted 10 sets of five-fold cross-validation and
obtained the average scores across all the splits.
We list the statistics of the datasets in the Ap-
pendix C.

Argumentative marker extraction In the PEC,
while ACs are annotated, AMs are not. We thus
extracted AMs using simple rules. The tokens pre-
ceding an AC were extracted as its AMs. Note that
AMs are not beyond the sentence and do not over-
lap with other ACs. We considered pairs of ACs
and the preceding AMs as ADUs.

In the MTC, there are annotations of ADUs,
which include both ACs and AMs. First, we cre-
ated an AM list from the PEC and Penn Discourse
TreeBank (Prasad et al., 2008). If an ADU began
with the phrases (choosing the longest one) speci-
fied in the AM list, we extracted the phrase as the
AM and the following tokens as the AC.

We collected 1,131 AMs, which had 5.38 tokens
on average. We show the details of extraction pro-
cedures in the Appendix D.

Implementation details We used GloVe (Pen-
nington et al., 2014) and ELMo embeddings (Pe-
ters et al., 2018), which have different properties.
To explore the performance of the three subtasks,
the models jointly predicted the three subtasks.

Baseline As a baseline, we used the current
state-of-the-art model using span representation
based on BoW (Potash et al., 2017) (BoW span
model4).

4.2 Results
We calculated macro-F1 and individual class F1
scores for the three tasks. For the overall perfor-
mance, we calculated averaged macro-F1 scores
across all the three tasks. As a statistical signifi-
cance test, we used bootstrap resampling (Koehn,
2004).

Table 2 shows the results of our experiments.
We obtained the following three tendencies: (i)
compared with the BoW span model, the LSTM
models show significantly better performance, (ii)

4Details of BoW span representation are shown in the Ap-
pendix A.1

Data. Embed. Span rep. Overall LI LTC ATC

PEC
ELMo

LSTM+dist 81.8 80.7 79.0 85.7
LSTM 81.8 80.4† 78.2† 86.9†

BoW 77.1 76.2 72.3 82.9

GloVe LSTM+dist 79.7 78.8 76.5 83.9
LSTM 78.8 77.7† 75.0† 83.7
BoW 76.1 74.2 71.3 82.8

MTC
ELMo

LSTM+dist 78.2 73.9 77.2‡ 83.4
LSTM 75.0 73.0† 71.5 80.5
BoW 73.3 71.2 67.5 81.2

GloVe LSTM+dist 76.5 72.6 75.4‡ 81.5
LSTM 70.4 70.1 64.1 76.9
BoW 71.1 69.2 64.8† 79.3

Table 2: Comparison among the LSTM-dist, LSTM,
and BoW based representation. The results of LSTM
model marked with † are statistically significant com-
pared to the BoW representation (p < 0.05). The re-
sults of LSTM+dist model marked with ‡ are statisti-
cally significant compared to the LSTM representation
(p < 0.05)

0
20
40
60
80

100

0 1 2 or more

ac
cu

ra
cy

 (%
)

depth in argumentation structure 

LSTM+dist (ELMo) LSTM (ELMo)
BoW (ELMo) LSTM+dist (GloVe)
current SOTA

Figure 3: Accuracy in LI according to different depths.

the span representation capturing the distinction
between ACs and AMs (LSTM+dist) improves the
performance especially in LI and LTC, and (iii) the
ELMo embeddings boost performance. We also
compared the LSTM+dist model with the existing
models. Table 3 shows that our span-based models
achieved new state-of-the-art scores on the PEC
and yielded competitive results on the MTC com-
pared to the current state-of-the-art model.

4.3 Analysis

We conducted a detailed analysis on the PEC for
investigating the types of instances that were easy
or difficult for the span models and the current
state-of-the-art model to predict, focusing on the
most challenging subtask, i.e., LI.

Stab and Gurevych (2017) reported that their
model tends to output shallow trees even if the
corresponding gold trees are deeper. We there-
fore investigated the performance according to
different depths of ADU trees. Figure 3 indi-
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Data. Model Overall LI LTC ATC
Avg. Macro Link No-Link Macro Support Attack Macro MC Claim Premise

PEC
LSTM+dist (ELMo) 81.8 80.7 67.8 93.7 79.0 96.8 61.1 85.7 91.6 73.3 92.1
Joint PointerNet (Potash et al., 2017) - 76.7 60.8 92.5 - - - 84.9 89.4 73.2 92.1
St. SVM-full (Niculae et al., 2017) - - 60.1 - - - - 77.6 78.2 64.5 90.2
ILP Joint (Stab and Gurevych 2017) 75.2 75.1 58.5 91.8 68.0 94.7 41.3 82.6 89.1 68.2 90.3

MTC
LSTM+dist (ELMo) 78.2 73.9 57.5 90.3 77.2 84.2 70.3 83.5 - 72.9 94.0
Joint PointerNet (Potash et al., 2017) - 74.0 57.7 90.3 - - - 81.3 - 69.2 93.4
New Best EG (Afantenos et al., 2018) 78.5 72.2 - - 75.7 - - 87.6 - - -
ILP Joint (Stab and Gurevych 2017) 76.2 68.3 48.6 88.1 74.5 85.5 62.8 85.7 - 77.0 94.3

Table 3: Comparison with existing models on the PEC and the MTC. MC denotes MAJORCLAIM.

ADU1: In addition,
I believe that city

provides more work
opportunities than the

countryside.

ADU2: There
are not only

more jobs, but
they are also

well-paid.

ADU3: Of course
living in a city is
more expensive,

ADU1 ADU2 ADU3

ADU4: but
incomes are
higher too.

ADU4 ADU1 ADU2 ADU3 ADU4

(i) Current SOTA (ii) LSTM+dist (ELMo)

Gold structure

ADU1: In addition,
I believe that city

provides more work
opportunities than the

countryside.

ADU2: 
There are not

only more jobs,
but they are also

well-paid.

ADU3: 
Of course

living in a city
is more

expensive,

ADU4: but
incomes are
higher too.

support
attack attack

Premise PremiseClaim Premise

support
attack attack

ADU1: In addition,
I believe that city

provides more work
opportunities than the

countryside.

ADU2: There
are not only

more jobs, but
they are also

well-paid.

ADU3: Of course
living in a city is
more expensive,

ADU4: but
incomes are
higher too.

support
attack attack

Figure 4: Example of the outputs predicted by the cur-
rent state-of-the-art model and the LSTM-dist model.

Model acc.

LSTM+dist (ELMo) 71.0
LSTM (ELMo) 68.9
BoW (ELMo) 60.7
Joint Pointer Net. (Current SOTA) 50.3

Table 4: Accuracy for predicting the relations which
form an ATTACK relation chain.

cates the accuracy of predicting outgoing links
(i.e. parents) from each AC at each depth. Over-
all, it is difficult to predict the links for deeper
ADUs. While the performance of the state-of-
the-art model (Joint Pointer Net) sharply dropped
for deeper ACs (two or more), the LSTM mod-
els (LSTM and LSTM+dist) could robustly predict
the correct links for deeper ADUs.

Figure 4 shows an example of an argu-
mentation structure with a chain of relations
(ADU4→ADU3→ADU1) and the outputs pre-
dicted by the state-of-the-art model and the
LSTM+dist model. The writer of this text first
states an expected opposite opinion (ADU3) and
then re-attacks the opposite opinion (ADU4). In
such a structure, while the state-of-the-art model
failed to predict the higher-order relations, the
LSTM+dist model succeeded. Furthermore, Ta-
ble 4 shows that the distinction between ACs
and AMs had a positive effect on predicting the
chains of ATTACK relations. Such ATTACK re-

lation chains have been regarded as an important
characteristic of argumentation structure (Peld-
szus and Stede, 2013; Freeman, 2011) and fre-
quently appear especially in the MTC. Thus, the
performance difference between the LSTM model
and the LSTM+dist model (see Table 2) on the
MTC is relatively greater than that of the PEC.
One possible reason for this positive effect is that
typical AM flows (such as of course→but), which
the LSTM+dist model explicitly captures, can be
a clue for predicting higher-order chains.

5 Conclusion and Future work

This work has studied span representations for
ASP. Specifically, we have investigated (i) an
LSTM-minus-based span representation origi-
nally developed for other NLP tasks and (ii)
a task-specific extended representation capturing
the AM/AC distinction for ASP. The experimen-
tal results have demonstrated the effects of these
representations in ASP and that the span represen-
tation capturing the AM/AC distinction achieves
state-of-the-art results for three subtasks. The em-
pirical analysis has showed that there is room for
improvement in the LI for deeper-level ADUs.
One interesting line of our future work is to in-
vestigate the performance of our model in an end-
to-end setting (including AC segmentation). An-
other direction is to explore span representations
in several related tasks such as RST-style dis-
course parsing or new span-related argumentation
mining tasks (Trautmann et al., 2019).
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A Model

A.1 Features of BoW models

Following Potash et al. (2017), we used the fol-
lowing features as ADU representations in BoW
models: (i) one-hot vector of BoW; (ii) embed-
ding representation calculated by average, max,
and min pooling across the token embeddings; (iii)
position of the ADU in an essay and paragraph and
whether ADU is in opening, body, or closing para-
graph (one-hot vector).

In BoW models with ELMo, using all of the
versions of embedding representations (avg, min,
and max pooling) hinders the performance. We
only used embedding representations calculated
by max pooling in BoW models with ELMo.

A.2 Discrete features of LSTM-minus-based
models

As mentioned in Section 3, we additionally used
discrete features in designing ADU representation
of LSTM and LSTM-dist models (φ(wi:j) in equa-
tion 1). We used (i) Bag-of-words and (iii) posi-
tion information as additional discrete features. In
LSTM-dist models, while ADU span representa-
tion h(i,j) is concatenated with its discrete features
φ(wi:j), AC and CE span representation (h(i,k)

and h(k+1j)) has no discrete features.

A.3 Output layers

AC/Link type classification layer Taking each
span vector h(i,j), the AC (or link) type classifica-
tion layer computes the probability that the span
m = (i, j) is classified into each AC/Link type
r ∈ R.

scoretype
m,r = wtype

r · hn + btype
r ,

P(r|m) =
exp(scoretype

m,r)∑
r′∈R exp(scoretype

m,r′)
,

where w
type
r is a parameter vector and b

type
r is a

bias parameter associated with a type r. In ATC,
R = {PREMISE,CLAIM,MAJORCLAIM5}. In
LTC,R = {SUPPORT,ATTACK}.

Link identification layer Taking each span vec-
tor h(i,j), the link identification layer computes the
probability that spanm = (i, j) has a directed link

5Major claims appear only in the PEC.

Name Value

Word embeddings
- Glove 300 dim.
- ELMo 1024 dim.
BiLSTMs 256 (300 in the LSTM models) dim.
Mini-batch size 16
Optimizer Adam
Learning rate 0.001
Epoch 500 (1000 in the MTC)
Loss interpolation
- α 0.5
- β 0.25
Dropout ratio
- Output layer 0.5 (0.9 in the MTC)
- BiLSTMs 0.1 (0.9 in the MTC)
- ELMo 0.1

Table 5: Hyperparameters for our span-based model.

to span h = (i′, j′).

scorelink
m,h = wlink · [hlink

m ;hlink
h ;hlink

m � hlink
h ;

φ(h,m)] ,

P(h|m) =
exp(scorelink

m,h)∑M
h′=1 exp(scorelink

m,h′)
,

where wlink is a parameter vector. φ(h,m) is one-
hot vector of relative position between h-th span
and m-th span. R is the set of ADU spans in the
same paragraph (including a root object). To de-
code the tree structure, we use the maximum span-
ning tree algorithm based on the probabilities cal-
culated by the softmax function.

B Hyperparameters

Table 5 shows the hyperparameters used in our
experiments.

Network setup We use 300-dimensional GloVe
and 1024-dimensional ELMo embeddings.

There was concern that LSTM-dist models out-
performed the other models just because they had
larger parameters. For fair comparison among
BoW, LSTM, and LSTM-dist models, we prelim-
inary conducted experiments with increasing the
number of parameters in BoW and LSTM models
(changed the dimensions of the hidden units of all
the BiLSTMs from 256 to 300 and added layers in
the LSTM used in ADU-level contextualization).
While parameter increased versions of BoW mod-
els did not perform better, LSTM models slightly
improve by increasing their parameters.

The dimensions of the hidden units of all the
BiLSTMs used in BoW and LSTM-dist models
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PEC MTC

Texts

All essays 402 -
Paragraphs 1,833 112
Sentences 7,116 -
Tokens 147,271 -

ACs

All ACs 6,089 576
Major claim 751 -
Claim 1,506 112
Premise 3,832 464

Links
All links 3,832 464
Support 3,613 290
Attack 219 174

Table 6: Statistics of the PEC and the MTC.

are set to 256 and the BiLSTMs have one hid-
den layer. In the LSTM models, the dimensions
of the hidden units are set to 300 and LSTM used
in ADU-level contextualization has two layers.
Regularization We apply dropout to the input
vectors of the output layer with a dropout ratio of
0.5 in the PEC. We also apply dropout to all the
BiLSTMs and word embeddings with 0.1 in the
PEC. In the MTC, we increase the ratio of dropout
(Table 5)
Model selection We select the models that achieve
the highest averaged macro-F1 across the three
tasks on the validation set.

C Data

Table 6 shows the statistics of the PEC and the
MTC. The PEC is about ten times larger than the
MTC.

D Argumentative Marker Extraction

We distinguish because in the following examples:

• A. Because B, C.

• A because B. C.

As a simple solution, we include a period in the
AMs. Then, AMs of the examples above are . be-
cause and because, respectively. If there is no lex-
ical AM in AC, then only end of sentence symbols
(i.e., ., !, and ?) in the preceding sentence become
its AMs. In the PEC, 63% of ADUs have AMs.
Sometimes AMs are inserted in the middle of sen-
tences (e.g. Others, however, think that these chil-
dren may disrupt their school work and should be
allowed to leave school early to find a job.). In this
case, we do not extract AMs. In fact, this is a rare
case (e.g. , however, exists in 1% of the paragraphs
in the PEC.).

Joint Tasks Performance

LI LTC ATC LI LTC ATC

X X X 80.7 79.0 85.7
X X 80.2 78.6 -
X X 81.1 - 87.3

X X - 78.0 86.0
X 78.3 - -

X 79.6
X - - 85.6

Table 7: Joint learning results on the PEC.

E Joint learning analysis

We additionally analyzed the effectiveness of joint
learning with the LSTM+dist model. In jointly
learning three tasks, we set α = 0.5, β = 0.25 in the
joint cross-entropy loss function. In jointly learn-
ing two tasks, we set 0.5 as each task’s weight
in the joint cross-entropy loss function. Table 7
shows the result. The check mark in Table 7 means
that the model jointly learns the task. The numbers
denote macro-F1 scores. We found that link type
prediction task does not benefit from joint learn-
ing.


