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Abstract

We are surprised to find that BERT’s peak per-
formance of 77% on the Argument Reasoning
Comprehension Task reaches just three points
below the average untrained human baseline.
However, we show that this result is entirely
accounted for by exploitation of spurious sta-
tistical cues in the dataset. We analyze the
nature of these cues and demonstrate that a
range of models all exploit them. This anal-
ysis informs the construction of an adversarial
dataset on which all models achieve random
accuracy. Our adversarial dataset provides a
more robust assessment of argument compre-
hension and should be adopted as the standard
in future work.

1 Introduction

Argumentation mining is the task of determin-
ing argumentative structure in natural language
text - e.g., which text segments represent claims,
and which comprise reasons that support or attack
those claims (Mochales and Moens, 2011; Lippi
and Torroni, 2016). This is a challenging task for
machine learners, as it can be hard even for hu-
mans to determine when two text segments stand
in argumentative relation, as evidenced by studies
on argument annotation (Habernal et al., 2014).

One approach to this problem is to focus on
warrants (Toulmin, 1958) - a form of world
knowledge that permit inferences. Consider a sim-
ple argument: “(1) It is raining; therefore (2) you
should take an umbrella.”1 The warrant “(3) it
is bad to get wet” could license this inference.
Knowing (3) facilitates drawing the inferential
connection between (1) and (2). However it would
be hard to find it stated anywhere since warrants
are most often left implicit (Walton, 2005). Thus,
on this approach, machine learners must not only
reason with warrants but also discover them.

1This example adapted from Black and Hunter (2012)

Claim Google is not a harmful monopoly
Reason People can choose not to use Google
Warrant Other search engines don’t redirect to Google
Alternative All other search engines redirect to Google

Reason (and since) Warrant→ Claim
Reason (but since) Alternative→ ¬ Claim

Figure 1: An example of a data point from the ARCT
test set and how it should be read. The inference from
R and A to ¬C is by design.

The Argument Reasoning Comprehension Task
(ARCT) (Habernal et al., 2018a) defers the prob-
lem of discovering warrants and focuses on in-
ference. An argument is provided, comprising a
claim C and reason R. This task is to pick the cor-
rect warrant W over a distractor, called the alter-
native warrant A. The alternative is written such
that R ∧ A → ¬C. An alternative warrant for
our earlier example could be “(4) it is good to get
wet,” in which case we have (1)∧ (4)→ “(¬2) you
shouldn’t take an umbrella.” An example from the
dataset is given in Figure 1.

The ARCT SemEval shared task (Habernal
et al., 2018b) verified the challenging nature of
this problem. Even supplying warrants, learners
still need to rely on further world knowledge. For
example, to correctly classify the data point in Fig-
ure 1 it is at least required to know how consumer
choice and web re-directs relate to the concept
of monopoly, and that Google is a search engine.
All but one participating system in the shared task
could not exceed 60% accuracy (on binary classi-
fication).

It is therefore surprising that BERT (Devlin
et al., 2018) achieves 77% test set accuracy with
its best run (Table 1), only three points below the
average (untrained) human baseline. Without sup-
plying the required world knowledge for this task
it does not seem reasonable to expect it to perform
so well. This motivates the question: what has
BERT learned about argument comprehension?
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Dev Test
Mean Mean Median Max

Human (trained) 0.909 ± 0.11
Human (untrained) 0.798 ± 0.16
BERT (Large) 0.701 ± 0.05 0.671 ± 0.09 0.712 0.770
GIST (Choi and Lee, 2018) 0.716 ± 0.01 0.711 ± 0.01
BERT (Base) 0.680 ± 0.02 0.623 ± 0.07 0.651 0.685
World Knowledge (Botschen et al., 2018) 0.674 ± 0.01 0.568 ± 0.03 0.610
BoV 0.639 ± 0.02 0.564 ± 0.02 0.569 0.595
BiLSTM 0.658 ± 0.01 0.552 ± 0.02 0.552 0.592

Table 1: Baselines and BERT results. Our results come from 20 different random seeds (± gives the standard
deviation). The mean for BERT Large is skewed by the 5/20 random seeds for which it failed to train, a problem
noted by Devlin et al. (2018). We therefore consider the median a better measure of BERT’s average performance.
The mean of the non-degenerate runs for BERT (Large) is 0.716± 0.04.

Figure 2: General architecture of the models in our
experiments. Logits are independently calculated for
each argument-warrant pair then concatenated and
passed through softmax.

To investigate BERT’s decision making we
looked at data points it finds easy to classify over
multiple runs. Habernal et al. (2018b) performed
a similar analysis with the SemEval submissions,
and consistent with their results we found that
BERT exploits the presence of cue words in the
warrant, especially “not.” Through probing exper-
iments designed to isolate such effects, we demon-
strate in this work that BERT’s surprising perfor-
mance can be entirely accounted for in terms of
exploiting spurious statistical cues.

However, we show that the major problem can
be eliminated in ARCT. Since R ∧ A → ¬C, we
can add a copy of each data point with the claim
negated and the label inverted. This means that
the distribution of statistical cues in the warrants
will be mirrored over both labels, eliminating the
signal. On this adversarial dataset all models per-
form randomly, with BERT achieving a maximum
test set accuracy of 53%. The adversarial dataset
therefore provides a more robust evaluation of ar-
gument comprehension and should be adopted as
the standard in future work on this dataset.

2 Task Description and Baselines

Let i = 1, . . . , n index each point in the dataset
D, where |D| = n. The two candidate warrants
in each case are randomly assigned a binary label
j ∈ {0, 1}, such that each has an equal probability
of being correct. The inputs are the representations
for the claim c(i), reason r(i), warrant zero w

(i)
0 ,

and warrant one w
(i)
1 . The label y(i) is a binary

indicator corresponding to the correct warrant.
The general architecture for all models is given

in Figure 2. Shared parameters θ are learned to
classify each warrant independently with the ar-
gument, yielding the logits:

z
(i)
j = θ[c(i); r(i);w

(i)
j ]

These are then concatenated and passed through
softmax to determine a probability distribution
over the two warrants p(i) = softmax([z

(i)
0 , z

(i)
1 ]).

The prediction is then ŷ(i) = argmaxj p
(i).

The baselines are a bag of vectors (BoV),
bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) (BiLSTM), the SemEval winner GIST
(Choi and Lee, 2018), the best model of Botschen
et al. (2018), and human performance (Table 1).
For all of our experiments we use grid search to se-
lect hyperparameters, dropout regularization (Sri-
vastava et al., 2014), and Adam (Kingma and Ba,
2014) for optimization. We anneal the learning
rate by 1/10 when validation accuracy drops. The
final parameters come from the epoch with maxi-
mum validation accuracy. The BoV and BiLSTM
inputs are 300-dimensional GloVe embeddings
trained on 640B tokens (Pennington et al., 2014).
Code to reproduce all experiments, and detailing
all hyperparameters, is provided on GitHub.2

2https://github.com/IKMLab/arct2.git
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Figure 3: Processing an argument-warrant pair with BERT. The reason (with word pieces of length a) and claim
(length b) together form the first utterance, and the warrant (length c) is the second. The final CLS vector is then
passed to a linear layer to calculate the logit z(i)j .

3 BERT

Our BERT classifier is visualized in Figure 3. The
claim and reason are joined to form the first text
segment, which is paired with each warrant and in-
dependently processed. The final layer CLS vector
is passed to a linear layer to obtain the logits z(i)j .
The whole architecture is fine-tuned. The learning
rate is 2e−5 and we allow a maximum of 20 train-
ing epochs, taking the parameters from the epoch
with the best validation set accuracy. We use the
Hugging Face PyTorch implementation.3

Devlin et al. (2018) report that, on small
datasets, BERT sometimes fails to train, yield-
ing degenerate results. ARCT is very small with
1, 210 training observations. In 5/20 runs we en-
countered this phenomenon, seeing close to ran-
dom accuracies on validation and test sets. These
cases occurred where training accuracy was also
not significantly above random (< 80%). Remov-
ing the degenerate runs, BERT’s mean is 71.6 ±
0.04., which would beat the previous state of the
art - as would the median of 71.2%, which is a
better average than the overall mean since it is not
skewed by the degenerate cases. However, our
main finding is that these results are not mean-
ingful and should be discarded. In the following
sections we focus on BERT’s peak performance
of 77% to make this case.

3https://github.com/huggingface/pytorch-pretrained-
BERT

4 Statistical Cues

The major source of spurious statistical cues in
ARCT comes from uneven distributions of lin-
guistic artifacts over the warrants, and therefore
over the labels. This section aims to demonstrate
the presence and nature of these cues. We only
consider unigrams and bigrams, although more so-
phisticated cues may be present. To this end, we
aim to calculate how beneficial it is for a model
to exploit a cue k, and how pervasive it is in the
dataset (indicating the strength of the signal).

Formally, let T(i)
j be the set of tokens in the war-

rant for data point i with label j. We define a
cue’s applicability αk as the number of data points
where it occurs with one label but not the other:

αk =

n∑
i=1

1
[
∃j, k ∈ T(i)

j ∧ k /∈ T(i)
¬j

]
The productivity πk of a cue is defined as the pro-
portion of applicable data points for which it pre-
dicts the correct answer:

πk =

∑n
i=1 1

[
∃j, k ∈ T(i)

j ∧ k /∈ T(i)
¬j ∧ yi = j

]
αk

Finally, we define the coverage ξk of a cue as
the proportion of applicable cases over the total
number of data points: ξk = αk/n. In these
terms, the productivity of a cue measures the ben-
efit of exploiting it, while coverage measures the
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Productivity Coverage
Train 0.65 0.66
Validation 0.62 0.44
Test 0.52 0.77
All 0.61 0.64

Table 2: Productivity and coverage of using the pres-
ence of “not” in the warrant to predict the label in
ARCT. Across the whole dataset, if you pick the war-
rant with “not” you will be right 61% of the time, which
covers 64% of all data points.

strength of the signal it provides. With m labels,
if πk > 1/m then the presence of a cue is going to
be useful for the task and a machine learner would
do well to make use of it.

The productivity and coverage of the strongest
unigram cue we found (“not”) is given in Table
2. It provides a particularly strong training sig-
nal. While it is less productive in the test set, it
is just one among many such cues. We found a
range of other unigrams, albeit with less overall
productivity, mostly being high frequency words
such as “is,” “do,” and “are.” Bigrams that oc-
curred with not, such as “will not” and “cannot,”
were also found to be highly productive. These
statistics indicate the nature of the problem. In the
next section we demonstrate that our models are in
fact exploiting these cues.

5 Probing Experiments

If a model is exploiting distributional cues over the
labels, then if trained only on the warrants (W) it
should perform relatively well. The same can be
said for removing either just the claim, leaving the
reason and warrant (R, W), or removing the reason
(C, W). The latter setups allow the models to addi-
tionally consider cues in the reasons and claims,
as well as cues holding over their combinations
with the warrants. Each of these setups breaks the
task since we no longer have an argument to match
with a warrant.

Experimental results are given in Table 3. On
warrants alone (W) BERT achieves a maximum
71% accuracy. That leaves only six percentage
points to account for its peak of 77%. We find
a gain of four percentage points for (R, W) over
(W), and a gain of two for (C, W), accounting for
the missing six points. Based on this evidence our
major finding is that the entirety of BERT’s perfor-
mance can be accounted for in terms of exploiting
spurious statistical cues.

Test
Mean Median Max

BERT 0.671 ± 0.09 0.712 0.770
BERT (W) 0.656 ± 0.05 0.675 0.712
BERT (R, W) 0.600 ± 0.10 0.574 0.750
BERT (C, W) 0.532 ± 0.09 0.503 0.732
BoV 0.564 ± 0.02 0.569 0.595
BoV (W) 0.567 ± 0.02 0.572 0.606
BoV (R, W) 0.554 ± 0.02 0.557 0.579
BoV (C, W) 0.545 ± 0.02 0.544 0.589
BiLSTM 0.552 ± 0.02 0.552 0.592
BiLSTM (W) 0.550 ± 0.02 0.547 0.577
BiLSTM (R, W) 0.547 ± 0.02 0.551 0.577
BiLSTM (C, W) 0.552 ± 0.02 0.550 0.601

Table 3: Results of probing experiments with BERT
Large, and the BoV and BiLSTM baselines. These re-
sults indicate that BERT’s peak 77% performance can
be entirely accounted for by exploiting spurious cues.
By just considering warrants (W) we can get to 71%.
Adding cues over reasons (R, W) and claims (C, W)
accounts for the remaining six points.

6 Adversarial Test Set

The major problem of statistical cues over labels
in ARCT can be eliminated due the original de-
sign of the dataset. Given that R ∧ A → ¬C,
we can produce adversarial examples by negat-
ing the claim and inverting the label for each data
point (Figure 4). The adversarial examples are
then combined with the original data. This elim-
inates the problem by mirroring the distributions
of cues around both labels. The ARCT authors
provide a training set augmented in this way. The
negation of most claims in the validation and test
sets already exist elsewhere in the dataset. The re-
maining claims were manually negated by a native
English speaker.

We tried two experimental setups. In the first,
models trained and validated on the original data
were evaluated on the adversarial set. All results
were worse than random due to overfitting the cues
in the original training set. In the second, mod-
els were trained from scratch on the adversarial
training and validation sets, then evaluated on the
adversarial test set. Results are given in Table 4.
BERT’s peak performance has reduced to 53%,
with mean and median at 50%. We conclude from
these results that the adversarial dataset has suc-
cessfully eliminated the cues as expected, provid-
ing a more robust evaluation of machine argument
comprehension. This result better apts with our
intuitions about this task: with little to no under-
standing about the reality underlying these argu-
ments, good performance shouldn’t be feasible.
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Original Adversarial
Claim Google is not a harmful monopoly Google is a harmful monopoly

Reason People can choose not to use Google People can choose not to use Google

Warrant Other search engines do not redirect to Google All other search engines redirect to Google

Alternative All other search engines redirect to Google Other search engines do not redirect to Google

Figure 4: Original and adversarial data points. The claim is negated and the warrants are swapped. The assignment
of labels to W and A are kept the same. By including both, the distribution of linguistic artifacts in the warrants
are thereby mirrored around the labels, eliminating the major source of spurious statistical cues in ARCT.

7 Related Work

The most successful previous work on ARCT
(Choi and Lee, 2018; Zhao et al., 2018; Niven and
Kao, 2018) involved transfer learning from Natu-
ral Language Inference (NLI) datasets (Bowman
et al., 2015; Williams et al., 2017), and utilized
effective NLI models such as ESIM (Chen et al.,
2016) and InferSent (Conneau et al., 2017). More
recently, Botschen et al. (2018) added FrameNet
knowledge with modest performance gains. These
models should be evaluated on our adversarial
dataset. In particular it will be interesting if
Botschen et al.’s model stands out due to the in-
clusion of some of the required world knowledge.

There is much recent work focusing on statis-
tical cues in datasets in vision (Jo and Bengio,
2017) and NLP (Sanchez et al., 2018; McCoy
et al., 2019; Gururangan et al., 2018; Glockner
et al., 2018; Poliak et al., 2018; Rajpurkar et al.,
2018; Jia and Liang, 2017). Similar to our exper-
iment with warrants, Poliak et al. (2018) classi-
fied NLI data based on the hypothesis only. A
similar experiment to our probing task was per-
formed by Niven and Kao (2018), but only with
reasons and warrants. They found that indepen-
dent warrant classification with shared parameters
provides some regularization against warrant-label
cues (Niven and Kao, 2018). However, this does
not solve the problem since the presence of a cue
is enough to increase the logits for either warrant.

The original ARCT data comes with a train-
ing set created in the same way as our adversarial
dataset. Habernal et al. (2018a) reported experi-
ments using this training data that led to random
accuracy. They suggested it could be that high
similarity between the data points made the prob-
lem too difficult for the simple models they imple-
mented. Our work indicates the necessity of ap-
plying this transformation to the entire dataset in
order to obtain a more robust evaluation by elimi-
nating spurious statistical cues over the labels.

Test
Mean Median Max

BERT 0.504 ± 0.01 0.505 0.533
BERT (W) 0.501 ± 0.00 0.501 0.502
BERT (R, W) 0.500 ± 0.00 0.500 0.502
BERT (C, W) 0.501 ± 0.01 0.500 0.518

Table 4: Results for BERT Large on the adversarial test
set with adversarial training and validation sets.

8 Conclusion

ARCT provides a fortuitous opportunity to see
how stark the problem of exploiting spurious
statistics can be. Due to our ability to eliminate the
major source of these cues, we were able to show
that BERT’s maximum performance fell from just
three points below the average untrained human
baseline to essentially random. To answer our
question in the introduction: BERT has learned
nothing about argument comprehension.

However, our investigations confirmed that
BERT is indeed a very strong learner. Analysis
of easy to classify data points showed reliance on
a lower proportion of the strongest cue word than
the BoV and BiLSTM - i.e. BERT has learned
when to ignore the presence of “not” and focus on
different cues. This indicates an ability to exploit
much more subtle joint distributional information.
As our learners get stronger, controlling for spu-
rious statistics becomes more important in order
to have confidence in their apparent performance.
Taken with a growing body of previous work, our
results indicate the need for further research into
the extent of this problem in NLP more generally.

The adversarial dataset should be adopted as the
standard in future work on ARCT. We hope that
providing a more robust evaluation will help to
spur more productive research on this problem.
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